fatigue analysis of ball joint.ppt

Upload: ambalam-nandhu

Post on 02-Jun-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/10/2019 Fatigue Analysis Of ball joint.ppt

    1/21

    Fatigue Life cycle Analysis onSteering Knuckle Ball Joint

    GUIDE -

    Mr.A.R.SURESH M.E

    Assistant professor (ss)

    Dr.MCET

    S.PRADEEP

    ME(CAD/CAM)

    Dr.MECT-POLLACHI

  • 8/10/2019 Fatigue Analysis Of ball joint.ppt

    2/21

    OBJECTIVE OF THE PROJECT

    Optimized design of a Steering KnuckleBall Joint with increased life condition.

  • 8/10/2019 Fatigue Analysis Of ball joint.ppt

    3/21

  • 8/10/2019 Fatigue Analysis Of ball joint.ppt

    4/21

    Broken specimen of a ball joint

  • 8/10/2019 Fatigue Analysis Of ball joint.ppt

    5/21

    Specimen preliminary investigations

    From the broken samples it is found that maximum failure

    occurs at the neck region of the ball joint.

    Fractured parts are investigated for surface defects throughSEM analysis, and results are collected.

  • 8/10/2019 Fatigue Analysis Of ball joint.ppt

    6/21

    Chemical Composition of SAE 4135

    grade steel

    Elements Symbol Unit Specified Values Observed Values

    Carbon C % 0.33-0.38 0.334

    Silicon Si % 0.15-0.35 0.229

    Manganese Mn % 0.70-0.90 0.774

    Phosphorus P % 0.035 Max 0.013

    Sulphur S % 0.040 Max 0.004

    Chromium Cr % 0.80-1.10 1.06

    Molybdenum Mo % 0.15-0.25 0.184

  • 8/10/2019 Fatigue Analysis Of ball joint.ppt

    7/21

    Mechanical Properties

    Properties SAE4135

    Diameter (d) mm >16-40

    Thickness (t) mm 8

  • 8/10/2019 Fatigue Analysis Of ball joint.ppt

    8/21

    SEM Analysis

    a) Origin of the crack b) Fracture features of origin

  • 8/10/2019 Fatigue Analysis Of ball joint.ppt

    9/21

    SEM - Result

    There is enough evidence of micro crack on the surface ofthe neck region just below ball.

    The broken samples show that the crack originate from the

    top surface as it experience a uni-directional knocking load.

  • 8/10/2019 Fatigue Analysis Of ball joint.ppt

    10/21

    EXPERIMENTAL DETAILS

    INSTRON servo-hydraulic

    actuator of 25 KN

    capacity

    The test frequency

    was 0.55 Hz

    Fatigue test under cyclic loading

    Fatigue test on steering knuckle ball joint

    Constant amplitude

    cyclic loading with load

    ratio of 0.3

  • 8/10/2019 Fatigue Analysis Of ball joint.ppt

    11/21

  • 8/10/2019 Fatigue Analysis Of ball joint.ppt

    12/21

    CASEI : Ball joint (30,R1.5,L-54mm)

    Boundary and Loading Condition Stress distribution

    Total Deformation Life cycle

  • 8/10/2019 Fatigue Analysis Of ball joint.ppt

    13/21

    CASEII : Ball joint (33,R3,L-64mm)

    Boundary and Loading Condition Stress distribution

    Total Deformation

    Log-Life cycle repeated

  • 8/10/2019 Fatigue Analysis Of ball joint.ppt

    14/21

    Existing neck region Modified neck region

    Angle

    Von-Mises Stress

    (Mpa)Total deformation (mm) S-N -N

    Ratio

    Min Max Min Max Fatigue Life(Gerber)

    Marrow- Fatiguelife

    SWT -Fatigue life

    30 0 918.63 0 0.01065 18553 1.87E+05 2.91E+05 0.3

    31 0 611.87 0 0.064 35114 3.65E+06 3.89E+06 0.3

    32 0.0003 621.87 0 0.0644 33233 3.24E+06 3.47E+06 0.3

    33 7.55E-05 599.37 0 0.0683 37876 4.22E+06 4.46E+06 0.3

    35 0.00013 609.41 0 0.069 35635 3.68E+06 3.92E+06 0.3

    36 0.0002 604.26 0 0.0694 36763 3.94E+06 4.18E+06 0.3

    37 0.00015 608.39 0 0.0694 35855 3.73E+06 3.97E+06 0.3

    38 0.00015 865.2 0 0.106 10326 2.28E+05 3.21E+05 0.3

    Fatigue Strength factor -1 TypeFull Reversed

    EXPERIMENTAL DETAILS (Contd)

  • 8/10/2019 Fatigue Analysis Of ball joint.ppt

    15/21

    Specimen ID

    Life

    Experimental Software Result

    Ball 1-1 2.514E+05 4.222E+06

    Ball 1-2 2.544E+05

    4.222E+06

    Ball 1-3 2.471E+054.222E+06

    Ball 1-4 2.504E+054.222E+06

    Ball 1-5 2.533E+054.222E+06

    Case study 1- Experimental Results Vs Software result

  • 8/10/2019 Fatigue Analysis Of ball joint.ppt

    16/21

    S-N Curve

  • 8/10/2019 Fatigue Analysis Of ball joint.ppt

    17/21

    Results of design for Infinite number of cycles

    Design for Infinite number of cycles

    ParameterExisting Design Improved Design

    Min Max Min Max

    Von mises stress 7.55E-05 599.37 7.41E-10 380.78

    Total deformation 0 0.0683 0 0.043

    Stress ratio 0 0.93 2.18E-12 1.5231

    Safety margin 0.071 14 -0.343 14

    Stress safety factor 0.933 15 0.656 15

    S-N Life (Gerber)

    Life cycle (cycle) 37876 1.00E+06 1.98E+05 1.00E+06

    Equivalent

    Alternating stress

    (Mpa)

    2.26E-05 179.81 2.23E-10 114.23

    Safety factor 4.79E-01 15 0.7546 15

    Bi-axiality Indication -1 0.9879 -1 0.978

    Fatigue Sensitivity 9.17E+03 7.85E+05 4.52E+04 1.00E+06

    -N - Life (Marrow )

    Life cycle (cycle) 4.21E+06 1.00E+12 2.06E+08 1.00E+12

    Damage 1.00E-03 2.37E+02 1.00E-03 4.81E+00

    Safety factor 5.34E-01 15 0.84 15Bi-axiality Indication -1 0.9879 -1 0.978

    Fatigue Sensitivity 2.15E+05 1.83E+09 6.24E+06 1.24E+11

    -NLife (SWT )

    Life cycle (cycle) 4.46E+06 1.00E+09 2.06E+08 1.00E+12

    Damage 1.00E+00 2.24E+02 1.00E-03 4.84E+00

    Safety factor 5.34E-01 15 0.84 15

    Bi-axiality Indication -1 0.9879 -1 0.978

    Fatigue Sensitivity 2.51E+05 1.00E+09 6.53E+06 1.24E+11

  • 8/10/2019 Fatigue Analysis Of ball joint.ppt

    18/21

    Results from analysis

    A maximum load of 4000 N applied perpendicular to theaxis of the of the ball joint .

    Maximum deformation of 0.010 mm occur at Edge of the

    surface.

    Maximum stress of 380.3Mpa ( Von Mises )is found out inthe necked region.

    When the parameter viz. Radius, angle, length and

    diameter increase the fatigue life is increased.

  • 8/10/2019 Fatigue Analysis Of ball joint.ppt

    19/21

    Conclusion

    The software results which were obtained for fatigue lifepredictions reasonably good agreement with the

    experimental results.

    The increase in the taper angle () the radius but, the life

    is decrease first and then increase for the increase in the

    taper angle.

    For the given tapper angle and radius increase in the length

    (L) increase the life of the component.

    With the limits of the parameters considered the tapperangle 33radius 3mm and the length 64mm gives the better

    life.

  • 8/10/2019 Fatigue Analysis Of ball joint.ppt

    20/21

    Future Works

    The same design study can be utilized for othercomposition of materials.

    This design study can be tried for the variable load

    application also.

    This design study can be tried for fracture surface onbending and torsion loading.

  • 8/10/2019 Fatigue Analysis Of ball joint.ppt

    21/21

    Thank You