fault (2)

Upload: telefonposta

Post on 08-Jan-2016

217 views

Category:

Documents


0 download

DESCRIPTION

faultt

TRANSCRIPT

  • Elastic Behaviors = E eStrain, e, is linearly proportional to stress E = elasticity or Youngs modulusRock values of E are generally in GPa

  • Retrn to text

  • Chart1

    10.5211

    214

    31.56

    428

    52.510

    6312

    73.514

    8416

    94.518

    10520

    115.522

    12624

    136.526

    14728

    157.530

    16832

    178.534

    18936

    199.538

    201040

    Case1

    Case2

    Case3

    Strain

    Stress

    Elastic Behavior

    Sheet1

    CaseStressstress changeStrainstress changeElasticityViscosity

    11111

    12121

    13131

    14141

    15151

    16161

    17171

    18181

    19191

    1101101

    1111111

    1121121

    1131131

    1141141

    1151151

    1161161

    1171171

    1181181

    1191191

    1201201

    2110.50.5

    2211.00.5

    2311.50.5

    2412.00.5

    2512.50.5

    2613.00.5

    2713.50.5

    2814.00.5

    2914.50.5

    21015.00.5

    21115.50.5

    21216.00.5

    21316.50.5

    21417.00.5

    21517.50.5

    21618.00.5

    21718.50.5

    21819.00.5

    21919.50.5

    220110.00.5

    3112.02

    3214.02

    3316.02

    3418.02

    35110.02

    36112.02

    37114.02

    38116.02

    39118.02

    310120.02

    311122.02

    312124.02

    313126.02

    314128.02

    315130.02

    316132.02

    317134.02

    318136.02

    319138.02

    320140.02

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    13

    14

    15

    16

    17

    18

    19

    20

    Sheet1

    Sheet2

    Sheet3

    CaseStressstress changeStrainstress change

    111112110.53112.02

    121212211.03214.02

    131312311.53316.02

    141412412.03418.02

    151512512.535110.02

    161612613.036112.02

    171712713.537114.02

    181812814.038116.02

    191912914.539118.02

    110110121015.0310120.02

    111111121115.5311122.02

    112112121216.0312124.02

    113113121316.5313126.02

    114114121417.0314128.02

    115115121517.5315130.02

    116116121618.0316132.02

    117117121718.5317134.02

    118118121819.0318136.02

    119119121919.5319138.02

    1201201220110.0320140.02

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    13

    14

    15

    16

    17

    18

    19

    20

    11

    Case1

    Case2

    Case3

    Strain

    Stress

    Elastic Behavior

  • VISCOUS BEHAVIORContinuous flow at constant stressLinear, or Newtonian, viscous behavior is expressed as:e = (s*t)/visc, where visc = viscosityTypical viscosities for rocks are between 1020 to 1028 Poise. 1 Poise = 1 Pa*secViscous flow occurs in the solid earth below melting temperaturesRate is extremely slow and requires 106 yrs or moreTypical strain rates, e/t = 10-7/sec to 10-14/sec

  • Chart4

    10.5211

    214

    31.56

    428

    52.510

    6312

    73.514

    8416

    94.518

    10520

    115.522

    12624

    136.526

    14728

    157.530

    16832

    178.534

    18936

    199.538

    201040

    Case1

    Case2

    Case3

    Strain Rate, %/sec

    Stress

    Viscous

    Sheet1

    CaseStressstress changeStrainstress changeElasticityViscosity

    11111

    12121

    13131

    14141

    15151

    16161

    17171

    18181

    19191

    1101101

    1111111

    1121121

    1131131

    1141141

    1151151

    1161161

    1171171

    1181181

    1191191

    1201201

    2110.50.5

    2211.00.5

    2311.50.5

    2412.00.5

    2512.50.5

    2613.00.5

    2713.50.5

    2814.00.5

    2914.50.5

    21015.00.5

    21115.50.5

    21216.00.5

    21316.50.5

    21417.00.5

    21517.50.5

    21618.00.5

    21718.50.5

    21819.00.5

    21919.50.5

    220110.00.5

    3112.02

    3214.02

    3316.02

    3418.02

    35110.02

    36112.02

    37114.02

    38116.02

    39118.02

    310120.02

    311122.02

    312124.02

    313126.02

    314128.02

    315130.02

    316132.02

    317134.02

    318136.02

    319138.02

    320140.02

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    13

    14

    15

    16

    17

    18

    19

    20

    Sheet1

    Sheet2

    Sheet3

    CaseStressstress changeStrainstress change

    111112110.53112.02

    121212211.03214.02

    131312311.53316.02

    141412412.03418.02

    151512512.535110.02

    161612613.036112.02

    171712713.537114.02

    181812814.038116.02

    191912914.539118.02

    110110121015.0310120.02

    111111121115.5311122.02

    112112121216.0312124.02

    113113121316.5313126.02

    114114121417.0314128.02

    115115121517.5315130.02

    116116121618.0316132.02

    117117121718.5317134.02

    118118121819.0318136.02

    119119121919.5319138.02

    1201201220110.0320140.02

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    13

    14

    15

    16

    17

    18

    19

    20

    11

    Case1

    Case2

    Case3

    Strain

    Stress

    Elastic Behavior

    11

    Case1

    Case2

    Case3

    Strain Rate, %/sec

    Stress

    Viscous

  • SubstanceViscosity (Pa s)

    Air (at 18 oC)1.9 x 10-5 (0.000019)Water (at 20 oC)1 x 10-3 (0.001)Canola Oil at room temp.0.1Motor Oil at room temp.1Corn syrup at room temp.8Pahoehoe lava100 to 1,000A'a lava1000 to 10,000Andesite lava106 to 107Rhyolite lava1011 to 1012

  • Table 1: Viscosity of Selected Fluids and Materials

    *Viscosity is often given in units of Poise; 10 Poise = 1 Pa-s.

  • Poissons RatioPoissons Ratio, n = etransverse/elongitudinal In uniaxial tension, an incompressible material should have a n = 0.5Most rocks have n values of 0.25 0.35

  • FRACTURES AND FAULTS

  • STRENGTH and DUCTILITYStrength= max stress before failure

    Ductility = max strain before failure

  • FRACTURES IN ROCKSIn uniaxial compression only extension fractures form. They always form parallel to the maximum compressive stress (mcs) and perpendicular to the least compressive stress ( which may also be a tensile stress)

  • Shear fractures form in biaxial and triaxial casesShear fractures form at acute angles to the mcsThe extension fractures form the acute bisectorShear fractures dominate over extension fractures in terms of frequencyFaults are big shear fractures (slip amounts > 1 m)

  • BRITTLE BEHAVIORNotice how tiny cracks form early on before the visible crack occurs

  • When there isonly one stressdirection, onlyextension fracturesform

    In biaxial and triaxialcases, shear fracturesdominate

  • FAULTS (LARGE-SCALE SHEAR FRACTURES) FORM MAINLY AT PLATE BOUNDARIES

  • DIVERGENT PLATE BOUNDARYRED SEA AND SINAI PENINSULA

  • TRANSFORM PLATE BOUNDARY, CALIFORNIA

  • CONVERGENT PLATE BOUNDARY:Andean Type

  • CONVERGENT PLATE BOUNDARY: ALASKASeismicity and Wadati-Benioff Zone