fea plane stress analysis

Upload: raam

Post on 03-Jun-2018

225 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/12/2019 FEA Plane Stress Analysis

    1/17

    Copyright2009. Allrightsreserved. 101

    6 PlaneStressAnalysis6.1 IntroductionGenerally

    you

    will

    be

    forced

    to

    utilize

    the

    solid

    elements

    in

    SW

    Simulation

    due

    to

    acomplicated

    solid

    geometry. Tolearnhowtoutilizelocalmeshcontrolfortheelementsitisusefultoreviewsometwo

    dimensional(2D)problemsemployingthemembranetriangularelements. Historically,2Danalytic

    applicationsweredevelopedtorepresent,orbound,someclassicsolidobjects. Thosespecialcasesinclude

    planestressanalysis,planestrainanalysis,axisymmetricanalysis,flatplateanalysis,andgeneralshellanalysis.

    Aftercompletingthefollowing2Dapproximationyoushouldgobackandsolvethemuchlarger3Dversionof

    theproblemandverifythatyougetessentiallythesameresultsforboththestressesanddeflections.

    Planestressanalysisisthe2Dstressstatethatisusuallycoveredinundergraduatecoursesonmechanicsof

    materials. Itisbasedonathinflatobjectthatisloaded,andsupportedinasingleflatplane. Thestresses

    normaltotheplanearezero(butnotthestrain). Therearetwonormalstressesandoneshearstress

    componentateachpoint(x, y,and). Thedisplacementvectorhastwotranslationalcomponents(u_x,and

    u_y).Therefore,

    any

    load

    (point,

    line,

    or

    area)

    has

    two

    corresponding

    components.

    TheSWSimulationshellelementscanbeusedforplanestressanalysis. However,onlytheirinplane,or

    membrane,behaviorisutilized. Thatmeansthatonlytheelementsinplanedisplacementsareactive. The

    generalshellinplanerotationvectorsarenotusedforplanestressstudiesandshouldberestrained. To

    createsuchastudyyouneedtoconstructthe2Dshapeeitherasasheetmetalpart,aplanarsurface(InsertSurfacePlanarsurface),orextrudeitasasolidpartwithaconstantthicknessthatissmallcomparedtotheothertwodimensionsofthepart. Asolidislaterconvertedtoashellmodelbycreatingamidsurfaceoran

    offsetsurfacewithinthesolid.

    Beforesolidelementsbecameeasytogenerateitwasnotunusualtomodelsomeshapesas2.5D. Thatis,

    theywereplanestressinnaturebuthadregionsofdifferentconstantthickness. Thisconceptcanbeusefulin

    validatingtheresultsofasolidstudyifyouhavenoanalyticapproximationtouse. Sincethemidsurfaceshells

    extracttheir

    thickness

    automatically

    from

    the

    solid

    body

    you

    should

    use

    amid

    plane

    extrude

    when

    you

    are

    buildingsuchapart.

    Oneuseofaplanestressmodelhereistoillustratethenumberofelementsthatareneededthroughthe

    depthofaregion,whichismainlyinastateofbending,inordertocaptureagoodapproximationofthe

    flexuralstresses. Elementarybeamtheoryand2Delasticitytheorybothshowthatthelongitudinalnormal

    stress(x)varieslinearlythroughthedepth. Forpurebendingitistensionatonedepthextreme,compression

    attheother,andzeroatthecenterofitsdepth(alsoknownastheneutralaxis).Whenthebendingisdue,in

    part,toatransverseforcethentheshearstress()ismaximumattheneutralaxisandzeroatthetopand

    bottomfibers. Forarectangularcrosssectiontheshearstressvariesparabolicallythroughthedepth. Since

    theelementstressesarediscontinuousattheirinterfaces,youwillneedatleastthreeofthequadratic(6

    node)membranetriangles,oraboutfiveofthelinear(3node)membranetrianglestogetareasonablespatial

    approximationof

    the

    parabolic

    shear

    stress.

    This

    concept

    should

    guide

    you

    in

    applying

    mesh

    control

    through

    thedepthofaregionyouexpect,orfind,tobeinastateofbending.

    6.2 SimplysupportedbeamAsimplerectangularbeamplanestressanalysiswillbeillustratedhere.Considerabeamofrectangularcross

    sectionwithathicknessoft=2cm,adepthofh=10cm,andalengthofL=100cm. Letauniformly

    distributeddownwardverticalloadofw=100N/cmbeappliedatitstopsurfaceandletbothendsbesimply

    supported(i.e.,haveu_y=0attheneutralaxis)byarollersupport. Inaddition,bothendsaresubjectedto

  • 8/12/2019 FEA Plane Stress Analysis

    2/17

    PlaneStressAnalysis J.E.Akin

    Draft10.2Copyright2009. Allrightsreserved. 102

    equalmomentsthateachdisplacesthebeamcenterdownwards. TheendmomenthasavalueofM=1.25e3

    Nm.Thematerialisaluminum1060. Thisisaproblemwherethestressesdependonlyonthegeometry.

    However,thedeflectionsalwaysdependonthematerialtype.

    Figure61 Asimplysupportedbeamwithlineloadandendmoments

    Itshouldbeclearthatthisproblemissymmetricalabouttheverticalcenterline(whythatistruewillbe

    explainedshortlyshoulditnotbeclear). Therefore,nomorethanhalfthebeamneedstobeconsidered(and

    halftheload). Selecttherighthalf. Thebeamtheoryresultsshouldsuggestthatanevenmoresimplified

    modelwouldbevalidduetoantisymmetry(ifweassumehalfthelineloadactsonboththetopandbottom

    faces). The3Dflatfacesymmetryrestraintwasdescribedearlier. The2Dnatureofthisexampleprovides

    insightintohowtoidentifylines(orplanesin3D)ofsymmetryandantisymmetry,asshowninFigure62.

    Figure62 Onequarterofthebeam

    6.2.1 SymmetryandantisymmetryrestraintsAprocessforidentifyingdisplacementrestraintsonplanesofsymmetryandantisymmetrywillbeoutlined

    here. Assumethatthehorizontalcenterlineofthebeamcorrespondstothe

    Antisymmetric,ub= ua Symmetric,vb=va

    Figure63 Antisymmetric(u=0,v=?),andsymmetric(u=?,v=0)displacementstates

    dashedcenterlineoftheantisymmetricimageattheleftinFigure63. Thequestionis,what,ifany,restraint

    shouldbeappliedtotheuorvdisplacementcomponentonthatline. Toresolvethatquestionimaginetwo

    mirrorimagepoints,aandb,eachadistance,,aboveandbelowthedashedline. Notethatboththeupper

    andlowerhalfportionsareloadeddownwardinanidenticalfashion,andtheyhavethesamehorizontalend

    supports. Therefore,youexpectvaandvbtobeequal,buthaveanunknownvalue(sayva=vb=?). Likewise,

  • 8/12/2019 FEA Plane Stress Analysis

    3/17

    PlaneStressAnalysis J.E.Akin

    Draft10.2Copyright2009. Allrightsreserved. 103

    thehorizontalloadapplicationisequalinmagnitude,butofoppositesignintheupperandlowerregions.

    Therefore,youexpectub= ua. Nowletthedistancebetweenthepointsgotozero(0). Thelimitgivesv=

    va=vb=?,sovisunknownandnorestraintisappliedtoit. Thelimitonthehorizontaldisplacementgivesu=

    ub= ua0,sothehorizontaldisplacementcanberestrainedtozeroifyouwithtouseahalfdepthanti

    symmetricmodel. Anotherwaytosaythatis:onalineorplaneofantisymmetrythetangential

    displacementcomponent(s)isrestrainedtozero. Forashellorbeamtherotationalcomponentnormaltoan

    antisymmetry

    plane

    is

    also

    zero.

    Theverticalcenterlinesymmetrycanbejustifiedinasimilarway. ImaginethattherightimageinFigure63is

    rotated90degreesclockwisesothedashedlineisparalleltothebeamverticalsymmetryline. Nowu

    representsthedisplacementcomponenttangenttothebeamcenterline(i.e.,vertical). Theverticalloadingon

    bothsidesisthesame,asaretheverticalendsupports,sotheverticalmotionataandbwillbethesame(say

    ua=ub=?). Inthelimit,asthetwopointsapproacheachotheru=ua=ub=?,sothebeamverticalcenterline

    hasanunknowntangentialdisplacementandisnotsubjecttoarestraint. Nowconsiderthedisplacement

    normaltothebeamverticalcenterline(herev). Atanyspecifieddepth,theloadingsanddeflectionsinthat

    directionareequalandopposite. Therefore,inthelimitasthetwopointsapproacheachotheru=ub= ua

    0,sothedisplacementcomponentnormaltothebeamverticalcenterlinemustvanish. Anotherwaytostate

    thatis:onalineorplaneofsymmetrythenormaldisplacementcomponentisrestrainedtozero.Forashell

    orbeam

    the

    rotational

    components

    parallel

    to

    asymmetry

    plane

    are

    also

    zero.

    6.2.2 Beamloadcase1,momentloadingsFromtheabovearguments,the2Dapproximationcanbereducedtoonequarteroftheoriginaldomain. The

    othermaterialisremovedandreplacedbytherestraintsthattheyimposeontheportionthatremains. Now

    yourattentioncanfocusontheappliedloadstates. Thetop(andbottom)lineloadcanbereplacedeither

    withatotalforceonthetopsurface,oranequivalentpressureonthetopsurface,sinceSWSimulationdoes

    notofferaloadperunitlengthoption. Unfortunately,eitherrequiresahandcalculationthatmightintroduce

    anerror. Thelessobviousquestionishowtoapplytheendmoment(s).

    Sincethegeneralshellelementhasbeenforcedtolieinaflatplane,andhavenoloadsnormaltotheplane,its

    twoinplanerotationalDOFwillbeidenticallyzero. However,thenodalrotationsnormaltotheplanearestill

    active(intheliteraturetheyarecalldrillingfreedomsin2Dstudies). Thatmaymakeyouthinkthatyoucould

    applyamoment,Mz,atanodeontheneutralaxisofeachendofthebeam. Intheory,thatshouldbepossible,

    butinpracticeitworkspoorly(tryit)andtheendmomentshouldbeappliedinadifferentfashion. Oneeasy

    waytoapplyamomentistoformacouplebyapplyingequalpositiveandnegativetriangularpressuresacross

    thedepthoftheendsofthebeam. Thatapproachworksequallywellfor3Dsolidsthatdonothaverotational

    degreesoffreedom.

    Themaximumrequiredpressureisrelatedtothedesiredmomentbysimplestaticequilibrium. Theresultant

    horizontalforceforalinearpressurevariationfromzerotopmaxisF=Apmax/2,whereAisthecorresponding

    rectangulararea,A=t(h/2),soF=thpmax/4. Thatresultantforceoccursatthecentroidofthepressure

    loading,soitsleverarmwithrespecttotheneutralaxisisd=2(h/2)/3=h/3(forthetopandbottomportions).

    The

    pair

    of

    equal

    and

    opposite

    forces

    form

    a

    combined

    couple

    of

    Mz

    =

    F

    (2d)

    =

    t

    h

    2

    pmax

    /

    6.

    Finally,

    the

    requiredmaximumpressureis pmax=6Mz/th2.

    ToapplythispressuredistributioninSWSimulationyoumustdefinealocalcoordinatesystemlocatedatthe

    neutralaxisofthebeamanduseittodefineavariablepressure. However,theSWSimulationnonuniform

    pressuredatarequiresapressurescale,pscale,timesanondimensionalfunctionofaselectedlocalcoordinate

    system. Hereyouwillassumeapressureloadlinearlyvaryingwithlocalyplacedattheneutralaxis:p(y)=

    pscale*y(withynondimensional). Thismustmatchpmaxaty=h/2,so

    pscale =2pmax/h=12Mz/th3.

  • 8/12/2019 FEA Plane Stress Analysis

    4/17

    PlaneStressAnalysis J.E.Akin

    Draft10.2Copyright2009. Allrightsreserved. 104

    Sinceitisoftennecessarytoapplymomentstosolidsinthisfashionthismomentloadingwillbechecked

    independentlyagainstbeamtheoryestimatesbeforeapplyingthelineload.Here,pmax=3.75e7N/m2,pscale =

    7.5e8.

    6.2.3 SWSimulationplanestressmodelThebeamtheorysolutionforasimplysupportedbeamwithauniformloadiswellknown,asisthesolutionfor

    theloading

    by

    two

    end

    moments

    (called

    pure

    bending).

    In

    both

    cases

    the

    maximum

    deflection

    occurs

    at

    the

    beammidspan. Thetwovaluesarevmax=5wL4/384EI,andvmax=ML

    2/8EI,respectively. Herethe

    centerlinedeflectiondueonlytotheendmomentisvmax=1.36e3m. Foralinearanalysisandthesumof

    thesetwovaluescanbeusedtovalidatethecenterlinedeflection. Next,theonequartermodel,shownin

    Figure62,willbebuilt,restrained,andloaded:

    1. BuildtherectanglesketchandconvertittoaplanarsurfaceviaInsertSurfacePlanarSurfaceandselecttheCurrentSketchasthePlanarSurface.

    2. Startanewstudyusingashellmesh:Simulation

    New

    StudyStatic

    .NameitAntisymmbeam.

    3. UsePartEditDefinitiontosettheelementTypetoThin,andtheShellThicknesstobe0.02m. AlsousePart Apply/EditMaterialtoselectthelibrarymaterialof1060aluminum.

    Sincethestressesthroughthedepthofthebeamaregoingtobeexaminedhere,youshouldplanaheadand

    insertsomesplitlinesonthefrontsurfacetobeusedtolistand/orgraphselectedstressanddeflection

    components:

    1. Rightclickonthefrontface,InsertSketch.2. Insertalinesegmentthatcrossesthefaceattheinteriorquarterpoints.Includingtheendlines,fivegraphingsectionswillbeavailable. Alsoaddarightcornerarcfortheverticalsupportedge.

  • 8/12/2019 FEA Plane Stress Analysis

    5/17

    PlaneStressAnalysis J.E.Akin

    Draft10.2Copyright2009. Allrightsreserved. 105

    3. InsertCurveSplitLineselectthebodyfaces,clickOK.

    6.2.4 EdgerestraintsandloadsRememberthatshellsdefinedbyplanarsurfacesmusthavetheirrestraintsandloadsapplieddirectlytothe

    edgesoftheselectedsurface. Firstthesymmetryandantisymmetryrestraintswillbeapplied. Sincetheshell

    meshwillbeflatitiseasytouseitsedgestodefinedirectionsforloads,orrestraints:

    1. RightclickingonFixturesopenstheFixturepanel.2. Thezerohorizontal(x)deflectionisappliedasaverticalsymmetryconditionontheedgecorresponding

    to

    the

    beam

    centerline;

    AdvancedUse

    Reference

    Geometry,

    select

    vertical

    Edge1

    to

    restrainandhorizontalEdge2forthedirection.

    3. Applytheantisymmetryconditionalongtheedgeoftheneutralaxis.Usereferencegeometry,selectthefivebottomedgesformedbythesplitlinesandEdge7forthedirection.

  • 8/12/2019 FEA Plane Stress Analysis

    6/17

    PlaneStressAnalysis J.E.Akin

    Draft10.2Copyright2009. Allrightsreserved. 106

    Atthesimplysupportedenditisnecessarytoassumehowthatsupportwillbeaccomplished. Beamtheory

    treatsitasapointsupport,butin2Dor3Dthatcausesafalseinfinitestressatthepoint. Anothersplitlinearc

    wasintroducedsoaboutonethirdofthatendcouldbepickedtoprovidetheverticalrestraintrequired. This

    servesasareminderthatwhere,andhow,partsarerestrainedisanassumption. Soitiswisetoinvestigate

    morethanonesuchassumption. Softwaretutorialsareintendedtoillustratespecificfeaturesofthesoftware,

    andusuallydonothavethespacefor,orintentionof,presentingthebestengineeringjudgment. Immovable

    restraintsare

    often

    used

    in

    tutorials,

    but

    they

    are

    unusual

    in

    real

    applications.

    Applytherightverticalendsupportrestraint:

    1. SelectFixturestoopentheFixturepanel.2. PickAdvancedUseReferenceGeometry;selectthelowerrightfrontverticaledgelinetorestrain,andtheupperverticaledgeasthedirection.

  • 8/12/2019 FEA Plane Stress Analysis

    7/17

    PlaneStressAnalysis J.E.Akin

    Draft10.2Copyright2009. Allrightsreserved. 107

    6.2.5 RigidbodymotionrestraintSinceageneralshellelementisbeingusedinaplanestress(membraneshell)applicationitstillhastheability

    totranslatenormaltoitsplaneandtorotateabouttheinplaneaxes(xandy). Thosethreerigidbodymotions

    shouldalsobeeliminatedinanyplanestressanalysisonmostFEAsystems. Ifnothingelse,sucharestraint

    avoidscalculatingthreezerovaluesateachnodeandmakesyouranalysismoreefficient. Atworst,duringthe

    solvephaseyoumaygetafatalerrormessage(duetoroundofferrors):

    Forgoodmodelingpracticeapplythoserestraintsvia:

    1. SelectFixturestoopentheFixturepanelandpickAdvancedFixtures.2. PickSymmetry;selectthefivefrontfacesegmentsofthebeamtorestrain.ChangetheSymbolColor.Thatcompletesthesymmetry,antisymmetryandrigidbodymotionrestraintsforthismodel.

    6.2.6 MomentapplicationasanonuniformpressureUnlikegeneralshells,membraneshellsdonothaveactiverotationaldegreesoffreedomthatallowforthe

    directapplicationofacouple. Alinearvariationofequalandoppositepressures,relativetotheneutralaxis,

    canbeusedtoapplyastaticallyequivalentmomenttoacontinuumbodythatdoesnothaverotational

    degreesoffreedom. Suchaloadingalsohasthesidebenefitofmatchingthetheoreticalnormalstress

    distributionin

    abeam

    subjected

    to

    astate

    of

    pure

    bending.

    A

    varying

    pressure

    loading

    usually

    requires

    the

    usertodefinealocalcoordinatesystemattheaxisaboutwhichthemomentacts. Inthiscase,itmustbe

    locatedattheneutralaxisofthebeam:

    1. SelectInsertReferenceGeometryCoordinateSystemtoopentheCoordinateSystempanel.RightclickontherightendoftheneutralaxistosettheoriginofCoordinateSystem1.

  • 8/12/2019 FEA Plane Stress Analysis

    8/17

    PlaneStressAnalysis J.E.Akin

    Draft10.2Copyright2009. Allrightsreserved. 108

    2. Acceptthedefaultdirectionsfortheaxesasmatchingtheglobalaxes.ToapplytheexternalmomentuseExternalLoadsPressure. TheapplicationofthenonuniformpressureisappliedatthefrontverticaledgeatthesimplesupportinthePressurepanelofFigure64. Aunitpressure

    valueisusedtosettheunitsandthemagnitudeisdefinedbymultiplyingthatvaluebyanondimensional

    polynomialofthespatialcoordinatesofapoint,relativetolocalCoordinateSystem1definedabove.

    Figure64 Applyingtherequiredlinearpressure

    6.2.7 MeshandrunthemomentstudyHavingcompletedtherestraintsandmomentloading,thedefaultnamesinthemanagermenuhavebeen

    changed(byslowdoubleclicks)toreflectwhattheyareintendedtoaccomplish(leftofFigure65). Nowyou

    canRunthemomentloadcasestudy.

  • 8/12/2019 FEA Plane Stress Analysis

    9/17

  • 8/12/2019 FEA Plane Stress Analysis

    10/17

    PlaneStressAnalysis J.E.Akin

    Draft10.2Copyright2009. Allrightsreserved. 110

    compressionwithastressvaluex=pmax=3.75e7N/m2. Thatseemstoagreewiththecontourrangein

    Figure68andindeed,astressprobetheregivesavalueofx=3.77e7N/m2. Beamtheorygivesalinear

    variation,throughthedepth,fromthatmaximumtozeroattheneutralaxis. Tocomparewiththat,agraphof

    alongthequarterpointsplitlineisgiveninFigure68. Itshowsthatthesevennodesalongtheedgesofthe

    threequadraticelementshavepickedupthepredictedlineargraphquitewell. Forthenextloadcaseofafull

    spanlineloadtheshearstress(thatiszerohere)willbeparabolicandthecorrespondinggraphwillbeless

    accuratefor

    such

    acrude

    mesh.

    Figure67HorizontalstressalongtherightL/8spansegmentanditsprobevalue

    Figure68 GraphofhorizontalstressatverticallineL/8fromthesupport

    6.2.9 ReactionrecoveryFor

    this

    first

    load

    case,

    the

    only

    external

    applied

    load

    is

    the

    horizontal

    pressure

    distribution.

    It

    caused

    aresultantexternalhorizontalforcethatwasshownabovetobeF=18,750N. Youshouldexpectthefinite

    elementreactiontobeequalandoppositeofthatexternalresultantload. CheckthatintheManagermenu:

    1. RightclickResults ListResultForceReactionForcetoopenthepanelwiththereactionforces.

  • 8/12/2019 FEA Plane Stress Analysis

    11/17

    PlaneStressAnalysis J.E.Akin

    Draft10.2Copyright2009. Allrightsreserved. 111

    2. Examinethehorizontal(x)reactionforceaboveandverifythatitssumis18,750N.(Thesumofthemomentsisoftenconfusingbecausetheyarecomputedwithrespecttotheoriginoftheglobalcoordinatesystem,andmostprogramsnevermentionthatfact.)

    TotestyourexperiencewithSWSimulation,youshouldnowrunthisspecialcasestudyasafull3Dsolid

    subjecttothesameendpressures. Youwillfindthismodelwasquiteaccurate.Whileplanning3Dmeshes

    youcangetusefulinsightsbyrunninga2Dstudylikethis. Also,a2Dapproximationcanbeausefulvalidation

    toolifnoanalyticresultsorexperimentalvaluesareavailable. Theycanalsobeeasiertovisualize. Ofcourse,

    manyproblemsrequireafull3Dstudybut1Dor2Dstudiesalongthewayareeducational.

    6.2.10Beamloadcase2,thetransverselineloadHavingvalidatedthemomentloadcase,thelineloadwillbevalidatedandthenbothloadcaseswillbe

    activatedto

    obtain

    the

    results

    of

    the

    original

    problem

    statement.

    First,

    go

    to

    the

    manager

    menu,

    right

    click

    on

    themomentpressureloadandsuppressit. Nextyouopenanewforcecasetoaccountforthelineload.

    Recallthatthelineloadtotaled10,000N. Sincetheparthasbeenreducedtoonefourth,throughtheuseof

    symmetryandantisymmetry,youonlyneedtodistribute2,500Noverthismodel. Therearetwowaystodo

    thatforselectedsurfaceshellformulationofanyplanestressproblem. Theyaretoapplythattotalaseithera

    lineload,ortodistributeitoverthemeshfaceasatangentialsheartraction(whichisthebetterway). Figure

    69(left)showstheApplyForceapproach. Thatapproachhasbeenmadelessclearbythewaythesplitlines

    wereconstructed. Thetopofthebeamhasbeensplitintofoursegmentsandthismethodappliesaforceper

    entity. Therefore,aresultantforceof625Nperedgesegmentisspecified. Hadthesplitlinesnothadequal

    spacingyouwouldhavetomeasureeachoftheirlengthsandgothroughthisprocedurefourtimes(the

    pressureapproachavoidsthatpotentialcomplication)..

  • 8/12/2019 FEA Plane Stress Analysis

    12/17

    PlaneStressAnalysis J.E.Akin

    Draft10.2Copyright2009. Allrightsreserved. 112

    Figure69 Secondbeamloadcaseofalineload

    Withthissecondloadcaseinplacethestudyissimplyrunagainwiththesamerestraintsandmesh. Aseries

    ofquickspotchecksoftheresultsarecarriedoutbeforemovingontothetrueproblemwherebothloadcases

    areactivated.

    Thebeamtheoryvalidationresult,forthislineload,predictedamaximumverticalcenterlinedeflectionofvmax

    =1.13e3m. Theplanestressmaximumdeflectionwasextracted:

    1. DoubleclickonPlot1underdisplacements. Thecontouredmagnitudeshowsarotationalmotionaboutthesimplesupportend,andverticaltranslationatthebeamcenterline,asexpected.

    1. RightclickinthemanagermenuResultsListStress,Displacement,StraintoopentheListResultspanel. SelectDisplacementsandunderAdvancedOptionsselectAbsoluteMax,andSortbyvalue,

    clickOK.

  • 8/12/2019 FEA Plane Stress Analysis

    13/17

    PlaneStressAnalysis J.E.Akin

    Draft10.2Copyright2009. Allrightsreserved. 113

    2. Whenthelistappearsnotethatthemaximumdeflectionis1.16e3mattheverticalcenterlineposition. Thatisveryclosetotheinitialvalidationestimate.

    Thenumericalvalueofthemaximumhorizontalfiberstresswaslistedinasimilarmanner. Themaximum

    compressionvalue,inFigure610,ofx=4.04e7N/m2compareswellwiththesimplebeamtheoryvalueof

    3.75e7N/m2,beingabouta7%difference. Sincethemeshissocrudethebeamstressisprobablythemost

    accurateandtheplanestressvaluewillmatchitasareasonablyfinemeshisintroduced. Thepurposeofthe

    crudemeshistoillustratetheneedformeshcontrolissolidsundergoingmainlyflexuralstresses. Toillustrate

    thatpoint,

    Figure611presentsthenormalstressandshearstress,fromtheneutralaxistothetop,attheL/4andL/8

    positions.

    Beamtheorysaysthenormalstressislinearwhiletheshearstressisparabolic. Thebeamtheoryshearstress

    shouldbezeroatthetopfiberand,forarectangularcrosssection,hasamaximumvalueattheneutralaxisof

    1.88e6N/m2. Thegraphvaluesin

    Figure611showsaplanestressmaximumshearstressof1.84e6N/m2andaminimumof0.08e6N/m2atthe

    quarterspansection. Thatisquitegoodagreementwithavalidationestimatefrombeamtheory.

  • 8/12/2019 FEA Plane Stress Analysis

    14/17

    PlaneStressAnalysis J.E.Akin

    Draft10.2Copyright2009. Allrightsreserved. 114

    Figure610 Horizontalstresses(SX)forthelineloadcase

    Figure611 Normal(SX)andshearstresses(SXY)atL/4(left)andL/8forthelineloadcase

    6.3 CombinedloadcasesHavingvalidatedeachofthetwoloadcasestheyarecombinedbyunsuppressingtheendmomentcondition

    (Figure612left)andrunningthestudyagainwiththesamemesh. Here,thetwosetsofpeakdeflectionsand

    stressessimplyaddbecauseitisalinearanalysis. Aquickspotcheckverifiestheexpectedresults. The

    reactionforcecomponentswereverified(Figure612right)beforelistingthemaximumdeflectionandfiber

    stress(Figure613).

  • 8/12/2019 FEA Plane Stress Analysis

    15/17

    PlaneStressAnalysis J.E.Akin

    Draft10.2Copyright2009. Allrightsreserved. 115

    Figure612 Verifyingthemodelreactionsforthecombinedloadings

    Figure613 ProbevaluesforcombinedloadingmaximumdisplacementandvonMisesstress

    Whatremainstobedoneistoexaminethelikelyfailurecriteriathatcouldbeappliedtothismaterial. They

    includethe

    Von

    Mises

    effective

    stress,

    the

    maximum

    principle

    shear

    stress,

    and

    the

    maximum

    principle

    normal

    stress. TheVonMisescontourvaluesareshowninFigure614. Twicethemaximumshearstress(thestress

    intensity)isgiveninthetopofFigure615,whilethebottomportiondisplaysthemaximumprinciplestress

    (P3). Actually,P3iscompressiveherebutitcorrespondstothemirrorimagetensiononthebottomfiberof

    theactualbeam. Allthreestressvaluesneedtobecomparedtotheyieldpointstressof2.8e7N/m2. The

    arrowinthefigurehighlightswherethatfallsonthecolorbar. Allofthecriteriaexceedthatvalue,sothepart

    willhavetoberevised. AtthispointfailureisdeterminedevenbeforeaFactorofSafety(FOS)hasbeen

    assigned. Forductilematerials,thecommonvaluesfortheFOSrangefrom1.3to5,ormore[9,12]. Assumea

    FOS=3. Thecurrentdesignisafactorofabout3.3overtheyieldstress. CombiningthatwiththeFOSmeans

    thatthestressesneedtobereducedbyaboutafactorof10.

    Thecrosssectionalmomentofinertia,I=th3/12,isproportionaltothethickness,t,sodoublingthethickness

    cutsthe

    deflections

    and

    stresses

    in

    half.

    Changing

    the

    depth,

    h,

    is

    more

    effective

    for

    bending

    loads.

    It

    reduces

    thedeflectionby1/h3andthestressesbyafactorof1/(2h2). Thedesiredreductionofstressescouldbe

    obtainedbyincreasingthedepthbyafactorof2.25. Theabovediscussionassumedthatbucklinghasbeen

    eliminatedbyabucklinganalysis. Sincebucklingisusuallysuddenandcatastrophicitwouldrequireamuch

    higherFOS.

  • 8/12/2019 FEA Plane Stress Analysis

    16/17

    PlaneStressAnalysis J.E.Akin

    Draft10.2Copyright2009. Allrightsreserved. 116

    Figure614 VonMisesstressinthebeamwithalineload.

    Figure615 Beamprincipalstressandmaximumshearcontours

    6.3.1 AdvancedoutputoptionsTherearetimeswhenthesoftwarewillnotprovidethegraphicaloutputyoudesire. Forexample,youmay

    wishtographtheplanestressdeflectionagainstexperimentallymeasureddeflections. TheSWSimulationList

    Selectedfeatureforanycontouredvalueallowsthedataonselectededges,splitlines,orsurfacestobesaved

    toafileinacommaseparatedvalueformat(*.csv). SuchafilecanbeopenedinanExcelspreadsheet,or

    Matlab,to

    be

    plotted

    and/or

    combined

    with

    other

    data.

    To

    illustrate

    the

    point,

    when

    the

    beam

    deflection

    valueswerecontouredthebottomedgewasselectedtoplaceitsdeflectionsinatable:

    1. WithadisplacementplotshowingrightclickonthePlotnameListSelected.2. Selectthefourbottomlinesofthebeam.Update.3. ThebottomofthelistingwindowhasaSummaryofthedata.

  • 8/12/2019 FEA Plane Stress Analysis

    17/17

    PlaneStressAnalysis J.E.Akin

    Draft 10.2 Copyright 2009. All rights reserved. 117

    4. ThelowerReportOptionregiondoesnotincludetheGraphIcon,butdoesshowaSaveicon. Thatisbecausethepathhasmultiplelines. PickSavetohavethelisteddata(nodenumber,deflectionvalue,

    andx,y,zcoordinates)tobeoutputasacommaseparatedvalues(csv)file.

    5. Nameandsavethedataforuseelsewhere.

    SWSimulation

    did

    not

    offer

    aplot

    option

    along

    all

    the

    selected

    lines

    since

    could

    not

    identify

    which

    item

    to

    sort. Youknowthatthemultiplelinesegmentsshouldbesortedbythexcoordinatevalue. Therefore,the

    datawereopenedinExcel,sortedbyxcoordinate,andgraphedasdeflectionversusposition(Figure616).

    Youcouldaddexperimentaldeflectionvaluestothesamefileandaddasecondcurvetothedisplayfor

    comparisonpurposes.

    Figure616 ExceldisplacementgraphfromsavedCSVfileforcombinedloads