fat tails and the physics of !collecve!dynamics!in!a...

74
Lisa Borland Integral Dev. Corp., CA, USA Synerge:cs Symposium in Honor of Professor Haken On the Occasion of his 85th Birthday Delmenhorst, November 2012 The Physics of Finance: Collec:ve Dynamics in a Complex World Lisa Borland

Upload: others

Post on 29-Oct-2019

9 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Fat Tails and the Physics of !Collecve!Dynamics!in!a ...users.physik.fu-berlin.de/~pelster/Haken/Talks/Borland.pdf · useful for option pricing (see, for example, Borland (2002))

                         Lisa  Borland                  Integral  Dev.  Corp.,  CA,  USA  

   

 Synerge:cs  Symposium  in  Honor  of  Professor  Haken      On  the  Occasion  of  his    85th  Birthday        Delmenhorst,  November  2012  

 

 

             The  Physics  of  Finance:    Collec:ve  Dynamics  in  a  Complex  World  Fat Tails and the Physics of

Finance

Lisa BorlandEvnine and Associates

Kavli Frontiers of Science 2007

Page 2: Fat Tails and the Physics of !Collecve!Dynamics!in!a ...users.physik.fu-berlin.de/~pelster/Haken/Talks/Borland.pdf · useful for option pricing (see, for example, Borland (2002))

The  price  forma-on  process:    mul-tude  of  complex  global  interac-ons  Not  possible  to  run  experiments:  just  one  single  history,  one  realiza-on  

Page 3: Fat Tails and the Physics of !Collecve!Dynamics!in!a ...users.physik.fu-berlin.de/~pelster/Haken/Talks/Borland.pdf · useful for option pricing (see, for example, Borland (2002))

The  price  forma-on  process:    mul-tude  of  complex  global  interac-ons  Not  possible  to  run  experiments:  just  one  single  history,  one  realiza-on  

Tsalllis  (q  =  1.4)  

Page 4: Fat Tails and the Physics of !Collecve!Dynamics!in!a ...users.physik.fu-berlin.de/~pelster/Haken/Talks/Borland.pdf · useful for option pricing (see, for example, Borland (2002))

•For q = 1.4, a 10-sigma event has probabilty

p = 0.028%

•This is equally probable as a 3.45-sigma event

based on a Gaussian distribution

•For a Gaussian, a 10-sigma event has probability

p = 0%

(about 1 in a decade)

Page 5: Fat Tails and the Physics of !Collecve!Dynamics!in!a ...users.physik.fu-berlin.de/~pelster/Haken/Talks/Borland.pdf · useful for option pricing (see, for example, Borland (2002))

What do we know about volatility?

- Across time for a given stock Part 1 - Across stocks at a given time Part 2

Exploring the joint stochastic process

Page 6: Fat Tails and the Physics of !Collecve!Dynamics!in!a ...users.physik.fu-berlin.de/~pelster/Haken/Talks/Borland.pdf · useful for option pricing (see, for example, Borland (2002))

Some  more    proper-es  of  financial  -me-­‐series  Universal  features:  Across  -me,  Across  the  globe  

 For  stocks  (IBM),  Commodi-es  (Oil),  Currencies  (EUR/USD)  etc  

•  Power  Law  distribu-ons,  persistent  

•  Slow  decay  to  Gaussian  

•  Vola-lity  clustering  

•  Close-­‐to  log-­‐normal  distribu-on  of  vola-lity  

•  Time-­‐reversal  asymmetry    

•  Leverage  effect          (Skew:  Nega-ve  returns  -­‐-­‐>  Higher  vola-lity)    

Page 7: Fat Tails and the Physics of !Collecve!Dynamics!in!a ...users.physik.fu-berlin.de/~pelster/Haken/Talks/Borland.pdf · useful for option pricing (see, for example, Borland (2002))

   Vast  number  of  anomalous  sta-s-cs  (stylized  facts)  

Across  Time:  

Page 8: Fat Tails and the Physics of !Collecve!Dynamics!in!a ...users.physik.fu-berlin.de/~pelster/Haken/Talks/Borland.pdf · useful for option pricing (see, for example, Borland (2002))

Challenge:    A  somewhat  realis-c  model  of  price  varia-ons      Important  for  real-­‐world  reasons:    -­‐   Risk  control  

-­‐   Hedging  

-­‐   Development  of  trading  strategies  

-­‐   Op-on  pricing  

-­‐   Pricing  of  credit  risk  

                     

Page 9: Fat Tails and the Physics of !Collecve!Dynamics!in!a ...users.physik.fu-berlin.de/~pelster/Haken/Talks/Borland.pdf · useful for option pricing (see, for example, Borland (2002))

Century  long  quest:      First  random  walk  model  by  Bachelier  in  1900  

Gaussian  model,  basis  for  celebrated  1974  Black-­‐Scholes  op-on  pricing  formula  

!

"

µ

S Price    Rate  of  return    Vola-lity    Gaussian  noise  

!"µ SdSdtdS +=

Page 10: Fat Tails and the Physics of !Collecve!Dynamics!in!a ...users.physik.fu-berlin.de/~pelster/Haken/Talks/Borland.pdf · useful for option pricing (see, for example, Borland (2002))

o Empirical  -­‐-­‐-­‐        Gaussian                  q=1.43  Tsallis  Distribu-on  

100  SP  stocks,  daily  

Real  log-­‐returns  not  Gaussian  

Page 11: Fat Tails and the Physics of !Collecve!Dynamics!in!a ...users.physik.fu-berlin.de/~pelster/Haken/Talks/Borland.pdf · useful for option pricing (see, for example, Borland (2002))

The  ideal  model:    -­‐   Intui-ve  

-­‐   Analy-cally  tractable  

-­‐ Parsimonious  

Popular  models:  -­‐Stochas-c  Vola-lity  (Heston  1993)  -­‐Levy  noise  -­‐GARCH  -­‐  Mul--­‐fractal  model  (Bacry,Delour  Muzy  PRE  64  2001)  

Page 12: Fat Tails and the Physics of !Collecve!Dynamics!in!a ...users.physik.fu-berlin.de/~pelster/Haken/Talks/Borland.pdf · useful for option pricing (see, for example, Borland (2002))

   

Exploring  the  Joint  Stochas-c  Process:  

Across  -me  ….        

1.  A  non-­‐Gaussian  model  of  returns  

2.    Op-ons  pricing  incorpora-ng  fat-­‐tails    3.    Applica-ons    

Page 13: Fat Tails and the Physics of !Collecve!Dynamics!in!a ...users.physik.fu-berlin.de/~pelster/Haken/Talks/Borland.pdf · useful for option pricing (see, for example, Borland (2002))

!+= SdSdtdS "µ

Non-­‐Gaussian  model  based  on  sta-s-cal  feedback  

Page 14: Fat Tails and the Physics of !Collecve!Dynamics!in!a ...users.physik.fu-berlin.de/~pelster/Haken/Talks/Borland.pdf · useful for option pricing (see, for example, Borland (2002))

!+= SdSdtdS "µ

!dPdq21

)("

#=#

For  stocks  q  =  1.4    

Borland  L,  Phys.  Rev.Lee  89  (2002)  

Non-­‐Gaussian  model  based  on  sta-s-cal  feedback  

Page 15: Fat Tails and the Physics of !Collecve!Dynamics!in!a ...users.physik.fu-berlin.de/~pelster/Haken/Talks/Borland.pdf · useful for option pricing (see, for example, Borland (2002))

!dPdq21

)("

#=#

!+= SdSdtdS "µ

Tsallis  Distribu-on  (Student-­‐t)  

Nonlinear  Fokker-­‐Planck  2

22

21

!=

"

dPd

dtdP q

qtqtZ

P !"!!= 11

2 ))()1(1()(1

#

Mathema-cal  details:  the  non-­‐Gaussian  model  

Page 16: Fat Tails and the Physics of !Collecve!Dynamics!in!a ...users.physik.fu-berlin.de/~pelster/Haken/Talks/Borland.pdf · useful for option pricing (see, for example, Borland (2002))

ttttt dbqad !21

20 ]()1([ "#"#+="

)(S!=!

Ager  inser-ng  the  expression  for  P  -­‐-­‐>    

a  state  dependent  determinis-c  model  

Work  with

as  a  computa-onal  tool  allowing  us  to  find  the  solu-on  

In  other  words:  

Averaging  and  condi-oning  w.r.t  variable   0!Genraliza-on:  M.Vellekoop  and  H.  Nieuwenhuis,  QF,  2007  

Page 17: Fat Tails and the Physics of !Collecve!Dynamics!in!a ...users.physik.fu-berlin.de/~pelster/Haken/Talks/Borland.pdf · useful for option pricing (see, for example, Borland (2002))

   Not  a  perfect  model  of  returns:                    

                                             Well-­‐defined  star-ng  price  and  -me  

Nevertheless:                                              Reproduces  fat-­‐tails  and  vola-lity  clustering                                              Closed  form  op-on-­‐pricing  formulae                                              Success  for  op-ons  and  credit  (CDS)  pricing  

Page 18: Fat Tails and the Physics of !Collecve!Dynamics!in!a ...users.physik.fu-berlin.de/~pelster/Haken/Talks/Borland.pdf · useful for option pricing (see, for example, Borland (2002))

-0.07 -0.02 0.03 -0.05 0.00 0.05100

101

102

103

104

105

106

107

1 3 5 7time

-0.10

-0.05

0.00

0.05

0.10

1 2 3 4 5 6time

-0.01

0.03

1 2 3 4 5 6time

-0.02

-0.01

0.00

0.01

0.02

1 2 3 4 5 6time

-0.10

-0.05

0.00

0.05

SP500 q =1.5

SP500

q=1.5

Reproduces  fat-­‐tails  and  vola-lity  clustering  

Page 19: Fat Tails and the Physics of !Collecve!Dynamics!in!a ...users.physik.fu-berlin.de/~pelster/Haken/Talks/Borland.pdf · useful for option pricing (see, for example, Borland (2002))

With  a  model  of  stock  behavior,  we  want  to  study  more  complicated  deriva-ve  markets        Some  deriva-ves:    -­‐  Op-ons    -­‐ Credit  default  swaps  

Like  stocks,  these  are  traded  in  large  volumes,  across  the  world    How  to  price  them?    The  price  must  be  related  to  the  underlying  instrument,  the  stock    

Page 20: Fat Tails and the Physics of !Collecve!Dynamics!in!a ...users.physik.fu-berlin.de/~pelster/Haken/Talks/Borland.pdf · useful for option pricing (see, for example, Borland (2002))

Op-ons        The  right    to  buy  or  sell    a  stock  at  a  certain  price  (the  

strike)  at  a  certain  -me  in  the  future.  

         

In  Holland  in  the  1600s,  tulip  op-ons  were  traded  quite  a  bit  by  speculators  prior  to  the  famous  tulip  bubble.  

1973  -­‐    the    Nobel-­‐prize  winning    Black-­‐Scholes    op-on  pricing  formula.  

Greek  mathema-cian  Thales  used  call  op-ons  on  olives  to  make  a  huge    profit  when  he  foresaw  a  good  harvest.  

Page 21: Fat Tails and the Physics of !Collecve!Dynamics!in!a ...users.physik.fu-berlin.de/~pelster/Haken/Talks/Borland.pdf · useful for option pricing (see, for example, Borland (2002))

Black-­‐Scholes  PDE  for  solving  F      (1973,  Nobel  prize  1997)  

Black-­‐Scholes  Op-on  Pricing  Paradigm    

                             the  risky  stock                                                the  risky  op-on  on  S      Risk-­‐less  porkolio:            Return  on                        must  be  risk-­‐free  rate  r,  due  to  no-­‐arbitrage            This  leads  to    the  famous  

!

"F"t

+ rS "F"S

+12"2F"S2

# 2S2 $ rF = 0

SF(S)

!

" = S + nF

!

"

Page 22: Fat Tails and the Physics of !Collecve!Dynamics!in!a ...users.physik.fu-berlin.de/~pelster/Haken/Talks/Borland.pdf · useful for option pricing (see, for example, Borland (2002))

Black-­‐Scholes  Op-on  Pricing  Paradigm    

Equivalently:      Price  op-ons  as  expecta-ons  with  respect  to  a  (risk-­‐neutral)  equivalent    mar-ngale  measure  

(Whole  field  of  mathema-cal  finance  based  on  these  no-ons)  

F = e!rTh(S)Q

 where  h    =  the  payoff  of  the  op-on  

Page 23: Fat Tails and the Physics of !Collecve!Dynamics!in!a ...users.physik.fu-berlin.de/~pelster/Haken/Talks/Borland.pdf · useful for option pricing (see, for example, Borland (2002))

Example  European  Call  Op-on  (F=C):  the  right  to  buy  at  strike  K  at  -me  T  

Problem:  Black-­‐Scholes  model    must  use  a  different                  for  each  K.  

Vola-lity  Smile:  the  plot  of                      versus  K.  

!

Q

rT KTSec ]0,)(max[ != !

!

The  price  of  the  call  op-on  depends  on  S(0),  K,  T,  r  and          .          !

Page 24: Fat Tails and the Physics of !Collecve!Dynamics!in!a ...users.physik.fu-berlin.de/~pelster/Haken/Talks/Borland.pdf · useful for option pricing (see, for example, Borland (2002))

                             Op-ons:  Real-­‐-me  pricing  and  hedging  

Page 25: Fat Tails and the Physics of !Collecve!Dynamics!in!a ...users.physik.fu-berlin.de/~pelster/Haken/Talks/Borland.pdf · useful for option pricing (see, for example, Borland (2002))

Vola-lity  smile  in  the  example  of  previous  slide  

Traders  intui-vely  correct  for  the  tails  by  bumping  up  the  Black-­‐Scholes                                                                                  vola-lity  at  far  strikes  

Page 26: Fat Tails and the Physics of !Collecve!Dynamics!in!a ...users.physik.fu-berlin.de/~pelster/Haken/Talks/Borland.pdf · useful for option pricing (see, for example, Borland (2002))

   

 

Part  1:      Across  -me  ….        

1.  A  non-­‐Gaussian  model  of  returns  

2.    Op-ons  pricing  incorpora-ng  fat-­‐tails    3.    Applica-ons    

Page 27: Fat Tails and the Physics of !Collecve!Dynamics!in!a ...users.physik.fu-berlin.de/~pelster/Haken/Talks/Borland.pdf · useful for option pricing (see, for example, Borland (2002))

Non-Gaussian option pricing with statistical feedback model:

There is a unique equivalent martingale measure can obtain closed-form option pricing formulae

Note: This is not the case for Levy noise or stochastic volatility

Parsimony:

Because the model incorporates tails for q = 1.4, we only need onevalue of sigma to capture all option prices across strikes

Page 28: Fat Tails and the Physics of !Collecve!Dynamics!in!a ...users.physik.fu-berlin.de/~pelster/Haken/Talks/Borland.pdf · useful for option pricing (see, for example, Borland (2002))

1)  Exploit  PDE’s  implied  by  arbitrage-­‐free  porkolios  

Solve  PDE  to  get  op-on  price

2)  Convert  prices  of  assets  into  mar-ngales

Take  expecta-ons  to  get  op-on  price

Generaliza6on:  M.Vellekoop  and  H.  Nieuwenhuis,    2007  

!

c = e"rT h(S(T)Q

?Detail  

Page 29: Fat Tails and the Physics of !Collecve!Dynamics!in!a ...users.physik.fu-berlin.de/~pelster/Haken/Talks/Borland.pdf · useful for option pricing (see, for example, Borland (2002))

Use  non-­‐Gaussian  model  as  basis  for  stock  price  dynamics      

!"#

$%&

'2

( + '= ) (2 T q

tT dtPrTSTS0

1)(exp)0()(*

!

" #(T)$T2

Integrate using generalized Feynman-Kac

- Approximation allows for closed-form solutions

Mar-ngale  “breaks  down”  but    valid  for        

12 <<T! - Due to the approximation:

?Detail  

Page 30: Fat Tails and the Physics of !Collecve!Dynamics!in!a ...users.physik.fu-berlin.de/~pelster/Haken/Talks/Borland.pdf · useful for option pricing (see, for example, Borland (2002))

})({ KTS > 21 dd T !"!à

! "# $$# =

2

1

)())((d

dTq

rT dPKTSec

Stock  Price    

Payoff  if  

European  Call  

q = 1: P is Gaussian q >1 : P is fat tailed Tsallis dist.

Q

rT KTSec ]0,)(max[ != !

!"#

$%&

'((2

( + '=2

2)1(exp)0()(TTTT gqrTSTS )

**

Page 31: Fat Tails and the Physics of !Collecve!Dynamics!in!a ...users.physik.fu-berlin.de/~pelster/Haken/Talks/Borland.pdf · useful for option pricing (see, for example, Borland (2002))

T=0.6

T=0.05

Call Price Difference

S(0) = $50, r= 6%, ! =0.3

$

Page 32: Fat Tails and the Physics of !Collecve!Dynamics!in!a ...users.physik.fu-berlin.de/~pelster/Haken/Talks/Borland.pdf · useful for option pricing (see, for example, Borland (2002))

T=0.1

T=0.4

This  is  very  similar  to  the  vola-li-es  that  traders  use

Need only one sigma across all strikes if q = 1.4

Implied Black-Scholes Volatility (from q = 1.4 model with sigma = .3)

Page 33: Fat Tails and the Physics of !Collecve!Dynamics!in!a ...users.physik.fu-berlin.de/~pelster/Haken/Talks/Borland.pdf · useful for option pricing (see, for example, Borland (2002))

Example (Japanese Yen futures)

Page 34: Fat Tails and the Physics of !Collecve!Dynamics!in!a ...users.physik.fu-berlin.de/~pelster/Haken/Talks/Borland.pdf · useful for option pricing (see, for example, Borland (2002))

72 76 80 84Strike

9

10

11

12

13

14

Vol

Implied Volatility JY Futures 16 May 2002 T=17 days

Page 35: Fat Tails and the Physics of !Collecve!Dynamics!in!a ...users.physik.fu-berlin.de/~pelster/Haken/Talks/Borland.pdf · useful for option pricing (see, for example, Borland (2002))

72 76 80 84Strike

9

10

11

12

13

14

Vol

Implied Volatility JY Futures 16 May 2002 T=37 days

Page 36: Fat Tails and the Physics of !Collecve!Dynamics!in!a ...users.physik.fu-berlin.de/~pelster/Haken/Talks/Borland.pdf · useful for option pricing (see, for example, Borland (2002))

72 76 80 84Strike

9

10

11

12

13

14

Vol

Implied Volatility JY Futures 16 May 2002 T=62 days

Page 37: Fat Tails and the Physics of !Collecve!Dynamics!in!a ...users.physik.fu-berlin.de/~pelster/Haken/Talks/Borland.pdf · useful for option pricing (see, for example, Borland (2002))

72 76 80 84Strike

9

10

11

12

13

14

Vol

Implied Volatility JY Futures 16 May 2002 T=82 days

Page 38: Fat Tails and the Physics of !Collecve!Dynamics!in!a ...users.physik.fu-berlin.de/~pelster/Haken/Talks/Borland.pdf · useful for option pricing (see, for example, Borland (2002))

72 76 80 84Strike

9

10

11

12

13

14

Vol

Implied Volatility JY Futures 16 May 2002 T=147 days

Page 39: Fat Tails and the Physics of !Collecve!Dynamics!in!a ...users.physik.fu-berlin.de/~pelster/Haken/Talks/Borland.pdf · useful for option pricing (see, for example, Borland (2002))

Extension  to  include  skew  (asymmetry)  in  the  model            [Borland  and  Bouchaud,  2004]      Price  crashes  induce  higher  vola-lity  than  price  rallies    

!" # dPSq21$

Leverage  effect  

! Controls  the  skew    

! Vola-lity  parameter  

q Controls  the  tail  

We  obtain  closed-­‐form  formulae  for  call  op-ons  

Fluctua-ons  modeled  as     1!"

Pade  expansion,  Feynman-­‐Kac  

Page 40: Fat Tails and the Physics of !Collecve!Dynamics!in!a ...users.physik.fu-berlin.de/~pelster/Haken/Talks/Borland.pdf · useful for option pricing (see, for example, Borland (2002))

Strike  K   Strike  K  

T=.03  

T=0.1  

T=0.2  

T=0.3  

T=0.55  

SP500  OX   q=1.4,  with  skew  

Page 41: Fat Tails and the Physics of !Collecve!Dynamics!in!a ...users.physik.fu-berlin.de/~pelster/Haken/Talks/Borland.pdf · useful for option pricing (see, for example, Borland (2002))

   

 

Part  1:      Across  -me  ….        

1.  A  non-­‐Gaussian  model  of  returns  

2.    Op-ons  pricing  incorpora-ng  fat-­‐tails    3.    Applica-ons    

Page 42: Fat Tails and the Physics of !Collecve!Dynamics!in!a ...users.physik.fu-berlin.de/~pelster/Haken/Talks/Borland.pdf · useful for option pricing (see, for example, Borland (2002))

-­‐ Can  fit  the  model  to  historical  distribu-on  à        calculate  op-on  prices        -­‐ Can  imply  the  parameters  from  the  op-on  -­‐   market  

Results  for  stocks  (top  100  stocks  in  S&P  index)  In  both  stock  and  op-on  markets:    -­‐                                             converging  slowly  to  Gaussian  

-­‐    -­‐  

3.0!"

%30!"

4.1=q

Page 43: Fat Tails and the Physics of !Collecve!Dynamics!in!a ...users.physik.fu-berlin.de/~pelster/Haken/Talks/Borland.pdf · useful for option pricing (see, for example, Borland (2002))

Back  test  of  trading  strategy        (with  A.  Chris-an  Silva)  

                       Exploit  slight  devia-ons  which  should  converge    

0

50

100

150

200

250

300

350

1 9 17 25 33 41 49 57 65 73 81 89 97 105 113 121 129 137 145 153 161 169

Series1

Live returns 2009

Page 44: Fat Tails and the Physics of !Collecve!Dynamics!in!a ...users.physik.fu-berlin.de/~pelster/Haken/Talks/Borland.pdf · useful for option pricing (see, for example, Borland (2002))

Credit  Default  Swaps:          

Protec-on  Buyer  

Protec-on  Seller  

Payment  if  the    company  defaults  

Premium  (CDS  price)  

CDS  price  depends  on  probability    to  default.  We  get  pricing  formula  from  the  non-­‐Gaussian  model.  

Op-ons  look  good  …  what  about  pricing  credit?  

! !qWe  implied     from  empirical  CDS  prices:    

4.12.1 !=q5.02.0 !="

%30=!

Page 45: Fat Tails and the Physics of !Collecve!Dynamics!in!a ...users.physik.fu-berlin.de/~pelster/Haken/Talks/Borland.pdf · useful for option pricing (see, for example, Borland (2002))

•  Key ingredient of success for statistical feedback model: long-range memory (with respect to a single time)

•  Random increments are uncorrelated but not independent

Non-­‐Gaussian  model  well  describes  many  features  of:    

Stock  Markets      Op-on  Markets  

                                   Debt  and  Credit  Markets  

Page 46: Fat Tails and the Physics of !Collecve!Dynamics!in!a ...users.physik.fu-berlin.de/~pelster/Haken/Talks/Borland.pdf · useful for option pricing (see, for example, Borland (2002))

Mo-va-on  of  sta-s-cal  feedback  model:    Intui-on  -­‐  traders  react  to  extreme  events            Generaliza-on:  Mul-  -mescale  sta-s-cal  feedback  model:    In-ui-on  -­‐      different  classes  of  traders  react  on  different  -me-­‐scales          

For  example:    HARCH  (Muller  et  al)                                                FIGARCH  (Baillie  et  al)                                                Mul--­‐-mescale  sta-s-cal  feedbacl  (Borland  and  Bouchaud)  

Page 47: Fat Tails and the Physics of !Collecve!Dynamics!in!a ...users.physik.fu-berlin.de/~pelster/Haken/Talks/Borland.pdf · useful for option pricing (see, for example, Borland (2002))

!

" t2 =" 0

2 1+ g 1l#

yt $ y(t$ l )( )2l=1

%

&'

( )

*

+ ,

!

"yt =# t"$ t

Reproduces  “all”  stylized  facts  across  -me  

A  mul--­‐-me  scale  non-­‐Gaussian  model  of  stock  return  [Borland  and  Bouchaud  2012]      

Page 48: Fat Tails and the Physics of !Collecve!Dynamics!in!a ...users.physik.fu-berlin.de/~pelster/Haken/Talks/Borland.pdf · useful for option pricing (see, for example, Borland (2002))

Reproduces  “all”  stylized  facts  across  -me  

y = log(Stock Price)

!

" t Gaussian noise uncorrelated in time

!

" t Volatility

!

g," Parameters

 g            controls  the  feedback                        controls  the  memory  

!

"

A  mul--­‐-me  scale  non-­‐Gaussian  model  of  stock  return  [Borland  and  Bouchaud  2012]      

Mo-va-on:  Traders  act  on  all  different  -me  horizons  

           GARCH                                              HARCH  (Muller  et  al)                                              FIGARCH  (Baillie  et  al)  

For    t-­‐  l  =  0    recovers  Sta-s-cal  feedback    model  

!

" t2 =" 0

2 1+ g 1l#

yt $ y(t$ l )( )2l=1

%

&'

( )

*

+ ,

!

"yt =# t"$ t

Page 49: Fat Tails and the Physics of !Collecve!Dynamics!in!a ...users.physik.fu-berlin.de/~pelster/Haken/Talks/Borland.pdf · useful for option pricing (see, for example, Borland (2002))

In  our  study:   Simula-ons  Some  analy-c  calcula-ons  Calibra-on  to  stylized  facts  

Other  typical  calibra-on  methods:        -­‐  Method  of  moment                                                                                                                                                    -­‐  Maximum  likelihood  

Page 50: Fat Tails and the Physics of !Collecve!Dynamics!in!a ...users.physik.fu-berlin.de/~pelster/Haken/Talks/Borland.pdf · useful for option pricing (see, for example, Borland (2002))

Distribu-on  of  Vola-lity  

Mul--­‐fractal  scaling  

Vola-lity  Variogram  (autocorrela-on)  

 Condi-onal  Vola-lity  

Calibra-on  to  stylized  facts   15.1,85.0 == !z

+      US  stocks  o      z  =  0.85  

Squares:                  =1.15  Diamonds:              =  1.3  Triangles:    US  stocks  

!!

Triangles:  US  stocks  Lines:  z  =  0.6-­‐0.85  

                                             vs.  ln(    )  )|ln( 220

2 se!!

s=1  

s=0.5  

s=0  

s=  -­‐0.5  

n  

! n

)ln(!

)ln(P

!

!

!!

“jis_bouchaud” — 2011/12/5 — 14:52 — page 21 — #21 !!

!!

!!

On a multi-timescale statistical feedback model for volatility fluctuations 21

with ! ! .3 " q/=.q " 1/. Using these relations, one can infer, from part (a) ofFigure 5 on the facing page, the value of q that one should use for different timescalesin order to get an approximate functional form for the distribution of returns. This isuseful for option pricing (see, for example, Borland (2002)).

4.3 MultifractalityA property related to the systematic change of the distribution of returns with ` ismultifractality, which means that different moments of price changes scale as a powerof time, but with different scaling exponents. More precisely, multifractal scaling isthe following property:

Mn.`/ D hjxiC` " xi jni D An`!n ; ` # L (4.9)

where An are constants and "n is an n-dependent exponent. In the monofractal case,where the distribution is the same on all timescales up to a rescaling of the returns,then "n D n=2 $ "2. The simplest example is obviously the (geometric) Brownianmotion, for which "n D 1

2n. Any deviation from a linear behavior of "n is calledmultifractality, for which several explicit models have been proposed recently (see,for example, Lux (2001, 2012); Calvet and Fisher (2001, 2002); Muzy et al (2001);and Muzy and Bacry (2002)).

One example is the Bacry–Muzy–Delour (BMD) stochastic volatility model, whichmakes the following assumptions (Muzy et al (2001) and Muzy and Bacry (2002)):

% the log-volatilities ln #i are multivariate Gaussian variables (or, more generally,infinitely divisible (Muzy and Bacry (2002)));

% the log-volatility variogram is given by (4.5);

% the volatilities #i are independent from the (Gaussian) noises $i .

From these assumptions, we can compute exactly the moments of the return distribu-tion on different timescales. We find that these are indeed given by (4.9), with:

"n D 12nŒ1 " %2.n " 2/& (4.10)

whenever n < 1=%2, beyond which the moments are infinite. (All An can also beexactly computed (Muzy et al (2001)).) These assumptions and predictions werefound to account rather well for some aspects of empirical data.

In this section, we show that, although our model is, strictly speaking, not multifrac-tal, many of the multifractal predictions actually hold numerically quite accurately.This means that our model can account very well for apparent multifractal propertiesof financial time series, and in fact cures some of the deficiencies of standard mul-tifractal models (see Section 4.5). First, we note that our model is not multifractal,

Research Paper www.thejournalofinvestmentstrategies.com

Page 51: Fat Tails and the Physics of !Collecve!Dynamics!in!a ...users.physik.fu-berlin.de/~pelster/Haken/Talks/Borland.pdf · useful for option pricing (see, for example, Borland (2002))

                                                                                       Interes-ng  analogy  between  mul--­‐-mescale    models  and                                                                                                                              mul--­‐fractal  (cascade)  models    

Turbulent  velocity  increments          Financial  returns  

Small  scales  (top),  larger  scales  (boIom)  

For  finance,  mul--­‐-mescale  makes  more  sense  because  of                                                        -me-­‐reversal  asymmetry  

Page 52: Fat Tails and the Physics of !Collecve!Dynamics!in!a ...users.physik.fu-berlin.de/~pelster/Haken/Talks/Borland.pdf · useful for option pricing (see, for example, Borland (2002))

So  far,  we  have  studied  models  of  stock  prices  across  :me          Now  let  us  look  at  the  dynamics  across  stocks  [Correla:ons]  

Page 53: Fat Tails and the Physics of !Collecve!Dynamics!in!a ...users.physik.fu-berlin.de/~pelster/Haken/Talks/Borland.pdf · useful for option pricing (see, for example, Borland (2002))

What do we know about volatility?

- Across time for a given stock Part 1 - Across stocks at a given time Part 2

Exploring the joint stochastic process

Page 54: Fat Tails and the Physics of !Collecve!Dynamics!in!a ...users.physik.fu-berlin.de/~pelster/Haken/Talks/Borland.pdf · useful for option pricing (see, for example, Borland (2002))

   Across  stocks  ….        1.  Cross-­‐sec-onal  dispersion  

2.  Cross-­‐sec-onal  kurtosis  

3.        Correla-ons    4.  Do  markets  exhibit  a  phase-­‐transi-on  in  -mes  of  panic?  

5.  A  simple  model    

See also “Borland L, “Statistical signatures in times of panic: markets as a self-organizing system”, (2009)

Page 55: Fat Tails and the Physics of !Collecve!Dynamics!in!a ...users.physik.fu-berlin.de/~pelster/Haken/Talks/Borland.pdf · useful for option pricing (see, for example, Borland (2002))
Page 56: Fat Tails and the Physics of !Collecve!Dynamics!in!a ...users.physik.fu-berlin.de/~pelster/Haken/Talks/Borland.pdf · useful for option pricing (see, for example, Borland (2002))
Page 57: Fat Tails and the Physics of !Collecve!Dynamics!in!a ...users.physik.fu-berlin.de/~pelster/Haken/Talks/Borland.pdf · useful for option pricing (see, for example, Borland (2002))

Even  by  eye  you  can  see    the  very  high  nega-ve  correla-on  between  cross-­‐sec-onal  dispersion  and  kurtosis  

<Disp(t)  Kurt(t)>  =    -­‐  30%  

Page 58: Fat Tails and the Physics of !Collecve!Dynamics!in!a ...users.physik.fu-berlin.de/~pelster/Haken/Talks/Borland.pdf · useful for option pricing (see, for example, Borland (2002))

In times of market panic: c-s kurtosis LOW but c-s dispersion HIGH

Defining Market Panic

kurtosis

SP 500

Some panic periods: Fall 2008, Sep 08 - April 09, 2002

Page 59: Fat Tails and the Physics of !Collecve!Dynamics!in!a ...users.physik.fu-berlin.de/~pelster/Haken/Talks/Borland.pdf · useful for option pricing (see, for example, Borland (2002))

This implies that the distribution of cross-sectional returns is different in panic or normal states

Page 60: Fat Tails and the Physics of !Collecve!Dynamics!in!a ...users.physik.fu-berlin.de/~pelster/Haken/Talks/Borland.pdf · useful for option pricing (see, for example, Borland (2002))

Next  thing  to  look  at    are  correla-ons   -  Perform rolling Principal Components Analysis Look at percentage of variance captured by first eigenvector

Larger percentage -> More of a “market model” -> Higher cross-sectional co-movement of stocks

Page 61: Fat Tails and the Physics of !Collecve!Dynamics!in!a ...users.physik.fu-berlin.de/~pelster/Haken/Talks/Borland.pdf · useful for option pricing (see, for example, Borland (2002))

Distribution becomes more Gaussian in panic times

Two possible explanations:

1)  Distribution of individual stock volatilities narrows

2)  Correlations among random stock moves increases

Page 62: Fat Tails and the Physics of !Collecve!Dynamics!in!a ...users.physik.fu-berlin.de/~pelster/Haken/Talks/Borland.pdf · useful for option pricing (see, for example, Borland (2002))

Distribution becomes more Gaussian in panic times

Two possible explanations:

1)  Distribution of individual stock volatilities narrows

2)  Correlations among random stock moves increases

Page 63: Fat Tails and the Physics of !Collecve!Dynamics!in!a ...users.physik.fu-berlin.de/~pelster/Haken/Talks/Borland.pdf · useful for option pricing (see, for example, Borland (2002))

 Define  on  each  day  the  quan-ty        

!

s =s" # s$

s" + s$

Where    

!

s" is  the  number  of  stocks  that  had  posi-ve  moves  

!

s" is  the  number  of  stocks  that  had  nega-ve  moves  

Page 64: Fat Tails and the Physics of !Collecve!Dynamics!in!a ...users.physik.fu-berlin.de/~pelster/Haken/Talks/Borland.pdf · useful for option pricing (see, for example, Borland (2002))

Correlations: Define on each day the quantity

!

s =s" # s$

s" + s$

Where

!

s" is the number of stocks that had positive moves

!

s" is the number of stocks that had negative moves

If no correlation, if correlation among stocks

!

s = 0

!

s " 0s  can  be  seen  as  an  Order  Parameter  

Page 65: Fat Tails and the Physics of !Collecve!Dynamics!in!a ...users.physik.fu-berlin.de/~pelster/Haken/Talks/Borland.pdf · useful for option pricing (see, for example, Borland (2002))

Analogy:

s is the Order Parameter

(external volatility perception) is the Control Parameter

!

"

!

V (s) = as2 + bs4

!

s = 0

s = ±"ab

!

a = "(# c $#)

!

" >"c

!

" <"c

|s| = correlations

0 0

If

!

" <" c s is in the disordered state - low correlation across stocks

!

" >" c s is in the ordered state - high correlation Symmetry breaking (can be positive or negative)

Page 66: Fat Tails and the Physics of !Collecve!Dynamics!in!a ...users.physik.fu-berlin.de/~pelster/Haken/Talks/Borland.pdf · useful for option pricing (see, for example, Borland (2002))

If this is plausible we expect to see - unimodal distribution of s in normal times

- bimodal distribution of s in panic times

Page 67: Fat Tails and the Physics of !Collecve!Dynamics!in!a ...users.physik.fu-berlin.de/~pelster/Haken/Talks/Borland.pdf · useful for option pricing (see, for example, Borland (2002))

In times of panic, correlations are high ==> bimodal distribution of s

!

s =s" # s$

s" + s$

!

s" is the number of stocks that had positive moves

!

s" is the number of stocks that had negative moves

Page 68: Fat Tails and the Physics of !Collecve!Dynamics!in!a ...users.physik.fu-berlin.de/~pelster/Haken/Talks/Borland.pdf · useful for option pricing (see, for example, Borland (2002))

-­‐  Log  returns  follow  mul-  -mescale  model  across  -me    -­‐  Log  returns  correlated  across  stocks  with  corr  =|s|  (disorder  to  order)    -­‐  The  transi-on  is  triggered  by  a  vola-lity  shock    We  get:    Kurtosis  down  Dispersion  up  Distribu-on  of  s  bimodal    

A  simple  phase  transi-on  model:  Sta-s-cal  signatures  in  -mes  of  panic        [L.  Bprland.  Quan-ta-ve  Finance  2011]  

Page 69: Fat Tails and the Physics of !Collecve!Dynamics!in!a ...users.physik.fu-berlin.de/~pelster/Haken/Talks/Borland.pdf · useful for option pricing (see, for example, Borland (2002))

Putting it all together

!

" ti2 =" 2 1+ g 1

l#yti $ yt$ l

i( )2

l=1

%

&'

( )

*

+ ,

!

dyti =" t

id# ti

For each stock i across time t y = log(stock price)

!

dsdt

= "as" bs3 + Ft

If : disordered state, correlations

!

a > 0" s = 0

!

a < 0" s # 0 If : ordered state, correlations <!ti!t

j >i! j= s<!t

i!tj >i! j= 0

Across stocks for each time

a =! c !!M

!

" c = critical volatility

Market  vola-lity  can  increase  due  to:    i)  Exogenous  jumps    (news)  ii)  Endogenous  jumps  (mul-  -me-­‐scale  dynamics)  

Page 70: Fat Tails and the Physics of !Collecve!Dynamics!in!a ...users.physik.fu-berlin.de/~pelster/Haken/Talks/Borland.pdf · useful for option pricing (see, for example, Borland (2002))

!

a ="c #"M

!

"c = 2 standard deviations of recent market returns

!

"M = Current market volatility

Panic: a < 0

!

"ti2 ="0

2 1+gl"2l

yti # yt# l

i( )2 +$gl" l

yti # yt# l

i( )l=1

N

%l=1

N

%&

' (

)

* +

!

dyti =" t

id# ti

Extension  to  include  skew  [Borland  and  Hasaad  2010  

SIMULATIONS  :  

Page 71: Fat Tails and the Physics of !Collecve!Dynamics!in!a ...users.physik.fu-berlin.de/~pelster/Haken/Talks/Borland.pdf · useful for option pricing (see, for example, Borland (2002))

RESULTS   Histogram  of  s:  Normal  Period    

Histogram  of  s:  Panic  Period    

Page 72: Fat Tails and the Physics of !Collecve!Dynamics!in!a ...users.physik.fu-berlin.de/~pelster/Haken/Talks/Borland.pdf · useful for option pricing (see, for example, Borland (2002))

Correlation -15%

Page 73: Fat Tails and the Physics of !Collecve!Dynamics!in!a ...users.physik.fu-berlin.de/~pelster/Haken/Talks/Borland.pdf · useful for option pricing (see, for example, Borland (2002))

Summary  and  Open  Ques-ons  •  A  realis-c    model  of  the  joint  stochas-c  process  of  stock  prices  

•  Dynamics  across  -me  reproduced  

•  Market  vola-lity  drives  correla-ons  across  stocks  

•  In  -mes  of  panic,  fluctua-ons  become  more  correlated  

•  In  -mes  of  panic,  cross-­‐sec-onal  distribu-on  becomes  more  Gaussian  .  All  stocks  experience  higher  vola-lity.  

•  All  our  models  have  been  extended  to  incorporate  the  asymmetry  that  nega-ve  returns  lead  to  more  panic  than  posi-ve  ones.  

•  Calibra-on  ?  

•  Predic-on  of  cri-cal  sigma  ?  

•  Analy-c  solu-ons  (e.q.  for  op-on  pricing,  trading  strategies)?  

       

Page 74: Fat Tails and the Physics of !Collecve!Dynamics!in!a ...users.physik.fu-berlin.de/~pelster/Haken/Talks/Borland.pdf · useful for option pricing (see, for example, Borland (2002))

References    Borland  L,  Phys.  Rev.Lee  89  (2002)  Borland,  L.  (2002).  A  theory  of  non-­‐Gaussian  op-on  pricing.  Quan:ta:ve  Finance  2,  415–  431.  Borland,  L.  (2004).  A  mul--­‐-me  scale  non-­‐Gaussian  model  of  stock  returns.  Preprint  (cond-­‐  mat/0412526).  Borland,  L.,  and  Bouchaud,  J.-­‐P.  (2004).  A  non-­‐Gaussian  op-on  pricing  model  with  skew.  Quan:ta:ve  Finance  4,  499–514.  Borland,  L.,  Bouchaud,  J.-­‐P.,  Muzy,  J.-­‐F.,  and  Zumbach,  G.  (2005).  The  dynamics  of  financial  markets:  Mandelbrot’s  mul-fractal  cascades,  and  beyond.  WilmoS  Magazine  (March).  Borland,  L.  (2011).  Sta-s-cal  signatures  in  -mes  of  panic:  markets  as  a  self-­‐organizing  system  Quan-ta-ve  Finance  Borland,  L.  and  Bouchaud,  J.-­‐P..  (2012)  On  a  mul--­‐-mescale  sta-s-cal  feedback  model  for  vola-lity  fluctua-ons.  The  Journal  of  Investment  Strategies  (1–40)  Borland,  L.  &  Hassid.  (2010)  Y.  Market  panic  on  different  -me-­‐scales.  ArXiv  e-­‐prints  1010.4917  ).  Preis  T.  ,  Kenee  D.,  Stanley  E.,Helbing  D.  and    Ben-­‐Jacob,  W,E.  Quan-fying  the  Behavior  of  Stock  Correla-ons  Under  Market  Stress  .    Nature,  October  2012