fast analog to digital converter · pdf filefast analog to digital converter developments ......

18
LAB : Laboratoire d’Astrophysique de Bordeaux Fast Analog to Digital Converter Developments AAVP workshop 8-10 December 2010, University Of Cambridge Developments Stephane GAUFFRE, Philippe CAÏS, Benjamin Quertier Laboratoire d’Astrophysique de Bordeaux

Upload: ngokhanh

Post on 27-Mar-2018

219 views

Category:

Documents


2 download

TRANSCRIPT

LAB : Laboratoire d’Astrophysique de Bordeaux

Fast Analog to Digital ConverterDevelopments

AAVP workshop 8-10 December 2010, University Of Cambridge

Developments

Stephane GAUFFRE, Philippe CAÏS, Benjamin QuertierLaboratoire d’Astrophysique de Bordeaux

LAB : Laboratoire d’Astrophysique de Bordeaux

Outline

� ADC designed by LAB�Herschel� ALMA

� Ultra fast ADC

AAVP workshop 8-10 December 2010, University Of Cambridge

� Ultra fast ADC�Current Design�Future Design

� AAVP context�Low Power ADC

LAB : Laboratoire d’Astrophysique de Bordeaux

• ADC designed by LAB:

– Flash architecture used for our applications.� Ultra fast ADC (>1GS/s)� Large analog bandwith (≥1 octave)� Low resolution (≤6-bit)

AAVP workshop 8-10 December 2010, University Of Cambridge

LAB : Laboratoire d’Astrophysique de Bordeaux

• ADC designed by LAB: Herschel Space Observatory (HiFi)

– Cooperation between three groups from Bordeaux (LAB, IMS) and Toulouse (CESR), 2002

– 2-bit ADC at 500MS/s designed in 0.8µm BiCMOS Technology from AMS for ESA space program (HSO).

– Flash architecture – Power consumption: ≈280mW

AAVP workshop 8-10 December 2010, University Of Cambridge

LAB : Laboratoire d’Astrophysique de Bordeaux

VH

+ DD

• ADC designed by LAB: ALMA

– Cooperation between two groups from Bordeaux (LAB, IMS), 2005– 3-bit ADC at 4GS/s designed in 0.25µm SiGe BiCMOS Technology from STm– Flash architecture – Power consumption: ≈1.45W

AAVP workshop 8-10 December 2010, University Of Cambridge

4 GHz

0 dBm

Clock

buffer

VH

VL

-

+

-

+

-

+

-

+

-

+

-

+

-

Amplifier

OTA

Bandgap

2-4 GHz

FDL

encoder

D-Latch

D-Latch

D-Latch

D D

DD

DD

DD

DD

DD

DD

Adaptater

amplifier

D2

D1

D0Output

buffer

Output

buffer

Output

buffer

LAB : Laboratoire d’Astrophysique de Bordeaux

• ADC designed by LAB: ALMA

– The 4GS/s 3-bit ADC runs with 3 1:16 DMUX circuits designed by LAB with STm 0.25µm SiGe BiCMOS technology.

– Total power consumption: 1.45+0.7×3=3.55W (power supply at 2.5V) – Wafers specialy manufactured for the ALMA project (>800 sampler chips and

>2000 DMUX chips)– Around 300 Digitizer modules assembled, tested and validated to equip 66

antennas

AAVP workshop 8-10 December 2010, University Of Cambridge

antennas

LAB : Laboratoire d’Astrophysique de Bordeaux

• Ultra fast ADC:

– To design an ultra fast ADC, we must find a finer technology.– We can have access to the 65nm CMOS technology from STm via the broker in

IC, the CMP. ⇒ multi-projects wafer

– Ft=210GHz ⇒ high speed component

AAVP workshop 8-10 December 2010, University Of Cambridge

⇒ high speed component– CMOS tech. & Power supply=1.2V

⇒ low power consumption

LAB : Laboratoire d’Astrophysique de Bordeaux

• Ultra fast ADC: Track And Hold Circuit (65nm CMOS techn.)

– Cooperation between three groups from Bordeaux (LAB, IMS, CENBG), 2010– 8GS/s Track and Hold circuit with an analog bandwith of 7.5GHz (0.5-8GHz)– Designed with 65nm CMOS technology from STm– ENOB≈4.5bit, Input Refllexion<10dB until 13GHz– Chip-On-Board– Power consumption: ≈160mW (power supply at 1.2V)

AAVP workshop 8-10 December 2010, University Of Cambridge

– Power consumption: ≈160mW (power supply at 1.2V)

LAB : Laboratoire d’Astrophysique de Bordeaux

• Ultra fast ADC: 8GS/s 3-bit ADC (65nm CMOS techn.)

– 8GS/s 3-bit flash ADC with an analog bandwith of 8GHz and internal 1:4 DMUX.– Designed with 65nm CMOS technology from STm– Chip-On-Board– Power consumption: ≈500mW (simulated result)⇒ The layout drawing files were sent to STm foundry last week.

AAVP workshop 8-10 December 2010, University Of Cambridge

LAB : Laboratoire d’Astrophysique de Bordeaux

• Ultra fast ADC: 8GS/s 3-bit ADC (65nm CMOS techn.)

– The outputs speed rate is too high (2GS/s) to capture the synchronous digital data with standard FPGA ⇒ External DMUX circuits are needed to use this ultra fast ADC⇒ Total power consumption increases (>3W)

AAVP workshop 8-10 December 2010, University Of Cambridge

Internal

DMUX DMUX

LAB : Laboratoire d’Astrophysique de Bordeaux

• Ultra fast ADC: Future design in 65nm CMOS Technology

– In 2011, a new 8GS/s Track and Hold circuit will be designed to improve the linearity in order to obtain an ENOB superior to 6 bits.

– This new Track and Hold circuit will be:� designed with 65nm CMOS technology from STm. � used in a new ultra fast ADC.

• A 8GS/s 6-bit flash ADC (2012): prototype version in which will beimplemented

AAVP workshop 8-10 December 2010, University Of Cambridge

• A 8GS/s 6-bit flash ADC (2012): prototype version in which will beimplemented� Calibration circuit to compensate the comparator offsets deviation

due to the small size of the NMOS transistor� Add scrambler circuit to mix a pseudo random pattern to digital

data in order to capture ADC outputs using high speed receivers of standard FPGA (6.5GS/s) ⇒ Internal 1:4 DMUX will be replaced by 1:2 DMUX⇒ No need of external DMUX

� Chip-On-Board• A 8GS/s 6-bit flash ADC (2013): Final version

� Packaged version (fcBGA)

LAB : Laboratoire d’Astrophysique de Bordeaux

• Ultra fast ADC: 8GS/s 6-bit ADC (65nm CMOS techn.)

– Rough estimation of power consumption if 6-bit designed with the same flash architecture as 3-bit ADC (with scrambler circuit and internal1:2 DMUX circuits)

1250

1500

1750

AAVP workshop 8-10 December 2010, University Of Cambridge

0

250

500

750

1000

1250

2 3 4 5 6 7

Po

wer

in m

W

Resolution (Number of bit)

LAB : Laboratoire d’Astrophysique de Bordeaux

• AAVP Context

– ADC technical parameter requirements:� Resolution : 4-6bit� Sample rate: ≥3GS/s� Bandwith:

• AA-lo: 70MHz to 450MHz• AA-mid: 400MHz to 1.4GHz

AAVP workshop 8-10 December 2010, University Of Cambridge

• AA-mid: 400MHz to 1.4GHz� Power: <100mW

⇒ Our design is not optimized for the AAVP requirements� Higher sampling rate: 8GS/s� Ultra large bandwith: 8GHz

LAB : Laboratoire d’Astrophysique de Bordeaux

• AAVP Context: what could be done

– Design an ADC for AAVP program� Which ADC architecture is suitable for AAVP program?

• Sampling rate: The flash achitecture is the fastest• Low power ⇒ state-of-the-art in 65nm CMOS technology

� « A 6-bit 5GS/s Nyquist A/D converter in 65nm CMOS technology », Choi, June 2008: flash architecture, analog BW: 2.5GHz, power consumption: 320mW

AAVP workshop 8-10 December 2010, University Of Cambridge

technology », Choi, June 2008: flash architecture, analog BW: 2.5GHz, power consumption: 320mW

• The design of a low power 3GS/s 6-bit flash ADC is possible with the 65nm CMOS technology.

LAB : Laboratoire d’Astrophysique de Bordeaux

• AAVP Context: what could be done

– Design an ADC for AAVP program� Which ADC architecture is suitable for AAVP program?

• Folding architecture?

AAVP workshop 8-10 December 2010, University Of Cambridge

LAB : Laboratoire d’Astrophysique de Bordeaux

• AAVP Context: what could be done

– Design an ADC for AAVP program� Folding Architecture Number of comparator:

� Full Flash ADC: 2N-1� Folding ADC: ≈(2N-1)/2

� 3-bit flash ADC

AAVP workshop 8-10 December 2010, University Of Cambridge

� 3-bit flash ADC⇒ 7 comparators

� 3-bit folding ADC⇒ 3 comparators

� The folding architecture seems to be the most relevant for AAVP

LAB : Laboratoire d’Astrophysique de Bordeaux

• AAVP Context: what could be done

– Design an ADC for AAVP program� Which ADC architecture is suitable for AAVP program?

• If the flash architecture is replaced by folding architecture, the power consumption of ADC can be reduced by about 30%

• Folding ⇒ state-of-the-art in 45nm CMOS technology� « Design of a 12.5GS/s 5-bit folding A/D converter », Surano, 2009:

analog BW: 6GHz, power consumption: 53mW (simulated result)

AAVP workshop 8-10 December 2010, University Of Cambridge

« Design of a 12.5GS/s 5-bit folding A/D converter », Surano, 2009: analog BW: 6GHz, power consumption: 53mW (simulated result)

� The design of a low power 3GS/s 6-bit ADC using a flash folding architecture is possible with 65nm CMOS technology

� LAB has access to the 65nm CMOS technology from STm

The design of an ADC for AAVP could be included in our roadmapFunding:

� For design: 200k€ is needed to design such ADC: 3 FTE + 2 foundryruns (prototype and final version)

� For production: wafer cost: >250k€ (to be confirmed), depends on the number of ADC needed

LAB : Laboratoire d’Astrophysique de Bordeaux

ThankThank youyou for for youryour

AAVP workshop 8-10 December 2010, University Of Cambridge

youryourATTENTIONATTENTION