fatigue history.pdf

Upload: tototo

Post on 07-Jul-2018

236 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/18/2019 Fatigue History.pdf

    1/16

    1 Utmatting - grunnlag Oslo, 20 oktober 2009 P J Haagensen

    Professor P J Haagensen

    Norges teknisk-naturvitenskapelige universitet

    Fakultet for ingeniørvitenskap og teknologi

    Institutt for konstruksjonsteknikk

    Trondheim

    [email protected]

     runnleggende utm ttingsberegninger

    Innledning: Historikk, eksempler på

    utmattingsbrudd.

    Tirsdag 20 oktober 2009

    kl. 9.00 - 10.00

    Utmattingsberegninger for stålkonstruksjoner 

    iht gjeldende regelverk og Eurokode 3, del 1-9

    2 Utmatting - grunnlag Oslo, 20 oktober 2009 P J Haagensen

    Skade- og havarityper 

    Utmattingsproblemet i praksis

    Utmatting - definisjoner 

    Eksempel 1: Utmatting av

    maskinkomponenter – NSB hjulaksler

    Eksempel 2: Utmatting avsveistekonstruksjoner – Alexander L. Kielland

    ulykken

    Utmatting - grunnlag•

    Temaer 

  • 8/18/2019 Fatigue History.pdf

    2/16

    3 Utmatting - grunnlag Oslo, 20 oktober 2009 P J Haagensen

    Unstable fracture (brittle or ductile)

    Plastic collapse

    Elastic instability (buckling)

    Stress corrosion cracking

    Hydrogen induced fracture

    Corrosion

    Fatigue and corrosion fatigue

    Wear 

    Failure modes - How things go wrong

    Depending on the operating conditions and the type of environmenta component or st ructure may fail in many different modes:

    “Erika” Dec. ‘99

    SS“Schenectady”, 1943

    Time dependentfailures

     Aloha Airlines,Flight 243, 1988

    “Alexander L. Kielland”,Mar. 1980

    4 Utmatting - grunnlag Oslo, 20 oktober 2009 P J Haagensen

    0

    5

    10

    15

    20

    25

    30

         F   a     t     i   g 

        u   e

         V   e   s

       s   e     l      i

        m    p   a

       c     t

         D    r   o

        p    p   e    d

        o     b     j 

       e   c     t   s

         I    n   s     t   a     l     l   a     t     i

       o    n      f   a    u     l     t

         F   a     b    r

         i   c   a     t     i   o

        n      f   a

        u     l     t

         D   e   s     i   g 

        n     u    p

       g     r   a    d

       e

        C   o    r    r   o

       s     i   o    n

         D   e   s     i   g 

        n      f   a    u     l     t

        O    p   e

        r   a     t     i    n   g 

          f   a    u     l     t

        O     t     h

       e    r

    24.7

      %Damage

    1/4 of all structural

    damage requiring repairis caused by fatigue

    Fatigue – how big is the problem?• Generally: 80-90% of all fractures are fatigue failures

    • North Sea offshore structures:

  • 8/18/2019 Fatigue History.pdf

    3/16

    5 Utmatting - grunnlag Oslo, 20 oktober 2009 P J Haagensen

    Fatigue problems - aircraft structures

    Causes of major damage in aircraftstructures

    (Royal Aerospace Establishment, UK)

     Almost 60 % of to tal damage is caused by fat igue and corros ion

    fatigue

    6 Utmatting - grunnlag Oslo, 20 oktober 2009 P J Haagensen

    Causes of failures incomponents and structures

    Design

    Operation

    Fabrication

    - Wrong materials- Poor fabrication quality- Inadequate inspection

    - Wrong material properties- Wrong design l i fe- Wrong design method- Missed failure modes

    - Unknown environment- Unknown fatigue loads- Improper use- Poor inspection

    Failure

  • 8/18/2019 Fatigue History.pdf

    4/16

    7 Utmatting - grunnlag Oslo, 20 oktober 2009 P J Haagensen

    Fatigue problems – pressure equipment

    UK 1998 - 2000: 3500 failures, about 25% caused by fatigue

    Pressure

    vessel

    Unknown

    Piping

    Heat exchanger 

    Water tube

    Shell

    boiler 

    0Percent

    10 3020 40 50 60

    Data from:Pressure Equipment Directive (PED)

    Types of equipment for which fatigue

    damage or fai lure was found

    8 Utmatting - grunnlag Oslo, 20 oktober 2009 P J Haagensen

    Why is fatigue assessment diff icult to perform?European Pressure Equipment Research Council survey in 2000

    Main dif ficulties encountered in

    applying fatigue assessment

       N  u  m   b  e  r  o   f  r  e  p   l   i  e  s

  • 8/18/2019 Fatigue History.pdf

    5/16

  • 8/18/2019 Fatigue History.pdf

    6/16

    11 Utmatting - grunnlag Oslo, 20 oktober 2009 P J Haagensen

    Three stages in fatigue process

    3. Final fracture

    Total life:

    N = Ni + Np

    No. of cycles to

    crack initiationCycles of crack

    propagation to failure

    1. Initiation of fatigue crack

    2. Crack propagation

    12 Utmatting - grunnlag Oslo, 20 oktober 2009 P J Haagensen

    Primary factors affecting fatigue

    Note:

    There are significant differences between

    welded and unwelded com ponents regarding what

    factors have the strongest influence on fatigue life

    Primary factors influencing fatigue strength

    • Material

    • Type of loading tension, bending, shear,combinations

    • Mean stress

    • Geometry, notches, defects

    • Size

    • Surface condition roughness, material condition

    • Residual stresses

    • Environment temperature, corrosion

  • 8/18/2019 Fatigue History.pdf

    7/16

  • 8/18/2019 Fatigue History.pdf

    8/16

    15 Utmatting - grunnlag Oslo, 20 oktober 2009 P J Haagensen

    Example 1: Failure in mechnical components

    NSB train axle failures

    NSB Signature Trainaxle fracturesSummer 2002

    Crackinitiation

    Beachmarks

    Finalfracture

    16 Utmatting - grunnlag Oslo, 20 oktober 2009 P J Haagensen

    NSB train axle failures

    Load history: High loads in short radius turns

    Presence of defects: Corrosion pits

    Geometry of detail: Cracking in areas of high stress concentrations

    Material: High st rength , notch sensitive material, UTS = 1000 MPa

    Main contributing factors – DNV failure investigation

    Corrosion and cracks in axle filletRubber band prevented moisture

    from drying out in fi l let

  • 8/18/2019 Fatigue History.pdf

    9/16

    17 Utmatting - grunnlag Oslo, 20 oktober 2009 P J Haagensen

    Fatigue design of axles

    The endurance limit is used as a design criterionfor axles that endure a large number of cycles, e.g.

    N = 2x108 during 500 000 km, i.e. the maximum

    load cycle in the load spectrum must be lower than

    the fatigue limit:

    N, cycles to failure

     E       

    max

    106 107 108

    max  

     E   

      

    18 Utmatting - grunnlag Oslo, 20 oktober 2009 P J Haagensen

    Effect of corrosion on the fatigue limit

    The drop in fatigue

    strength due to corrosionis higher for a high

    strength steel than for amild steel

       F  a   t   i  g  u  e   l   i  m   i   t

    Corroding specimens

    Ultimate tensile strength, ksi

    MPa

  • 8/18/2019 Fatigue History.pdf

    10/16

    19 Utmatting - grunnlag Oslo, 20 oktober 2009 P J Haagensen

    NSB train axle failures

    Corrosion damage caused early crack

    initiation

    High strength material resulted in large

    loss of fatigue strength

    High local stresses caused short crack

    growth stage

    Conclusions:

    20 Utmatting - grunnlag Oslo, 20 oktober 2009 P J Haagensen

    The Alexander L. Kielland accident

    Place: Ekofisk field

    Time: 27 March, 1980,18.30 hrs

    Persons killed: 123Survivors: 89

      10 similar platforms built  ALK plat form del ivered in

    1976

    Time from first failure in

    brace D6 to capsize: 20 min

    Example 2 Failure of a welded structure

  • 8/18/2019 Fatigue History.pdf

    11/16

    21 Utmatting - grunnlag Oslo, 20 oktober 2009 P J Haagensen

    The accident

    22 Utmatting - grunnlag Oslo, 20 oktober 2009 P J Haagensen

     ALK s tructural arrangement

    Pentagone design

    1st fracture

    D

    D

  • 8/18/2019 Fatigue History.pdf

    12/16

    23 Utmatting - grunnlag Oslo, 20 oktober 2009 P J Haagensen

    Brace D6 and hydrophone support tube

    Hydrophonesupport

    ColumnD

    Br ac e D6

    24 Utmatting - grunnlag Oslo, 20 oktober 2009 P J Haagensen

    Fracture in Brace D6

    Lamellar tear crack

     Area of final

    fracture

  • 8/18/2019 Fatigue History.pdf

    13/16

    25 Utmatting - grunnlag Oslo, 20 oktober 2009 P J Haagensen

    Crack initiation in D6 at support pipe

    When the weld around thesupport pipe is uncracked, the

    stress concentration factor at theweld is 1.6

    Weld intact: SCF= 1.6 Weld fractured: SCF = 3.0

    When the weld around the

    support pipe is cracked, the

    stress concentration factor at theweld is 3.0, i.e. stress is almost

    doubled

    Fatigue crack

    Fatigue crack

    26 Utmatting - grunnlag Oslo, 20 oktober 2009 P J Haagensen

    Lamellar tear cracking

    D6

    Support pipe

    Lamellar tear crack

    Small penetration

  • 8/18/2019 Fatigue History.pdf

    14/16

    27 Utmatting - grunnlag Oslo, 20 oktober 2009 P J Haagensen

    Crack initiation in D6 at support pipe

    Striations

    • Crack growth

    direction

    10 m

    10 mm

    Beachmarks

    •Beach marks are lines visible tothe naked eye, indicating changes

    in loading or corrosion conditions.

    •Striations indicate start-stoppositions of the crack tip.

    •The presence of beach marks and

    striations proves that fatigue

    caused the fracture.

    Crackinitiation

    BeachmarksBeachmarks

    28 Utmatting - grunnlag Oslo, 20 oktober 2009 P J Haagensen

    Materials

    Structural steel used in platform:Standard C-Mn steel with C = 0.18% max,

    YS = 350 MPa, UTS = 512 MPa, ductil ity 30%Steel in support pipe:Standard C-Mn steel with C = 0.18% max,

    YS = 355 MPa, UTS = 500 MPa, ducti lity 4.8 % in thicknessdirection

    Microstructure of support pipe:Fine grain banded ferrite and pearlite, indicating low strength in thicknessdirection

  • 8/18/2019 Fatigue History.pdf

    15/16

    29 Utmatting - grunnlag Oslo, 20 oktober 2009 P J Haagensen

    Stresses in brace D6

    Max nominal st resses in brace D6 at accident:141 to 173 MPa or 40 to 50% of yield st ress, giving very high localstresses at the hydrophone support pipe

    Miner-Palmgren summation:- Using the F2 design curve a life of 0.7 to 5 years was

    calculated, assuming various uncertainties in loadspectrum

    Fatigue life predictions, brace D6

    30 Utmatting - grunnlag Oslo, 20 oktober 2009 P J Haagensen

    Conclusions, ALK accident

    Main causes

    1. Design fault 1: Lack of redundancy, i.e. all braces attached to

    column D failed by overloading when brace D6 fractured

    5. Poor fabrication: Too small penetration in weld joining support

    pipe to brace D6

    3. Poor materials: Low strength in thickness direction inhydrophone tube gave lamellar tearing, which in turn increased

    local stresses in brace D6 at weld

    2. Design fault 2: Too high operating stresses in D6;platform not designed against fatigue

  • 8/18/2019 Fatigue History.pdf

    16/16

    31 Utmatting - grunnlag Oslo, 20 oktober 2009 P J Haagensen

    Summary

    Fatigue of unwelded componentsFatigue strength is closely related to base

    materials strength for parts with smooth

    surfaces, but corrosion and surface damage

    gives large reduction in fatigue strength

    Fatigue strength depends on mean stress

    32 Utmatting - grunnlag Oslo, 20 oktober 2009 P J Haagensen

    • Fatigue strength is independent of base

    material strength

    • Fatigue strength is independent of applied

    mean stress

    • Fatigue strength is strongly reduced by

    corrosion

    SummaryFatigue of welded components