failure analysis .pdf

80
I. BASIC MATERIAL

Upload: r4ditya92

Post on 17-Jul-2016

172 views

Category:

Documents


24 download

TRANSCRIPT

Page 1: Failure Analysis .pdf

I. BASIC MATERIAL

Page 2: Failure Analysis .pdf

Structure logam

Page 3: Failure Analysis .pdf

Cast iron(besi tuang) terdiri dari 2% - 4% carbon grafit diantara grainnya, hal ini

menyebabkan cast iron punya sifat brittle, machinable, vibration dumping, self

lubricated

Steel (baja) terdiri dari 0.02% - 2 % carbon yang tercampur dengan grain, tidak dalam bentuk grafit,

diklasifikasikan berdasarkan banyaknya kandungan carbon,

bila unsur lain ditambahkan seperti nickel, chrom, copper dll

maka dikatakan steel alloy,sehingga sifatnya berbeda

dengan carbon steel.

Page 4: Failure Analysis .pdf

Bagaimana Material logam diproses ?

Page 5: Failure Analysis .pdf

Heat treatment Quenching & Tempering

Page 6: Failure Analysis .pdf

Alat pengetesan material logam

Hardness Checker

Page 7: Failure Analysis .pdf

Impact tester

Page 8: Failure Analysis .pdf

Strength tester

Page 9: Failure Analysis .pdf

ELASTIC LIMIT AND YIELD POINT

Page 10: Failure Analysis .pdf

GRAFIK KEKUATAN TARIK BAHAN

Elastic region : Daerah tegangan yang tidak meninggalkan deformasi apabila

bebannya dihilangkan.

Plastic region : Daerah apabila diberikan suatu tegangan melampaui batas elastik,

maka perpanjangan permanen terjadi pada suatu material.

Page 11: Failure Analysis .pdf

Mechanical Failures1. Definition

Setiap perubahan ukuran, bentuk, sifat material dari suatu struktur atau komponen mesin yang mengakibatkan tidak berfungsinya struktur/komponen tersebut seperti yang diharapkan.

Useful life time

Service Life

Failure Rate Effect of aggressive

environtment

Early Failure Period

Constant failure rate period Wear out failure rate

period

Bath-tub curve

Page 12: Failure Analysis .pdf

Sebab terjadinya kerusakanKerusakan karena pengaruh maintenance

Kerusakan tanpa pengaruh maintenance

Operator error.

Improper setup.

Mechanical design.

Sabotage.

Poor training.

Material defect.

Improper application.

Poor environment.

Etc.

Poor lubrication practices.

Faulty repairs.

Slow response time.

Lack of training.

Ineffective PM.

Inadequate routine maintenance.

Etc.

Page 13: Failure Analysis .pdf

Beberapa fakta berkaitan dengan pelumasan

Sebagian besar peralatan/komponen mekanik memiliki bagian yang berkontak dan bergerak relatif antara satu dengan yang lainnya.

60% dari semua kegagalan mekanik secara langsung berkaitan dengan ketidaksempurnaan sistem pelumasan.

Pelumasan merupakan satu bagian sangat penting dalam aktivitas maintenance di dunia industri.

Dunia industri telah mengklaim bahwa penggunaan pelumasan yang tepat dapat memperpanjang umur efektif komponen mekanik sampai dengan 3 (tiga) kali.

Page 14: Failure Analysis .pdf

Klasifikasi failure

Failure

Forced rupture - - - - - - - Static, Impulsive rupture

Rotational bending fatigue rupture

Ordinary wear ... Including normal wear and

Scratching ...Including abrasion

Scoring ...General name for seizure,

Rupture

Surface fatigue

Surfacedeterioration

Wear

Fatigue ruptureUnilateral bending fatigue ruptureBilateral bending fatigue rupture

Torsional fatigue ruptureTensile fatigue ruptureCompressive fatigue rupture

moderate wear

and scratching

galling and scuffing

Plastic yielding

Corrosive wearOthers

Including roll yielding, scale yielding, andripple yielding

Page 15: Failure Analysis .pdf

FAILURE ANALYSIS

Deskripsi

Failure analysis adalah proses investigasi dan analisa

terhadap kerusakan suatu part atau komponen

berdasar fakta dan data yang didapatkan pada saat troubleshooting maupun saat investigasi.

Page 16: Failure Analysis .pdf

Failure Prediction & Analysis− Failure Prediction

1. Perkirakan mode kerusakan yang paling mungkin terjadi untuk dianalisis.

2. Tentukan jenis dari sifat material yang berhubungan dengan mode kerusakan tersebut.

3. Tentukan pembebanan yang terjadi pada bagian kritis tempat terjadinya kerusakan.

4. Tetapkan faktor keamanan rancangan, sesuai standarnya.5. Analisalah proses kejadian yang menyebabkan mode

kerusakan itu terjadi.6. Tentukan faktor keamanan real.

Page 17: Failure Analysis .pdf

− Failure Analysis

Informasi yang harus ada : design, manufacturing, operational sebelum dan saat terjadinya failureVisual InspectionNon-Destructive ExaminationDestructive tests: identifikasi sifat material, komposisi kimia,struktur mikro dll.Kesimpulan

Page 18: Failure Analysis .pdf

− Data yang diperlukan untuk analisa kerusakan :Identifikasi mesin/komponenOperasi : Kondisi medan, metode operasi, kecepatan maksimum dan kecepatan saat failureBeban: jenis (gaya, torsi, bending), lokasi dan arah, sifat (konstan, bervariasi)‏Temperatur : Temperatur sebelum kerusakanPengaruh korosi: lingkunganMechanical connectionsUmur: estimasi, dan aktualMaintenance: sejarah preventive/corrective maintenancePelumas: nama, grade

Training on Bearing and Lubrication 18

Page 19: Failure Analysis .pdf

− Kondisi Pelumas :Warna, misal: gelap oksidasi, putih/kuning air, lembab udara

Level kotoran, diketahui dari filter

Jenis partikel solid yang terkandung

Viskositas

Analisis pelumas

− Visual InspectionKondisi umum komponen

Kondisi spesifik, lokasi failure

Klasifikasi failure mode dan mekanisme

Dimensi fisik

Lokasi terjadi perubahan warna

Kualitas material

Bukti terjadi ‘excessive temperature’

Page 20: Failure Analysis .pdf

CRITICAL POINT TO ANALIZE FAILURE

1. Memiliki kronologi dan evident data kerusakan

2. Memiliki evident atas komponen yang rusak

3. Tahu macam-macam penyebab kerusakan

4. Tahu jenis-jenis kerusakan.

5. Mampu membuat failure analysis report

Page 21: Failure Analysis .pdf

Kronologi dan evident data kerusakan

• Data customer

• Data unit (tipe, S/N, hm unit, lifetime komponen ?)

• Historical unit before failure :

- history maintenance dan repair (when, what they do/use)

- History fault & performance data (VHMS, payload, oil sample)

• Kondisi operasi ( topographi jalan, muatan, cuaca )

Page 22: Failure Analysis .pdf

Memiliki evident atas komponen yang rusak

• Fisik/foto part atau komponen yang rusak

• Fisik/foto atas barang (yang diduga penyebab/akibat) terkait dengan kerusakan

• Evident harus terlindung dari kerusakan lebih lanjut yang mempersulit analisa :

- Lubang-lubang harus ditutup rapat

- Disimpan dengan container yang tepat.

• Foto titik kerusakan harus jelas terlihat, cukup ukuran besar foto dan pencahayaan

Page 23: Failure Analysis .pdf

Rupture / Fracture

Page 24: Failure Analysis .pdf

Prosedur analisa fracture

A. Penyebab kerusakan (patah)

Patah dapat disebabkan gaya luar secara spontan. Dalam banyak kasus, patah disebabkan oleh kelelahan pada area dimana stress lebih besar dari batas kelelahan dan terjadi dalam waktu yang lama.

Pada sebuah shaft patah akibat fatigue banyak terjadi pada bagian takikan (notch), seperti : groove, spline, dll.

A. Kondisi saat patah terjadi

Untuk mata yang terlatih bentuk fracture akan menceritakan sejarah terjadinya patah tersebut. Pengamatan yang hati-hati terhadap bentuk patahan akan menjelaskan banyak faktor berguna, seperti patah ini karena fatigue rupture atau forced rupture, titik mula patah, arah main stress, besar stress, dll.

A. Mengamankan barang yang patah

Adalah sangat penting mengamankan barang yang rusak/patah. Juga penting mengambil foto atau sketsa kondisi yang terkait dengan komponen tersebut, sehingga dapat diteliti.

Part yang rusak sangat penting sebagai bukti yang dapat memberikan informasi berguna bagi modifikasi desain kedepannya atau quality improvement. Jangan dibuang setelah diganti dengan yang baru.

Page 25: Failure Analysis .pdf

Prosedur analisa fracture

D. Investigasi part yang rusak

Ingat bahwa bentuk patahan/kerusakan bercerita banyak. Pertama, deformasi dari bentuk aslinya harus diteliti. Kedua jika patah menjadi beberapa bagian, apakah deformasi terjadi atau tidak dapat diteliti dengan menyesuaikan permukaan yang patah.

A. Prosedure analisa fracture

1. Lakukan pengetesan (color check, magnaflux) untuk mengecek adakah retakan yang lain.

2. Bersihkan patahan dan daerah sekitar patahan dengan larutan triclene atau aceton. Hati-hati jangan sampai membuat kerusakan tambahan.

3. Observasi fractue dan periksa :

a. Apakah patahan merupakan fatigue fracture atau forced fracture

b. Nucleus of fracture

c. Arah main stress

d. Sudut patahan

Page 26: Failure Analysis .pdf

Prosedur analisa fracture

•. Apakah sekitar patahan terjadi deformasi

a.. Apakah ada korosi, denting(dekok), seizure, dsb disekitar patahan

b.. Gabungkan hasil pengecekan dengan magnaflux dengan hasil pengecekan patahan secara visual.

c.. Gunakan kaca pembesar untuk observasi yang lebih mendetail.

d.. Jika crack tidak terlihat karena part belum patah, potong disekeliling retakan sehingga seluruh retakan dapat terlihat.

e.. Periksa part sejenis dari tanda-tanda kerusakan yang sama.

Page 27: Failure Analysis .pdf

Rupture ( putus, patah ) :

• Forced Rupture, disebabkan oleh aplikasi beban 1 arah secara tiba-tiba.

• Fatigue Rupture ( 70% penyebab kerusakan pada metal part ), adalah ruptue dimana crack membesar secara perlahan akibat aplikasi beban berulang-ulang dalam waktu yang lama.

Page 28: Failure Analysis .pdf

Observation of fracture“Penyebab dan sejarah terjadinya rupture ditunjukkan pada permukaan yang patah.

Tampilan permukaan yang patah (fracture) ditentukan oleh :

1. Bidang geser dan deformasi plastis, menceritakan apakah rupture tersebut disebabkan oleh gaya yang tiba-tiba atau kelelahan bahan.

• Bentuk garis ombak (beach mark), menunjukkan bentuk dan besarnya tegangan (stress), juga kekerasan material.

• Posisi, jumlah dan bentuk stress nuclei beach mark dan lokasi dari final zone, menentukan tipe stress, arah stress, rupture starting point dan besarnya stress raiser.

Stress raiser adalah nama umum untuk menyebut faktor penyebab konsentrasi stress, contoh : groove, pitting di fillet radius, permukaan yang kurang dihaluskan.

Page 29: Failure Analysis .pdf

Fatigue fractureForced fracture

• Fatigue rupture terdiri dari permukaan fatigue yang halus.

• Jika repetitif stress diaplikasikan dengan interval, beach mark akan terbentuk.

• Seluruh permukaan kasar

Page 30: Failure Analysis .pdf

Amati patahan shaft ini

Page 31: Failure Analysis .pdf

Amati patahan shaft ini

Page 32: Failure Analysis .pdf

Amati patahan shaft ini

Page 33: Failure Analysis .pdf

Amati patahan shaft ini

Page 34: Failure Analysis .pdf

Proses terjadinya fatigue rupture(Nucleus)

Stress berulang-ulang akibat beban pada satu tempat menyebabkan dislokasi didalam material

Stress berulang-ulang akibat beban pada satu tempat menyebabkan dislokasi didalam material yang menciptakan microscopic crack

(Fatigue cracking)

Microscopic crack membesar tegak lurus terhadap tegangan tarik (tensile stress) maksimum, Crack ini seringkali dipercepat oleh tegangan geser (shearing stress).

Jika stress berulang ini kecil, sebuah crack yang tetap akan terbentuk, dan gerakan tumbukan dan gesekan yang terjadi pada crack ini yang menimbulkan beach mark

(Final rupture)Ketika fatigue cracking terus berlangsung, beach mark menjadi semakin kasar, dan forced rupture terjadi ketika luas penampang yang tersisa tidak mampu menahan beban.

Page 35: Failure Analysis .pdf

Characteristic of fatigue fracture

1. Perbedaan antara fatigue fracture dan forced fracture

2. Posisi nucleus

3. Arah main stress (arah bergeraknya crack)

Kebenaran penilaian tentang fracture dapat dicapai jika kita memahami tiga item dibawah ini :

Nucleus (titik awal)1. Titik dimana beach mark mengembang (convergen)

2. Posisinya bersebarangan dengan final rupture zone

3. Titik dimana rachet mark mengembang

Page 36: Failure Analysis .pdf

Rachet markInitial crack yang terjadi di beberapa titik, lalu menyatu dan terbentuklah beach mark

Page 37: Failure Analysis .pdf

Arah maximum main stress (arah bergeraknya crack).

Ini mengacu pada garis yang menghubungkan nucleus dan titik yang membagi dua beach mark , memanjang menjadi garis yang membagi dua final rupture zone

Page 38: Failure Analysis .pdf

Kaitan antara besarnya stress dengan fractureBesarnya stress yang diaplikasikan pada metal dapat dilihat pada rasio luasan fatigue zone dibanding final rupture zone dan dari kerapatan beach mark.

Perlu dicatat bahwa fatigue zone dan final zone tidak mudah dilihat pada material yang getas (fragile). Contoh steel bearing yang keras dan getas, akan memperlihatkan permukaan fracture yang halus, sementara cast iron yang lunak dan getas akan memperlihatkan permukaan fracture yang kasar

Page 39: Failure Analysis .pdf

Kaitan antara stress raiser dan fracture

1. Posisi nucleus

Dalam gambar posisi nucleus jauh dari arah main stress (garis putus-putus). Fracture sering kali mendekati main stress saat membesar. Perbedaan antara arah main stress pada fracture dan arah main stress pada fungsi menunjukkan distribusi stress telah berubah karena adanya stress raiser.

2. Jumlah nuclei

Jika tidak ada stress raiser, fatigue crack terjadi pada satu titik, dimana stress terkonsentrasi. Dalam kasus ini hanya ada satu nucleus terbentuk. Jika ada beberapa konsenrasi stress, cracking dapat terjadi pada tempat-tempat konsentrasi stress tersebut. Ini menghasilkan lebih dari satu nucleus.

Page 40: Failure Analysis .pdf
Page 41: Failure Analysis .pdf

Patah shaft akibat twisting

Twisting fracture pada shaft terjadi tegak lurus sumbu ketika material terdiri dari low carbon steel atau soft steel. Pada bagian yang diperkeras atau baja getas, maka patahan akan membentuk spiral 45 derajat terhadap sumbu. Ketika shaft memiliki longitudinan groove, fracture akan memperlihatkan pola radial yang mengembang.

Page 42: Failure Analysis .pdf

Patah shaft akibat bending

Shaft memiliki bermacam-macam bentuk, contoh grooved shaft, stepped shaft ,dll. Bentuk patahan tergantung bentuk shaft dan tipe stress yang mengenainya. Gambar dibawah adalah model bending facture pada shaft bentuk bundar :

Untuk bending unilateral dan bilateral, crack dimulai dari titik A dimana stress maksimum dan mengembang disekeliling titik A berbentuk melingkar. Crack menjadi hampir linier pada garis tengah shaft. Jika keceptan crack sama pada setiap arah polanya akan melingkar simetris dimulai dari titik A. Daerah yang diarsir memperlihatkan daerah patah spontan.

Page 43: Failure Analysis .pdf

Rotating Bending Fatigue

Shaft yang berputar dengan beban yang bisa mengakibatkan bending, maka patern yang akan terjadi mempunyai pola yang berbeda sesuai dengan besarnya beban

Page 44: Failure Analysis .pdf

Surface deterioration ( kerusakan permukaan )

Page 45: Failure Analysis .pdf

Surface Failures− Kontur permukaan

Surface roughness, tergantung dari proses manufacturingProfil permukaan

Gerinda Freiss

Page 46: Failure Analysis .pdf

− Permukaan yang bersinggungan

Kekasaran permukaan dapat diukur, tetapi luas permukaan kontak tidak mudah untuk diukur.

Page 47: Failure Analysis .pdf

Surface deterioration ( kerusakan permukaan )

• Wear ( berkurangnya lapisan material akibat kontak permukaan )

• Surface fatigue ( terkelupasnya permukaan disebabkan oleh stress yang melebihi batas lelah )

• Plastic yielding ( deformasi akibat beban yang besar)

Page 48: Failure Analysis .pdf

Surface Deterioration

A. Wear (Keausan)

Wear adalah pengurangan lapisan material karena gesekan konstan dua permukaan yang saling kontak.

1. Normal wear

adalah keausan yang perlahan dan halus dalam rentang waktu yang lama.

Penomena : Permukaan yang mengkilap menunjukkan keausan normal

Page 49: Failure Analysis .pdf

2. ScratchingKetika partikel yang keras bergerak dibawah tekanan pada permukaan metal, groove kecil atau garis-garis akan terbentuk pada permukaan metal tersebut. Partikel ini bisa berupa debu, gram, metal chips, dll.

Penomena : Terbentuk garis-garis paralel dengan arah sliding muka roda gigi.

Penyebab : Masuknya partikel abrasive, seperti debu, pasir , dll

Pencegahan : 1. mencegah masuknya partikel abrasive

2. Oli yang bersih

Page 50: Failure Analysis .pdf

3. ScoringDiklasifikasikan sebagai adhesive wear, dimana molekul kedua permukaan saling melekat, disebabkan oleh metal to metal contact. Sering disebabkan oleh kurang/tidak adanya oil film.

Penyebab : 1. Tekanan berlebih pada muka roda gigi

2. Sliding speed berlebih

3. Oli yang tidak sesuai

5. Temperatur berlebih pada muka roda gigi

Page 51: Failure Analysis .pdf

4. Corrosive wear

adalah kerusakan permukaan diakibatkan reaksi kimia seperti asam, air atau kontaminan dalam oli.

Page 52: Failure Analysis .pdf

WEAR (KEAUSAN)

Berbagai jenis keausan :

Keausan adhesif (adhesive wear or sliding wear)‏Keausan abrasi (abrasive wear)‏Keausan lelah (fatigue wear) Keausan korosif (corrosive wear) ‏Keausan fretting (fretting wear) ‏Keausan erosi (erosive wear)‏

52

Page 53: Failure Analysis .pdf

Keausan adhesifKeausan adhesif terjadi jika dua logam saling berkontak dan bergerak relatif satu sama lain serta mengalami pembebanan. Keausan abrasiKeausan abrasi terjadi jika permukaan logam berkontak dengan partikel abrasif yang kasar dan keras.Keausan lelahKeausan fatigue terjadi jika dua permukaan logam yang berkontak tersebut menerima beban berulang-ulang.Keausan korosifKeausan terjadi akibat adanya interaksi dinamik antara kondisi lingkungan dan material permukaan yang berkontak.Keausan frettingKeuasan ini terjadi jika komponen mengalami getaran yang kecil tapi dalam frekuensi yang tinggi. Keausan diinisiasi oleh proses adhesi dan diperbesar oleh adanya getaran.Keausan erosiKeausan erosi terjadi jika permukaan logam dikenai partikel keras dan kasar dengan kecepatan tertentu.

Page 54: Failure Analysis .pdf

Mekanisme Keausan Adhesif

Proses keausan adhesif diawali oleh adanya “interfacial adhesive junction”yang terjadi jika material padat berkontak pada skala atomik (Keller, 1963).

Pada beban normal, tekanan lokal yang terjadi pada puncak-puncak permukaan menjadi sangat besar. Dalam banyak kasus dapat melewati batas yielding sehingga menyebabkan puncak-puncak mengalami deformasi plastis sampai luas permukaan kontak yang riil cukup untuk menerima beban yang diberikan (tidak melampaui batas yield).

Kasus tidak adanya lapisan pelumas, menyebabkan permukaan menempel (adhere) satu dengan yang lainnya dan membentuk junction.

Adanya gerakan sliding menyebabkan junction tergeser dan terbentuk junction yang baru.

Rantai proses tersebut menyebabkan terjadi keausan di antara permukaan yang berkontak.

Page 55: Failure Analysis .pdf
Page 56: Failure Analysis .pdf
Page 57: Failure Analysis .pdf

Skematik pembentukan partikel aus sebagai akibat proses keausan adhesif

Page 58: Failure Analysis .pdf

Mekanisme Keausan Abrasi

Keausan abrasif dapat dideskripsikan sebagai kerusakan (damage) pada permukaan benda sebagai akibat material yang lebih keras.

Klasifikasi keausan abrasi:• Two-body abrasion• Three-body abrasion

Pada kasus two-body abrasion, keausan terjadi jika permukaan logam kontak dan bergerak relatif terhadap suatu permukaan yang lebih keras.Contoh: proses gerinda, proses pemesinan, dsb.

Pada kasus three-body abrasion, keausan terjadi akibat adanya partikel abrasif di antara 2 permukaan yang saling kontak.

Page 59: Failure Analysis .pdf
Page 60: Failure Analysis .pdf
Page 61: Failure Analysis .pdf

Mekanisme Keausan Fatigue

Dalam praktis, pada umumnya semua komponen mesin menerima beban yang bervariasi secara periodik.

Permukaan poros berputar akan menerima beban lentur bolak-balik.

Race dari rolling contact bearing juga menerima beban tekanan hertzian secara bolak-balik.

Semua beban berulang tersebut, baik pada kasus rolling contact maupun pada sliding contact, dapat menyebabkan terjadinya keausan dan kegagalan fatigue.

Page 62: Failure Analysis .pdf
Page 63: Failure Analysis .pdf
Page 64: Failure Analysis .pdf
Page 65: Failure Analysis .pdf

Mekanisme Keausan Korosif

Dalam mekanisme keausan adhesif, abrasif dan fatigue, dapat dijelaskan sebagai interaksi tegangan dan karaktersitik deformasi dari permukaan kontak.Dalam keasuan korosif, interaksi dinamik antara kondisi lingkungan dan material permukaan yang berkontak memegang peranan penting (Fischer, 1988; Quin, 1978, 1983).Interakasi tersebut berlangsung dalam 2 tahap sbb.

o Tahap pertama, permukaan yang berkontak bereaksi terhadap kondisi lingkungan dan produk dari reaksi terbentuk di antara permukaan yang berkontak.

o Tahap kedua, erosi atau keausan dari produk terjadi sebagai akibat formasi retak dan/atau abrasi dalam interaksi kontak darimaterial.

Proses di atas menyebabkan reaktivitas yang meningkat dari puncak-puncak sebagai akibat terjadinyan kenaikan temperatur dan perubahan sifat mekanik puncak-puncak.

Page 66: Failure Analysis .pdf
Page 67: Failure Analysis .pdf

Mekanisme Keausan Fretting

Jenis keausan ini terjadi, jika komponen yang berkontak menerimagetaran kecil pada frekuensi tinggi.Keausan ini biasanya dimulai oleh proses adhesi diperkuat oleh efek korosi dan mengakibatkan efek abrasi (Sproles and Duquette, 1978dan Waterhouse, 1984).Beberapa komponen yang mudah terkena keausan fretting adalah pada sambungan shrink-fit, splines, dan sambungan baut.Menurut beberapa hasil penelitian diperoleh bahwa kondisi lingkungan memegang peranan penting pada kasus keausan fretting.Sebagai contoh jumlah keausan fretting pada lingkungan udara yang lembab jauh lebih signifikan dibandingkan dengan pada lingkunganudara kering.

Page 68: Failure Analysis .pdf
Page 69: Failure Analysis .pdf

Mekanisme keausan Erosi

Keausan erosi adalah suatu fenomena yang mana suatu permukaan mendapat hantaman partikel yang keras, sehingga ada bagian permukaan yang terkelupas.

Faktor utama penyebab keausan erosi adalah adanya partikel keras yang mempunyai kecepatan cukup tinggi saat mengenai permukaan.

Model terjadinya keausan erosi

Page 70: Failure Analysis .pdf

Representasi skematik dari sifat-sifat erosi pada material ductile dan brittle dan perbandingannya dengan material cast iron dan elastomer sebagai fungsi dari besarnya sudut impact diberikan pada pada gambar berikut.

Laju aus erosi sebagai fungsi dari sudut impact

Page 71: Failure Analysis .pdf

Ada 2 kategori, yaitu:

Keausan erosi oleh padatan dan fluida

Keausan erosi akibat kavitasi

Pada kasus erosi oleh padatan dan fluida, erosi terjadi karena adanya benturan material padat atau fluida atau gas pada permukaan benda pada lingkungan erosif.

Erosi kavitasi terjadi ketika padat dan fluida dalam gerakan relatif dan gelembung (bubble) yang terbentuk menjadi tidak stabil sehingga pecah dan membentur permukaan dan mengakibatkan terjadinya erosi.Keausan/kerusakan akibat kavitasi pada umumnya terjadi pada peralatan “fluid-handling” seperti misalnya pompa, turbin, propeler kapal, dsb.

Page 72: Failure Analysis .pdf
Page 73: Failure Analysis .pdf

Skematik erosi kavitas akibat benturan gelumbung fluida

Page 74: Failure Analysis .pdf
Page 75: Failure Analysis .pdf

Faktor-faktor yang mempengaruhi keausan erosi:Sudut datangnya partikel.Rotasi partikel sewaktu mengenai permukaan.Kecepatan partikel sewaktu mengenai permukaan.Ukuran partikel.Sifat permukaan.Bentuk permukaan.Kekuatan permukaan.Bentuk dan kekuatan partikel.Konsentrasi partikel dalam aliran.Sifat gas pembawa partikel dan temperatur.

Page 76: Failure Analysis .pdf

Wear mode Material property imparting wear resistanceAdhesive Low solubility in mating material.

Resistance to thermal softening at interface temperature during slidingLow surface energy

Abrasive Higher surface hardness than the abrasive mediumLow work hardening coefficient

Fatigue Resistance to subsurface deformation and crack nucleation and growth rate, i.e. high hardness and toughness, high flow strength

Corrosive Resistance to corrosive medium when unpassivated.

Fretting Corrosion resistance to environmentCapable of forming soft corrosion productTotal immiscibility with mating surfaceHigh abrasion resistance

Solid-particle erosive

High hardness for low-angle impingementHigh toughness for high-angle impingementHeat treatment has no influence on erosion resistance

Mengtasi keausan dengan pertimbangan materialnya

Page 77: Failure Analysis .pdf

1. Reduction of Adhesive WearBeberapa tindakan pencegahan yang dapat dilakukan untuk mengurangi keausan adhesif adalah:

Pasangan sliding metal harus dipilih yang memiliki tendensi minimum untuk membentuk “solid solution”. Hal ini dapat diperoleh dengan memilih pasangan material dengan struktur kristal dan sifat kimia yang berbeda (Rabinowicz, 1971, 1980, 1984).

Suplai pelumas diusahakan setepat-tepatnya. Kekurangan pelumas dapat menginisiasi terjadinya keausan adhesif.

Mengingat pentingnya peranan mikrostruktur dalam meningkatkan ketahanan aus adhesif, maka pemilihan komposisi, jumlah dan morfologi paduan perlu diperhatikan dalam menentukan pasangan material yang berkontak.

Keausan adhesif pada umumnya dapat dicegah dengan memberikan pelapisan dengan material (metal atau non-metal) yang tak sejenis pada permukaan yang berkontak. Lapisan ini dapat berupa soft deposit (seperti Pb atau Ag) atau hard coating (seperti paduan atau keramik).

Page 78: Failure Analysis .pdf

2. Reduction of Abrasive Wear

Beberapa tindakan pencegahan yang dapat dilakukan untuk mengurangi keausan abrasif adalah:

Mengusahakan terjadinya pelumasan hidrodinamis antara 2 permukaan yang berkontak.

Memilih pasangan material yang yang memiliki hardness yang tinggi. Untuk material homogen (seperti logam, plastik, keramik) ketahanan aus abrasif berbanding lurus dengan kekerasan material (Khrusnov, 1957).

Selain kekerasan, ketangguhan (toughness) juga memegang peranan penting dalam ketahanan aus abrasif (Moore, 1974, 1981). Kekerasan dan ketangguhan yang tinggi secara bersamaan dapat diperoleh dengan memberikan hard coating pada material yang lebih lunak atau dengan memberikan perlakukan panas yang tepat.

Page 79: Failure Analysis .pdf

3. Reduction of Fatigue Wear

Beberapa tindakan pencegahan yang dapat dilakukan untuk mengurangi keausan fatigue adalah:

Keausan material akibat fatigue dapat diminimumkan dengan mencegah terbentuknya microcrack pada material.

Peningkatann kekerasan permukaan dapat mencegah deformasi sub-surface dan memperlambat crack nucleation rate.Peningkatan ketangguhan material dapat menurunkan crack growth rate.

Pada umumnya setiap manipulasi mikrostruktur untuk meningkatkan kekerasan selalu diikuti dengan penurunan ketangguhan. Strateginya adalah bagaimana mendapatkan kekuatan dan kekerasan material yang tinggi tanpa menurunkan ketangguhannya secara signifikan.

Seperti pada upaya-upaya sebelumnya, ketahanan aus akigat fatigue dapat juga ditingkatkan dengan memberikan pelapisan material yang keras pada material yang lunak.

Karena pada umumnya zona deformasi plastis jarang sekali terjadi pada kedalaman lebih dari 200 mikron, maka tebal lapisan minimum harus sekitar angka tersebut.

Page 80: Failure Analysis .pdf

4. Reduction of Erosive WearKeausan erosif pada suatu kondisi spesifik dipengaruhi oleh:

Energi kinetik dari “erosive medium”.

Sudut impak, lihat gambar pengaruh sudut datang partikel terhadap keausan.

Ultimate resilience permukaan yang berkontak (setengah ultimate strength dibagi modulus elastis).Energi ikatan permukaan antara logam.

Ultimate resilence merepresentasikan jumlah energi yang dapat diserap material sebelum terjadi deformasi atau cracking. Artinya agar material memiliki ketahanan terhadap keausan erosi, maka dibutuhkan material dengan ultimate resilience yang tinggi.

Material dengan energi ikatan permukaan antara logam yang tinggi akan memiliki ketahanan erosi yang lebih baik. Hal ini karena atom-atom logam tersebut dapat terikat satu dengan lainnya secara lebih kuat, sehingga dibutuhkan energi yang lebih besar untuk melepaskannya.

Penelitian Hutchings (1979), menunjukkan bahwa ketahanan aus erosif akan lebih tinggi untuk material yang memiliki melting point yang tinggi.