fatigue of metallic bridges: the role of structural health ... · role of structural health...

58
Fatigue of metallic bridges: the role of structural health monitoring in assessment and life prediction Marios K Chryssanthopoulos

Upload: trinhtram

Post on 18-May-2018

215 views

Category:

Documents


1 download

TRANSCRIPT

Fatigue of metallic bridges: the

role of structural health

monitoring in assessment and

life prediction

Marios K Chryssanthopoulos

Growth of UK Transport Systems R

ou

te K

ilo

metr

es

(Bayliss, 2008)

1840 1848

Road

Rail

Pipeline

Water

(DoT/ORR/DECC, 2012)

Domestic goods moved by mode

• More than 15,000 metallic bridges on the network

• Most constructed between 1850 and 1900

• Wrought iron & early steel

• Riveted construction (built-up members)

• Lean structures, individually sized elements

• Mostly short-span (~ 10-15m)

• Not designed for fatigue

Metallic railway bridges

Age of UK Bridge Stock

0

10

20

30

40

50

60

70

80

90

100

1800 1840 1880 1920 1960 2000

Oxfordshire

Network Rail

Highways Agency

(Darby, 2001)

Perc

en

tag

e C

on

str

ucte

d

Metallic railway bridges

Wrought iron

Deterioration and Damage

Corrosion

Fatigue crack

Loss of rivet

Railway loading

Freight (1900-1940)

Freight (1940-1970)

Freight (contemporary)

(BBC, Network Rail)

Extreme Weather

Network complexity

Major Challenges

Ageing &

Deterioration

Inter-

dependency

MAINTENANCE

& RENEWAL

Are assets

safe?

If so, for how

long? At what cost? UNCERTAINTY

Short-span railway bridge

Railway bridge under cyclic load

Connection ranking

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

S7-S

5

S8-S

6

S3-S

5

S4-S

6

S6-S

8

S5-S

7

S7-S

9

S8-S

10

S3-S

1

S6-S

4

S4-S

2

S5-S

3

S2

S1

S10

S9

Tota

l fa

tigue d

am

age

Connection

Modified Class B Class WI Class D

Global-local modelling

0

1

2

3

4

Hole 1 Hole 2 Hole 3 Hole 4 Hole 5 Rivet 1 Rivet 2 Rivet 3 Rivet 4 Rivet 5 AngleFillet

Dl/ D

g

100 MPa 200 MPa

Global model damage

>1

00 y

rs

>1

00

yrs

>10

0 y

rs

>10

0 y

rs

>10

0 y

rs

>1

50

yrs

>1

50

yrs

>1

50

yrs

7 y

rs

12

yrs

81

yrs

30

yrs

84

yrs

39

yrs

73

yrs

73

yrs

Connection element ranking

Damage scenarios

Fatigue ranking

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

S7-S

5

S8-S

6

S3-S

5

S4-S

6

S6-S

8

S5-S

7

S7-S

9

S8-S

10

S3-S

1

S6-S

4

S4-S

2

S5-S

3

S2

S1

S10

S9

Tota

l fa

tigue d

am

age

Connection

Modified Class B Class WI Class D

Global Local

Identify most critical

connections in bridge

Identify most critical regions

in connection itself

Inspection

and SHM

0

1

2

3

4

Hole 1 Hole 2 Hole 3 Hole 4 Hole 5 Rivet 1 Rivet 2 Rivet 3 Rivet 4 Rivet 5 AngleFillet

Dl/ D

g

100 MPa 200 MPa

Global model damage

>1

00 y

rs

>10

0 y

rs

>10

0 y

rs

>10

0 y

rs

>10

0 y

rs

>15

0 y

rs

>1

50

yrs

>1

50

yrs

7 y

rs

12

yrs

81

yrs

30

yrs

84

yrs

39

yrs

73

yrs

73

yrs

Fatigue life:

challenges and opportunities

• Understand the past

• Establish the present

• Predict the future

Time Present

Accumulated damage

Fatigue

Damage Failure

Remaining life

Probabilistic fatigue analysis

• Loading Uncertainties

Dynamic amplification factor (DAF)

Annual train frequency (fti )

• Material Uncertainties

S-N curve (fatigue behaviour)

Damage index Δ in Miner’s sum (fatigue failure limit)

• Model Uncertainties Factor accounting for the differences between measured and

calculated stresses in metallic bridges

Railway loading

Historical

(1900-1970)

BS 5400

(1970- )

0.0E+00

1.0E+05

2.0E+05

3.0E+05

4.0E+05

5.0E+05

6.0E+05

7.0E+05

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100

Stress range (MPa)

Nu

mb

er

of

ap

plied

cycle

s

Modified Class B

fatigue limit

Class WI

fatigue limit

Class D

fatigue limitMean = 5.79 MPa

CoV = 1.09

Weibull distribution parametersη=6.02 , β=1.0

0.0E+00

1.0E+05

2.0E+05

3.0E+05

4.0E+05

5.0E+05

6.0E+05

7.0E+05

8.0E+05

9.0E+05

1.0E+06

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100

Stress range (MPa)

Nu

mb

er

of

ap

plied

cycle

s

Modified Class B

fatigue limit

Class WI

fatigue limit

Class D

fatigue limitMean = 6.75 MPa

CoV = 0.84

Weibull distribution parametersη=5.05 , β=0.98

0.0E+00

1.0E+05

2.0E+05

3.0E+05

4.0E+05

5.0E+05

6.0E+05

7.0E+05

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100

Stress range (MPa)

Nu

mb

er

of

ap

plied

cycle

s

Modified Class B

fatigue limit

Class WI

fatigue limit Class D

fatigue limitMean = 8.91 MPa

CoV = 0.64

Weibull distribution parametersη=4.35 , β=0.90

0.0E+00

5.0E+04

1.0E+05

1.5E+05

2.0E+05

2.5E+05

3.0E+05

3.5E+05

4.0E+05

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100

Stress range (MPa)

Nu

mb

er

of

ap

plied

cycle

s

Modified Class B

fatigue limit

Class WI

fatigue limit

Class D

fatigue limitMean = 12.6 MPa

CoV = 0.75

Weibull distribution parametersη=15.0 , β=1.60

1900-1920

Probabilistic load spectra 1920-1940

1940-1970 1970-

Cumulative damage of connection S7-S5 (Class WI)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1900 1920 1940 1960 1980 2000 2020

Year

Cu

mu

lati

ve

Da

ma

ge

No DAF Byers EC1 Tobias & Foutch D23 Network Rail

21-31 yrs

120 yrs

No DAF

With DAF

Damage accumulation

0.000001

0.00001

0.0001

0.001

0.01

0.1

-50 0 50 100 150 200 250 300 350 400 450 500 550 600

Time after 2004 (years)

Pro

ba

bil

ity

of

fail

ure

Pf

Base Model Base model with mean DAF=1.20 Base Model with mean DAF=1.05

2.3% probability of failureMean = 412.8 years

CoV = 0.612

Mean = 891.3 years

CoV = 0.592

200 100 0

0.1

0.01

0.0001

300

0.001

0.00001

Fatigue life prediction

No. of Years after 2004

Annual P

robabili

ty o

f F

ailu

re

400 500

6,000 bridges = 100,000 connections

900

10

1

Load evolution

System analysis of connections

System analysis of connections

System analysis of connections

Main findings

• Inner stringer-to-cross-girder connections are fatigue critical.

• Significant increase in damage accumulation during the last decades.

• Load evolution has a considerable effect on fatigue life, especially when

associated with increased axle loads.

• System effects are beneficial but difficult to quantify in practice.

• Many connections approaching the end of their fatigue life → timely

management of repair/replacement is essential.

• High uncertainty in fatigue life predictions → importance of inspection and

structural health monitoring.

Bridge Monitoring

• Global monitoring

– Train loads and frequencies

– Dynamic amplification factor

– Model ‘bias’

• Local monitoring

– Hot spot stresses (S-N)

– Local strain distributions (connection failure)

– Cracks (fracture mechanics)

‘stock’ benefit

‘critical

asset’

benefit

Composite Patching

Fatigue crack growing from a

notch in the bottom flange

0 0.5 1 1.5 2

x 105

20

22

24

26

28

30

32

Number of cycle

Cra

ck length

[m

m]

BEAM2RP-BASIC

Crack#1

Crack#2

Crack#3

Crack#4

FEA prediciont UNPATCH

Composite patch delays

crack propagation rate

Composite Patching

Number of cycles

Cra

ck l

en

gth

(m

m)

Patch applied

-60

-55

-50

-45

-40

-35

1530 1535 1540 1545 1550 1555 1560

Wavelength, nm

Inte

ns

ity

, d

B

51,000

-60

-55

-50

-45

-40

-35

1530 1535 1540 1545 1550 1555 1560

Wavelength, nm

Inte

ns

ity

, d

B

40,000

-60

-55

-50

-45

-40

-35

1530 1535 1540 1545 1550 1555 1560

Wavelength, nm

Inte

ns

ity

, d

B

34,000

Incr

easi

ng C

ycl

es

• Use of Chirped Fibre Bragg Grating sensor to monitor disbond

• Successful applications: – composite-composite and

composite-metal bonded joints

– Detecting defects in poorly bonded joints

Monitoring Disbond in Composite Patches

#1#2

AB

#1

Web breathing

Crocetti, 2009

GFRP bonded stiffeners

- cure at room temp.

- 1 bar vacuum for 24h

Composite stiffeners

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.080

50

100

150

200

250

300

350

Axial strain [%]

Load [kN

]

A

B

Composite stiffeners

Before

stiffening

After

stiffening

Web buckling

Repair monitoring

• Metallic panel

– Deformation

– Cracking

• Bonded joint

– Workmanship

– Durability

– Disbond

– Temperature

– Humidity

– Wet-dry cycling

direct

indirect

4

3

The Great Belt Bridge (DK):

› - Inaugurated in 1998

- 1624m main span

- Orthotropic steel deck

- Concrete towers

- 3rd longest suspension bridge

- Instrumented with a SHMS

SHM of welded joints in

long-span bridges

Asset management context

4

4

- Short-span bridge

- Long-span bridge

- Tunnel

- Dam

- Offshore wind turbine

Structural type

Deterioration:

- Fatigue

- Corrosion

- Wear and tear

- Extreme events,…

Component:

- Welded joint, cable, expansion joint,

Component and deterioration mechanism

- Design verification

- Service-life prediction

- Abnormal behaviour identification

- Support to Operation & Maintenance

- Etc…

Asset Management

Objectives

- Inspection

- Repair

- Maintenance

- Life extension

- Traffic disruption

Asset Management

actions/decisions

- Type of sensor: SG, thermometers, traffic classification

- Number of sensors: 20

- Location of sensors: 3

- Data acquisition: permanent monitoring/periodic

- Performance indicator: SN fatigue loading, fatigue lives

- SHM approach:

- Data-based / model-based

- Global / local

- Tools:

- Regression models, tim-series models, MCS, FFT, SSI, Bayesian networks, SRM, etc,,,

SHM strategy and tools

› A local, data-based

approach

› Study of critical components

and relevant deterioration

mechanisms.

› "Damage" locations are

assumed a-priori.

4

5

Asset management objectives

›Performance prediction (prognostics) › AIM: Determination of remaining fatigue lives.

› Short-term monitoring campaigns. Long-term infrastructure management.

› Performance assessment (diagnostics) › AIM: Determine if the component is behaving as expected.

› Continuous monitoring data. Short-term infrastructure management.

data interpretation)

Development of SHM Strategy

4

6

Fatigue Performance Indicators

Crack Size

Ds3

Modal

Frequency …..

Monitored

parameters SHM

technologies

…… Strain

Traffic Temperature

Camera

strain / temp. sensors

….

Methods and tools:

› Time-series models

› Regression models

› Statistical control charts

› Monte Carlo Simulation

SHM strategy

SHM system: location of sensors

4

7

Temp. section: T1,T2 Temp. section: T3,T4

E W

Strain section:

1624 m

Temperature section Temperature section

Focus: welded joints of the orthotropic deck

4

8

trough-to-deck weld

trough splice weld

SHM system: representative outcomes

4

9

06-May 13-May

5

10

15

20

25

30

35

40

45

Date

Hourly-a

vera

ged T

S9901

S9902

S9903

S9904

Pavement temperatures

09/09 09/16 09/23 09/30 10/07

100

101

102

103

104

Date

Vehic

les/h

Class 2

Class 3

Class 5

Vehicle classification

00:00 05:00 10:00 15:00 20:00-8

-6

-4

-2

0

2

4

6

8

10

12x 10

-5

Time [hour]

Str

ain

[-]

Strains

0 1 222

24

26

28

30

32

34

36

38

40

Time [seconds]

Str

ess [

MP

a]

2nd axle

1st axle

3rd axle4th axle5th axle

Data-based modelling

5

0

𝐷Δ𝑡(𝑡) = Δ𝜎𝑖3

𝑁𝑐

𝑖=1

› Performance indicator: Fatigue loading

› Characterization of the correlation patern among heavy traffic counts, pavement temperature and fatigue loading at welded joints.

› Time discretization

Daily count heavy vehicles

𝐷𝛥𝑡 𝑡

𝐵Δ𝑡(𝑡)= 𝜃𝑖−1

𝑝+1

𝑖=1

⋅ 𝑇Δ𝑡(𝑡)𝑖−1

Fatigue loading

Daily-averaged pavement temperature

Regression parameters

Model training

5

1

-10 -5 0 5 10 15 20 25 300.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8x 10

4

TDt

[ C]

DD

t / B

Dt

95% pred. band

95% conf. band

monitoring observation

regression line

01/05/11 08/05/11 15/05/11

2

4

6

8

10

12

14

x 106

time [day]

DD

t [MP

a3 ]SG2

95% pred. band

monitoring observation

model prediction

Model validation

5

2

5

3

Temperature modelling

› Autoregressive models of 1st order to model de-seasonalized daily-averaged

pavement temperatures Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan-10

0

10

20

30

40

T [

C]

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan-10

0

10

20

30

40

T [

C]

𝑇 𝑡 = 𝛼1 ⋅ 𝑠𝑖𝑛 𝛼2 ⋅ 𝑡 + 𝛼3 +𝑚𝑇

𝑇𝑡∗ =𝑇Δ𝑡(𝑡) − 𝑇 𝑡𝜎𝑇,𝑡

𝑇𝑡∗ = 𝜑𝑇,1 ⋅ 𝑇𝑡−1

∗ + 𝜖𝑇,𝑡

5

4

𝐵𝑡∗ =𝐵Δ𝑡(𝑡) − 𝜇𝐵,𝑡𝜎𝐵,𝑡

Traffic modelling

› De-seasonalization of heavy traffic daily counts

› Regression models to account for day-of-the-week and holiday effects

› Autoregressive models fitted to the residuals of the regression models.

May 2008 Jun 2008 Jul 2008 Aug 2008

500

1000

1500

2000

2500

BD

t [veh./day]

Time

Observation

model prediction

𝐵𝑡∗ = 𝜆1 + λ2X2,𝑡 +⋅⋅⋅ +λ𝑘𝑋𝑘,𝑡 + ϵB,t

𝜖𝐵,𝑡 = 𝜑𝐵,𝑖 ⋅ 𝜖𝐵,𝑡−𝑖

𝑝

𝑖=1

+ 𝜈𝑡

Application 1: Fatigue life prediction

5

5

55 0 100 200 300 400 500 600 700 800 900 1000

0

2000

4000

6000

8000

10000

12000

Monte Carlo Simulation

t f [years

]

102

103

104

105

0.0005

0.005

0.05

0.25

0.5

0.75

0.95

0.995

0.9995

Data

Pro

bability

0 100 200 300 400 500 600 700 800-20

0

20

40

T24h [ C

]

0 100 200 300 400 500 600 700 8000

1000

2000

3000

4000

B24h [veh./h]

0 100 200 300 400 500 600 700 8000

2

4

6

8

10

12

14x 10

6

D24h [M

Pa3

]

Time [days]

0 100 200 300 400 500 600 700 800-20

0

20

40

T24h [ C

]

0 100 200 300 400 500 600 700 8000

1000

2000

3000

4000

B24h [veh./h]

0 100 200 300 400 500 600 700 8000

2

4

6

8

10

12

14x 10

6

D24h [M

Pa3

]

Time [days]

0 100 200 300 400 500 600 700 800-20

0

20

40

T24h [ C

]

0 100 200 300 400 500 600 700 8000

1000

2000

3000

4000

B24h [veh./h]

0 100 200 300 400 500 600 700 8000

2

4

6

8

10

12

14x 10

6

D24h [M

Pa3

]

Time [days]

Simulation of actions, i.e. traffic and temperature

(time-series models)

Simulation of fatigue loading

(regression models) Monte Carlo simulation: time to failure

realizations (S-N LSF)

0 50 100 1502

4

6

8

10

12

14

Time [years]

SG 1

SG 3

SG 4

SG 6

SG 7

SG 9

*=3.8

Fatigue life prediction

(reliability profile)

Application 1: Fatigue life prediction

5

6

› Assessment of the impact of different scenarios of pavement

temperatures (climate change) and heavy traffic intensities.

› Easy-to-understand output: fatigue lives [years]

› Tool for informing long-term infrastructure management decisions

(e.g. inspection scheduling).

Application 2: Performance assessment

5

7

04/29 05/06 05/13 05/20

-6

-4

-2

0

2

4

6

Norm

aliz

ed r

esid

uals

99 % LCL

99 %UCL

15/05/2012

› Detection of abnormal behaviour on

15/05/2012.

› Cause: Diversion of traffic due to

maintenance activities.

› Development of an algorithm for identifying abnormal behaviours based on statistical control charts of the regression models.

𝑍 ≃ 𝜃𝑖−1

𝑝+1

𝑖=1

⋅ 𝑇0𝑖−1 −𝐷Δ𝑡 𝑇0𝐵Δt 𝑚𝑜𝑛𝑖𝑡𝑜𝑟𝑒𝑑

⋅1

𝑠𝑡𝑜𝑡2

Concluding remarks

• SHM should be requirement-pull not technology-push

• SHM strategies depend on the Asset Management

objectives and constraints

• Key for exploitation of SHM in civil structures is the

chain from Data to Information to Knowledge

• Traffic light concept:

Healthy - Concern - Faulty

• Beware of Infobesity "As long as the centuries continue to

unfold, … one can predict that a time will

come when it will be almost as difficult to

learn anything from books as from the

direct study of the whole universe. Diderot,

"Encyclopédie" (1755)