fast single image haze removal using dark channel prior and bilateral...

12
Fast Single Image Haze Removal Using Dark Channel Prior and Bilateral Filters Rachel Yuen, Chad Van De Hey, and Jake Trotman [email protected] , [email protected] , [email protected] UW-Madison Computer Science 1210 W Dayton Street Madison, WI 53706 http://dehazing.azurewebsites.net

Upload: trinhque

Post on 18-Apr-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Fast Single Image Haze Removal Using Dark Channel Prior and Bilateral Filterspages.cs.wisc.edu/~dyer/cs534/hw/hw5/Project-Report… ·  · 2015-12-21ABSTRACT In this paper, we propose

FastSingleImageHazeRemovalUsingDarkChannelPriorandBilateralFilters

RachelYuen,ChadVanDeHey,andJakeTrotman

[email protected],[email protected],[email protected]

UW-MadisonComputerScience1210WDaytonStreetMadison,WI53706

http://dehazing.azurewebsites.net

Page 2: Fast Single Image Haze Removal Using Dark Channel Prior and Bilateral Filterspages.cs.wisc.edu/~dyer/cs534/hw/hw5/Project-Report… ·  · 2015-12-21ABSTRACT In this paper, we propose

ABSTRACTInthispaper,weproposeasimpleyeteffectiveimprovementtosingleimagehazeremovalusingdarkchannelprior(He,Sun,andXiaoou).Itisbasedontheobservationthathazeremovalusingdarkchannelprioraccuratelyremoveshazefromanimage;however,ithasarelativelyslowcomputationtime.Usingthedarkchannelpriorinadditiontoaseriesofbilateralfilterswecanefficientlycalculatetheamountofhazeinanimage.Ourmethodcomputes100timesfasterthanthedarkchannelpriormethod.Ourgoalwastoimproveperformanceofthedarkchannelprioralgorithm,whichultimatelycompromisestheoverallqualityoftheresultingdehazedimage.Resultsonavarietyofoutdoorhaze,smoke,andsteamimagesdemonstratethepoweroftheproposedprior.1.INTRODUCTIONLocationsarethemosttaggedandclassifiedphotographsintheworld[1].Itisassumedthatallofthosephotographsaretakenoutdoors,sincetheyarenotofobjects,artifacts,orpeople.Tosomedegreeeachoftheoutdoorimagesispollutedwithfog,smoke,haze,orsmog.Fogiscomposedofsmallwaterdropletssuspendedintheatmosphereatorneartheearth’ssurface.Duetothisproperty,fogscatterslightandmakesairmuchmorereflective,whichreducestheamountoflightreachingacamera.

Assubjectsbecomefartherfromacamera,bothcolorsaturationandcolorcontrastdropdramatically,whichproduceunclearandill-definedimagesasshownintheinputimageinFigure1.Theseunclearhazyimagesdegradetheperformanceofcomputervisiontaskssuchasfeaturedetection,accuratelycomputingtheenergyfunctionofanimageusedforseamcarving,etc.

Figure1:Smokeremovalusingasingleimage.Top:inputsmokeimage.Bottom:imageaftersmokeremovalbyourapproach.

Consequently,therehasbeenmucheffortforhazeremoval(i.e.dehazing).Totestatthesourceoftheproblem,photographershavetriedtomanuallyadjusttheircamera’sparameterssuchasadjustingexposuretoreducetheeffectsoffog.However,theresultsusingthistechniquehavebeenunsatisfactory,sincethereisatradeoffofeitherincreasingtheamountofreflectionormakingtheimagedimmerthanitoriginallyisbyincreasing/decreasingtheexposure.

Hazeremovalisamoreacomplexproblembecausehazeisdependentonanunknownparameter,depth.Computationalphotographytechniquesproducefarmorevisuallypleasingresults.Therefore,manyproposedcomputationalmethodsusingmultipleimages,additionalinformation,orthemodernapproach—singleimageinput.

Page 3: Fast Single Image Haze Removal Using Dark Channel Prior and Bilateral Filterspages.cs.wisc.edu/~dyer/cs534/hw/hw5/Project-Report… ·  · 2015-12-21ABSTRACT In this paper, we propose

3

Earliercasesi.e.usingmultipleimagesand/oradditionalinformationsuccessfullyremovedhazefromanimage,butusingtheseapplicationsareundesirableduetotheadditionalinformationthatisnecessarytorunthem.Recentfindingsmostlyfocusonsingleimagehazeremoval,whichhasmadesignificantprogress.Thesemethodsowetheirsuccesstothestrongassumptionsorpriorsthataremadeonhazeandhaze-freeimages.

Forexample,themosthighlyusedmethod,andthemethodweuseinourresearch,isthedarkchannelpriortechnique[2].Thepriorassumesthatdarkpixelsinahazyimage(notwithintheskyregion)haveverylowintensitiesinatleastoneRGBcolorchannel.Thisinformationisusedtoestimatedepthbasedonthecomparisonbetweenthehazyandclearimages.Thedarkchannelpriormethodhasbeenprovedtobeaverypowerfulpriorinsingleimagedehazing.Nevertheless,itseemsthatdarkchannelpriorsystemstillhassomelimitationsinthatthedarkchannelpriorbecomesinvalidwhenthescenecolorhaslowcontrasttothehazecolor(e.g.,asnowsceneorawhitewall).Moreover,thedarkchannelpriormethodhasanextremelyslowsoftmattingtechniqueandtakesabout15minutestorunona400x400pixelimage.

2.MOTIVATIONThedarkchannelpriormethodhasbecomeawell-adoptedalgorithmtoimprovehazyimages,andithasbeenusedasthebasisofnumerousresearchprojects.Forexample,thedarkchannelpriorisusedinavideoapplicationtorecognizefogbasedontrafficsceneinhazyweather[6].Therehavealsobeenextensionsofthedarkchannelpriortoimprovefilmandvideoqualityforunder

waterphotography[7,8].Therehavealsobeeneffortstoenhancethecurrentdarkchannelpriormethod.Forinstance,thedarkchannelpriormethodwasimprovedthroughtheuseofcontrastenhancementtoenhancecolorcontrastwithlesscolordistortion[9].

Still,therehasbeenlittleefforttoimprovethecomputationtimeofthedarkchannelpriormethod.Thesoftmattingfunctioninthedarkchannelprioralgorithmiscomputationallyexpensiveandcausesabottleneckinthecode.Forthisdehazingmethodtobeauser-friendlyapplication,webelievespeedmustbeimproved.Weusedaseriesofbilateralfilterstechniques[3].Specifically,wedesignanoptimizationalgorithmthatbalancesbetweenasystemofthreebilateralfiltersandthedarkchannelprior,sothatthetimetocleanuphazyimagesisimproved.

Experimentalresultsshowthattheproposedmethodaccuratelyfindsareasthathavelowcontrasttotheskyregiontodeterminewhatishazyandwhatisnotinanimage.Theproducedimageshaveundesirableartifacts;however,ourgoalwastoimprovetheperformanceofthedarkchannelpriormethodnotthequalityoftheproducedimage.Theresultsaresignificantlyfasterthantheconventionaldarkchannelpriormethod,withspeedsnowrunningatabout12secondsforan800x600pixelimage.Lastly,methodsbeforeclaimedthattheirmethodsworkedonimagesthatwerepollutedwithsmoke,fog,hazeetc.,butthosemethodsneverdemonstratedexperimentalresultsusingimagesotherthanhazyimages.Ourmethodusedimagesthatweretakenbothoffog/hazeaswellhasimagesthatwerepollutedwithsmokeandsteam.3.PROBLEMSTATEMENT

Page 4: Fast Single Image Haze Removal Using Dark Channel Prior and Bilateral Filterspages.cs.wisc.edu/~dyer/cs534/hw/hw5/Project-Report… ·  · 2015-12-21ABSTRACT In this paper, we propose

4

ObjectivesThisprojectiscomprisedofseveralcomponentsandthushasanumberofkeyobjectives.

• Takeasinputanyuser-specifiedRGBsourceimagethatispollutedwithhaze.

• Accuratelydeterminewhichareasarepollutedwithhaze.

• Dehazetheimageusingthedarkchannelprior.

• Completeallcomputationinareasonableamountoftime(under30secondsforan800x600pixelimage,ifpossible).

Sub-problemsThesebroadobjectivesbreakdownnaturallyintoseveralsub-problems:

• Howcanthedehazingmethodbedoneasefficientlyaspossible?

• Whatkindofbilateralfiltersdoweneedtoachieveourgoaltime?

4.RELATEDWORKThemodelwidelyusedtodescribetheformationofahazeimageisasimplesetofequationsthatcalculatestheintensityIofanimage,

(1)

whereJisthesceneradiance,Aistheglobalatmosphericlight,andtisthemediumtransmissiondescribingtheportionofthelightthatisnotscatteredandreachesthecamera.ThegoalofhazeremovalistorecoverJ,A,andtfromI[4].InouralgorithmweusethedarkchannelpriortoestimateJ(x)t(x)andbilateralfilteringtoestimateA(1-t(x)).4.1DarkChannelPriorThedarkchannelpriorusestheassumptionthatwithinmostlocalnon-

skyregionstherearedarkpixels,whichhaveverylowintensityinatleastoneRGBchannel[2].ThedarkchannelforanarbitraryimageJisgivenby

(2)where,JdarkisthedarkchannelofimageJ,JcisacolorchannelofJ,andΩ(x)isthepatchcenteredatx.Thedarkchannelistheoutcomeofthetwominimumoperators:minc€(R,G,B)isperformedoneachpixelandminy€Ω(x)isaminimumfilter.ThedarkchannelpriorobservationisthatifanimageJishaze-free,thentheintensityofJ’sdarkchannelisequaltozero. He,SunandTang[2]improvedatmosphericlightestimationusingthedarkchannelprior.Theypickedthetop0.1%brightestpixelsinthedarkchannelbecausethesepixelsarethemosthazeopaque.ThenpixelswiththehighestintensityintheinputimageIwithinthisgroupofhazeopaquepixelsarechosenastheatmosphericlight. Thelasttwostepsofthedarkchannelpriormethod,beforeproducingthefinalimage,areestimatingthetransmissionandasoftmattingtechnique.Wechosetoomitthesoftmattingmethodduetoisslowcomputationtime,andreplaceitwithaseriesofbilateralfilters.Estimatingtransmission,asaresult,neededtobeestimatedusingthenewvalueforA.4.2GuidedBilateralFiltersandRegularBilateralFiltersAseriesofbilateralfilterswereusedtocompleteouralgorithm.Specifically,athree-filtersystemwasused:medianfilter,bilateralfilterandjointbilateralfilter.Thefollowingalgorithmwasused

Page 5: Fast Single Image Haze Removal Using Dark Channel Prior and Bilateral Filterspages.cs.wisc.edu/~dyer/cs534/hw/hw5/Project-Report… ·  · 2015-12-21ABSTRACT In this paper, we propose

5

from[3]toimplementthisthree-stepprocess.

(1) CalculatethemincomponentsW(x)ofI(x)andestimatetheatmosphericlightA;

(2) YieldinginitialatmosphericmaskV(x)usingmedianfiltering(Eq.5);

(3) FilteringW(x)usingbilateralfiltertogetthereferenceimageR(x)(Eq.6);

(4) FilteringV(x)takingR(x)asthereferenceimagetoreceivecorrectedatmosphericscatteringlightVR(X)(Eq.7);

(5) Calculatethetransmissiont(x)(Eq.3)(sameasdarkchannelpriorstep3);

(6) GettherecoveredimageJ(x).(3)

Severalequationswereusedtocreatethisalgorithm,whicharelistedbelow.Thekeyresultoftakingaseriesofbilateralfiltersistoquicklycomputeanaccurateatmospheremaskthatissmoother.4.2.1MediumFilter:

(4)

ThegoalhereistocalculatetheatmosphericscatteringlightV(x)whereΩisasquarewindowofmedianfilter.FirstfilterW(x)usingamedianfiltertoreceiveB(x).Next,toalleviatetheaffectofcontrastedtextureforthehazeremoval,applythedifferenceofthelocalmeanB(x)andlocalstandarddeviationofW(x).Finally,multiplyC(x)byascalefactorp∈[0,1]tocontrolthestrengthofvisibilityrestoration.4.2.2BilateralFilter:

(5)

ThefilterisappliedtoW(x)tofilteroutsometexturedetails,whiletheedgefeaturescanbewellpreserved.4.2.3Guidedjointfilter:

(6)

kisthenormalizingfactor,therangefilterkernelg(∥R(y)∥)=e−(R(x)−R(y))2/2σr2.Thetermg(R(x)−R(y))andh(V(y)−R(y))worktogethertopreservetheedgeinformationandremovetheuselesstextureinformationoftheimageR(x),whichproducesamoreaccurateatmosphericmaskVR(x).4.2.4EstimatingTransmissionFinally,toestimatethetransmission,theportionofthelightthatisnotscatterandreachesthecamera,XiaoandGan[3]assumedthattheatmosphericlightAisgivenandthetransmissioninalocalpatchωisconstant.Thetransmissiontisestimatedthroughthefollowing:

t(x)=1 −ωV(x)/A (7)

where,ω∈(0,1]isusedtopreservelittlehazeinthedistantsceneandmakestherecoveredimagemorenatural.Moreover,itprovidestheestimationofthetransmission.

Page 6: Fast Single Image Haze Removal Using Dark Channel Prior and Bilateral Filterspages.cs.wisc.edu/~dyer/cs534/hw/hw5/Project-Report… ·  · 2015-12-21ABSTRACT In this paper, we propose

6

Figure2:Fromtoptobottominleftcolumn:inputsmokeimage,minimumcolorchannel,custommedianfilter,andcustombilateralfilter.Fromtoptobottominrightcolumn:guidedjointbilateralfilter,Jdark,transmission,andradiance(imageaftersmokeremovalbyourapproach).

Page 7: Fast Single Image Haze Removal Using Dark Channel Prior and Bilateral Filterspages.cs.wisc.edu/~dyer/cs534/hw/hw5/Project-Report… ·  · 2015-12-21ABSTRACT In this paper, we propose

7

5.METHODANDTHEORYToconductourexperimentsweenhancedadarkchannelpriorMatlabcodebuiltbyMicrosoftResearchgroupinAsia[2].WealsousedMatlabcodefrom[4]toapplytheguidedjointfilterinthebilateralfilteringalgorithm.WedecidedtocontinuerunningthecodeinMatlabbecauseittendstobearobustapplicationforcomputationalphotography.

Weusedequation(1)fromsection4.1toexecutethedehazingmethodasawhole,andalgorithm(3)tocompletethethree-stepbilateralfilteringprocess.Thefollowingbreaksdownthestepswiththeircorrespondingfunctionsthatwerenecessarytodevelophazefreeimages.

Thetestimagesweusedinourexperimentswereimageswetookinthefieldpriortotheproject.Imagesareeitherpollutedwithhaze,steam,orsmoke.Theinputimageusedinthissectionwaspollutedwithsmoke;however,theresultswouldbesimilarforahazyorsteamyimage.WeranourresultsonaMacI54GBRAMusingtheMatlablauncher.5.1BilateralFilteringFunctionsFirst,weappliedaseriesofbilateralfiltersandregularbilateralfilters[3].

5.1.0MinimumColorChannelW(x)wascalculatedusingMatlab’sminimumChannelfunction,anditisdisplayedinFigure2.Thefunctioncalculateswhatisscenecontentandwhathashighintensityi.e.smoke.Theoutputisablackandwhitemappedimagethathighlightsareasoflowintensityinwhiteandhighintensityinblack,asseeninFigure2.

Thedarkareasshowregionsoftheoriginalimagethatwereeitherhighlysaturated,colorful,orhaddarkshadows.Thisisespeciallyprominentforthetree

andtheshadowsonthemountainlandscape.Thelightareasshowwherethemostsmokeisfound,whichislocatedmainlyintheskyregionandinthemountainpeaks.Peaksthatarefartherinthebackgroundaremorepollutedwithsmokecomparedtomountainsintheforegroundbecausethereismoresmokepollutedairthatlightmusttravelthroughbeforereachingthecamera.(Note:thissamecolorconventionofdarkandlightpixelswillbeusedfortheremainingportionofsection5.1)5.1.1CustomMedianFilteringWeusedsteps2-4inequation(4)tocalculateaninitialatmospherescatteringlightmodel,whichisobtainedthroughmedianfiltering.Thisstepofthefilteringprocesshelpswithpreservingtextureofthebackground.InputtothefunctionistheminimumcolorchannelW(x).Theassumptionthatwasmadewasa3x3medianfilterusingwasusedtocalculatethefinalresult.Outputtothefunctionisablackandwhiteimage.

Figure2showstheoutputimageoftheatmosphericvial.Again,thedarkestpartsoftheimageareintheforeground,becausethereislessatmospherebetweentheobjectandthecamera.Theskyhasthemosthaze.Theoutputofthemedianfilterfunctionisdoingbesttopreservetextureinthebackground.Youcanseethisfeatureasthemountainbackgroundhasmaintainedfinedetails,versesthetreeintheforegroundappearsblurry.5.1.2CustomBilateralFilteringNext,weusedequation(5)tofilterW(x)usingabilateralfiltertogetthereferenceimageR(x).TheminimumcolorchannelW(x)isalsotheinputforthisstep.Itisrefinedtogenerateanewatmospheremask,whichpreservestextureinthe

Page 8: Fast Single Image Haze Removal Using Dark Channel Prior and Bilateral Filterspages.cs.wisc.edu/~dyer/cs534/hw/hw5/Project-Report… ·  · 2015-12-21ABSTRACT In this paper, we propose

8

foreground.Assumptionusedwasapredefined3x3patchwithdistanceandintensityfilters.Again,theoutputimagetothefunctionisablackandwhiteimageillustratingtheintensity. Thesameconventionsapplyasfaraswhatisblackandwhiteintheimageastheywereinthemedianfilteringoutputimage.Whatisdifferentforthisfilteringtechniqueisthattheforegroundtextureispreservedinsteadofthebackground.TheimageinFigure2presentsthatboththebackgroundandforegroundareblurry,buttheforegroundhasmoredetailcomparedtothebackground.Thetreeandthewhitelineontheroadaremuchclearerthantheveryblurredmountainbackdrop.5.3.3GuidedJointBilateralFilterFinally,weusedaDeSilva’sMatlabfunctionjbfilter2[4]tosolveforthecorrectatmosphericscatteringlight,VR(X).Inputtothefunctionistheoutputimagesfromboththemedianfilteringfunctionandthebilateralfilteringfunction.Theassumptionsthatwereusedwasthehalf-sizeoftheGaussianbilateralfilterwindowissize6,andthestandarddeviationofthebilateralfilteraregivenbySIGMA=1000.Detailsforbothinputimagesareusedtoproducethefinalimage,whichisanotherblackandwhiteimagedemonstratingintensity.

Blackandwhiteareasaresimilartobothinputfilteringimages.Whatthisfunctiondoesispreservessomedetailofboththebilateralandmedianfilter.ThiscanbeseeninFigure2whereboththebackgroundandforegroundhavevisibletexture.5.2JdarkFunctionTheJdarkequation(2)wasrunafterthefilteringinouralgorithm.Theinputtothefunctionisminimumcolorchannel

W(x).ThemaingoaloftheJdarkfunctionistouseitsoutputforestimatingtheatmosphericlightA.A30x30pixelpatchsizewasusedintheequationforan800x600pixelimage.Theoutputisablackandwhitemappedimagethathighlightsareasofhighintensityinwhiteandlowintensityinblack,asseeninFigure2.

Likeinthebilateralfilteringimages,thedarkareasshowregionsoftheoriginalimagethatwereeitherhighlysaturated,colorful,orhaddarkshadows.Oncemore,thetreeandtheprairielandscapeintheforegroundarethedarkest.Thelightareasarelocatedmainlyintheskyregionandinthemountainpeaks.Theimageisverypixilatedduetothe30x30pixelpatchsizeweused.

5.3AtmosphereEstimationFunctionNext,weestimatetheatmosphericlightusingJdarkasaheuristic.TheuseofJdarkhelpsbecauseitmeasuresthelevelsofwhitenessduetosmokeandwhatareasareactuallywhitei.e.awhitelineontheroadorsnow.Weselectedthetop0.1%-0.2%ofthebrightestpixelsinthedarkchannel.Thiswasdonetoreduceerrorsforwhiteobjects.InputtotheatmosphericfunctionistheoutputimagefromtheJdarkfunctionandtherawinputimage.Theatmosphericfunctionreturns1x3pixelimagewiththeaverageatmosphereateachRGBchannel.5.4TransmissionEstimationFunctionFourth,weestimatedthetransmissionoftheimageusingequation(3).Inputtothetransmissionfunctionisthefollowingparameters:theguidedjointbilateraloutputimageandthehighestvalueofAfromthe1x3averageatmospherepixelimage.AconstantvalueΩ(x)=.95,whichrepresentsthepercentofhazekeptwas

Page 9: Fast Single Image Haze Removal Using Dark Channel Prior and Bilateral Filterspages.cs.wisc.edu/~dyer/cs534/hw/hw5/Project-Report… ·  · 2015-12-21ABSTRACT In this paper, we propose

9

inputintothefunctiontosolveforthetransmission.OutputtothefunctionisatransmissionimageandcanbeseeninFigure2.

Thetransmissionimageisaminimaloperationonachannelbasis,andgivesbetterresultsfortheskyregion.ItisessentiallyaninverseoftheminimumchannelimageW(x).Highintensityisinwhite,whicharepixelswewanttokeep.Therefore,wewanttokeepthetree,baseofthemountain,andtheprairieflatland.Lowintensityisseeninblack,whichareareasofhazeandwhatwewanttoremove.Theskyisthedarkest,whichhasthemosthaze,whichwasdeterminedintheprecedingimages.Wealsowanttoridhazeonthemountainpeaks.Theoutputofthisfunctionisusedintherecoveredradiancestep,whichfinallyremovesthehaze.5.5RadiancewithoutRefinementThelaststepofouralgorithmistoproducetheradianceimage,whichisthefinalresultimageofthedehazingmethod.Inputtothefunctionistheatmosphericestimationoutput,therawinputimage,andfinallyoutputfromthetransmissionfunction.Asyoucanseetheimagesuccessfullyremoveshaze.Theskyshowsthebestdemonstrationofhazeremoval,withbeautifulcolorrestorationandcolorsaturation.Therestoftheimage;however,isoverlysaturatedintheshadowedareasandalreadysaturatedareasoftheoriginalimage.6.EXPERIMENTALRESULTSFigure3showsourhazeremovalresults.Theimagerecoversdepthintheimageandaccuratelyremoveshaze.However,colorisoversaturatedandcolorcontrastishigh.Likewise,thereareartifactsintheskyregion.Ourfocusforthispaperwasonreducingthetimeittooktorunthe

Figure3.Hazeremovalusingasingleimage.Top:inputhazeimage.Bottom:imageafterhazeremovalbyourapproach.experiment.Therefore,wewerehappywiththeresultsbecausetherewassuccessfulhazeremovalwithafastcomputationtime.

Figures1andFigure4alsodemonstratesuccessfulsmokeandsteamremoval.Smokeproducesmoreofagrayhazyappearanceversesthewhiteinfogorhaze.Thisisbecausesmokeispollutedwithdarkashparticles.Eventhoughthereisadifferenceintheairpollutioncolor,ourresultsprovethatthemethodworksforanytypeofairquality. Next,Figure5showsacomparisonofourresultstothoseofthedarkchannelpriormethod[2].Advantagesthatourcodehasoverthedarkchannelprioristhatitcouldrunonlargerimages,andproducedresultsmoreefficiently,seediscussionbelowformoredetail.Also,therearenotasmanyartifactsintheoutputimage.Finally,theblendingbetweentheskyandmountainisimproved.Adisadvantageofourmethod

Page 10: Fast Single Image Haze Removal Using Dark Channel Prior and Bilateral Filterspages.cs.wisc.edu/~dyer/cs534/hw/hw5/Project-Report… ·  · 2015-12-21ABSTRACT In this paper, we propose

10

comparedtothedarkchannelpriormethodisthatourmethoddoesnotremoveasmuchhazeastheothermethod.Second,therearestillsomeartifactsinthehaze-regionthatislikelyduetothelargelevelofhazepresentintheimage.Afinaldisadvantageseenbetweenthetwoimagesisthatthereisthecolorrestorationisoff.Theentireimageappearsdarkerthanitactuallyisandmoresaturated. He,Sun,andTang’s[2]methodhasarelativelyhighcomputationtime.Ittakesroughly10-15minutestoprocessa400x400pixelimageonaMacI54GBRAMusingtheMatlablauncher.Thehighesttimecostisfromthesoft-mattingfunction.Thecomputationaltimeofourmethodissignificantlyshorterwithonly12secondstoprocessalarger800x600pixelimage.Therefore,ourmethodcomputes100timesfasterthantheleadinghazeremovalmethod.

Figure4.Steamremovalusingasingleimage.Top:inputsteamimage.Bottom:imageafterhazeremovalbyourapproach.

Figure5.Hazeremovalusingasingleimage.Top:inputhazeimage.Center:imageafterhazeremovalbydarkchannelpriorapproach.Bottom:imageafterhazeremovalbyourapproach.7.CONCLUSIONInthispaperwehaveproposedasimpleenhancementtothedarkchannelprior,aseriesofbilateralfilters,forsingleimagehazeremoval.Thealgorithmweproposedprimarilyconsidersefficiencywhendehazinghazyorsmokyimages.Thiswasdonebyreplacingthesoftmattingcodewiththemoreeffectivethree-filtersystemcode,resultinginquicklydeterminingtheatmospherevial.Combiningthebilateralfilteringmethodwiththedarkchannelpriormethod,

Page 11: Fast Single Image Haze Removal Using Dark Channel Prior and Bilateral Filterspages.cs.wisc.edu/~dyer/cs534/hw/hw5/Project-Report… ·  · 2015-12-21ABSTRACT In this paper, we propose

11

singleimagehazeremovalbecomesfaster.

Asseenintheexperimentalresults,ourproposedapproachsuccessfullyremoveshazethatis100timesfasterthanthedarkchannelprior.Thetimetorunthesoftmattingmethodisexponentialtothesizeoftheimage.Now,withbilateralfilteringtimeincreaseslinearlyasimagesizeincreases,whichisideal.Ourtestimagesincludeavarietyofweatherconditionsincludinghaze/fog,smoke,andsteam.Priormethodsusedonlyhazyimagesyetclaimedthattheirmethodswouldworkforotheratmosphericconditions,andourresultsactuallyprovesthatthealgorithmworksforthoseatmosphericconditionssuchassmokeandsteam.

Ourwork,however,doeshavesomelimitations.Replacingsoftmattingwithaseriesofbilateralfilteringcauses,insomerespects,failuretorestoretheoriginalsceneradianceandcolor.Thereareundesirableartifactsespeciallyintheskyregion,whichwereproducedfromthebilateralfilteringmethod.Also,colorcontrastandsaturationwerehighincomparisontotheoriginalimage.Infutureworks,abetterestimationoftheatmosphericcontentcouldbemadetoimprovethisquality.Tofocusonperfection,wewouldneedtoreferbacktoincreasingthesoftmattingspeedandimproveouratmosphericparticledetection.

REFERENCES

[1]B.Sigurbjornsson,andR.vanZwol.

FlickrTagRecommendationbasedonCollectiveKnowledge.RefereedTrack:RichMedia,pages327-336,2008.

[2]K.He,J.Sun,X.Tang,TheChinese

UniversityofHongKong,andMicrosoftResearchAsia.Single

ImageHazeRemovalusingDark ChannelPrior.IEEETransaction onPatternAnalysisandMachine

Intelligence,33:2341-2353,2011.

[3]C.XiaoandJ.Gan.Fastimagedehazingusingguidedjointbilateralfilter.VisComput,28:713-721,2012.

[4]V.DeSilva.JointBilateralFilter.MatlabCentral,2010.

[5]R.Fattal.SingleImageDehazing.

InSIGGRAPH,pages1-9,2008.[6]X.Ji,J.Cheng,J.Bai,T.Zhang,and

M.Wang.Real-timeenhancementoftheimageclarityfortrafficvideomonitoringsystemsinhaze.ImageandSignalProcessing(CISP),7thInternationalCongresson,pages11-15,2014.

[7]Z.Wang,B.Zheng,andW.Tian.Newapproachforunderwaterimagedenoisecombininginhomogeneousilluminationanddarkchannelprior.Oceans-SanDiego,pages1-4,2013.

[8]J.Y.ChiangandY.C.Chen.Underwater

ImageEnhancementbyWavelengthCompensationandDehazing.ImageProcessing,IEEETransactionson,21:1756-1769,2012.

[9]T.Kil,S.Lee,andN.Cho.ADehazing AlgorithmusingDarkChannel

PriorandContrastEnhancement.Acoustics,SpeechandSignalProcessing(ICASSP),IEEEInternationalConferenceon,pages2484-2487,2013.

Page 12: Fast Single Image Haze Removal Using Dark Channel Prior and Bilateral Filterspages.cs.wisc.edu/~dyer/cs534/hw/hw5/Project-Report… ·  · 2015-12-21ABSTRACT In this paper, we propose

12

CodeUsedandWorkBreakdownWeusedcodefromHe,Sun,Tang[2]toimplementtheJdarkmethodandatmosphericestimationinordertocompleteJ(x)t(x)intheequation

(1)

WealsousedcodefromDeSilva[4]toreplaceruntheguidedjointbilateralfilteringportionofthebilateralfilteringalgorithmtocompleteA(1-t(x)).Bothsetsofcodewereranasiswithafewchangestotheirparameters.Forexample,JdarkissameexceptexperimentpatchsizetodecidehowdetailedwewantedJdarktobewasadjusted.Atmospherefunctionstayedsame,butweexperimentedwithareaoftesting.Wealsotriedownfunctioncallatm1D,whichproducedsameresultssowasn’teffective.

Theremainingpartsofthecodee.g.medianfiltering,bilateralfiltering,andtransmissionfunctionwerecodedbyourgroupmembers.WeutilizedMatlabfunctionstocompletethemedianfilteringfunction.Thetransmissionfunctionandthebilateralfunctionwerecalculatedusingthefunctionsin[2]and[3]andwerealloriginalcode.Wewroteabout150-200linesofcodeinMATLAB.Othercodethatisincludedinoursubmissioniscodethatwefoundonlineandusesstrictlyforperformancecomparisonstoourcode.Itisincludedtoprovidereferencesonrelativeimageprocessingamountsoftime,andhowwereabletodecreasetotalcomputationtimegreatly.

Webroketheworkbetweentheteammembersevenly.Chad,Jake,andRacheleachwrotepartsofthecode,withmostoftheworkbeingdonetogether.Chadwrotethemedianfilteringfunctionandatmosphericfunction.Jakewrotethe

bilateralfilteringmethodandfoundtheDeSilva[4].RachelwrotethecolortransmissionfunctionandtheJdarkfunction.Simultaneouslywhilecodingwewrotethefinalreport.RachelYuenwrotetheintroduction,motivation,problemstatement,andrelatedworkssections.BothJakeandChadcontributedtowritingthetheory,method,experimentalresults,andconclusion.Rachelalsowrotetheabstract,Chadwrotethemidpointreviewcheck,andeveryonecontributedtothepowerpointpresentation.Finally,Jakecreatedthewebpageforourprojecttobehostedon.Ourgroupwasverycooperativeandproductive,andweenjoyedworkingontheprojectasateam.