facile synthesis of cuo hollow nanospheres assembled by nanoparticles and their electrochemical...

5
Applie d Surfa ce Scien ce 258 (2011) 1317–1321 Contents lis ts ava ila ble at SciV erse ScienceDirect AppliedSurfaceScience  j o u r na l h omepage: www.elsevier.com/locate/apsusc Facilesynthesisof CuOhollownanospheresassembledbynanoparticlesand theirelectrochemicalperformance MeiKong,WeixinZhang ,ZehengYang,ShaoyingWeng,ZhangxianChen Sch ool of Chemic al Engineeri ng, Anh ui Key Lab ora tor y of Contro lla ble Chemi cal Rea cti on and Mat eri al Chemic al Engineeri ng, Hef ei Uni ver sit y of Tec hno log y, Hefe i 230 009 , Chi na articleinfo  Article history: Rec eived 18 May2011 Rec eived in rev ise d for m 29 Augu st 2011 Acc ept ed 30 August 2011 Available online 29 September 2011 Keywords: CuO Hollow nanospheres Synthesis Kirke ndall effe ct Lithi um ion batte ries abstract CuOhollownanosphereswithanaveragediameterof 400nmandshellthicknessof 40nmhavebeen successfullysynthesizedviaa si mplethermaloxidationstrategywithCu 2 Osolidnanospheresasthe precursor.TheproductshavebeencharacterizedbyX-raydiffraction,transmissionelectronmicroscopy and e ldemissionscanningelectronmicroscopy.Theformationof CuOhollownanospheresmainly resultsfromtheKirkendalleffecton thebasisof temperature-dependentexperiments.Furthermore,the electrochemicalperformanceof CuOhollownanospheresasanodematerialsforlithiumionbatterieshas beenevaluatedby cyc lic voltammetryandgalvanostaticdischarge-chargeexperiments.Theas-prepared CuOhollownanospheresassembledbynanoparticlesexhibithigherinitialdischargecapacityandbetter cycleperformancethanthereportedCuOnanoparticles.Thehierarchicalhollownanosphereshavebeen demonstratedtotaketheadvantagesof nanoparticlesandhollowarchitectures,whichcouldnotonly shortenthelithiumiontransportdistanceandincreasethekineticsof conversionreactions,butalso providesuitableelectrode/electrolytecontactareaand accommodatethevolumechangeassociatedwith lithiumioninsertionandextraction. © 2011 Elsevier B.V. All r ights reserved. 1. Introduction Holl ow na n os t ru ct u re s ha ve been pa id mu ch at te nt i on du e to th ei r hi gh s pe ci c surf a ce ar ea , lo w de ns it y a nd w id es pr ea d pote ntial appl icat ions in drug deliv ery, chemical senso rs, phot onic devi ces and ligh twei ght lle r [1,2]. A var iet y of met hod s have bee n dev eloped for the syn thesi s of nan ost ruc tur es wit h hollo w int eri - ors incl udin g temp late meth ods [3,4], hydrothermal treatment [5] and ultra sonic trea tmen t [6]. In par tic ularly, the Kirkendall eff ect- based methods have attracted gr eat interest s for the pr epar ation of holl ow nanomateri al s in recent year s, such as oxidat ion, sul - dat ion and phosphoriz ati on of met al nanop art icl es, whic h res ult s fr om th e di ff er en t di ff us ion r at es between two co mp onents in a diffu sion coup le [7,8]. CuO, an importan t p-type semi conductor with a narrow band gap (E g = 1.2 eV), ha s potent ial appl ic at ions in sensor s, catalysts, opti cal swit ch es, li th ium ion batteries and solar cell s [9,10].Con- sid eri ng its wide app licati ons , var ious CuOhol low str uct ures have been prepared. Liu and Zeng [11] synthesize d dand elion -like CuO holl ow micr ospheres withdiameter s of 4–8 m,assembled by CuO nanor ibb ons , usi ng Cu( NO 3 ) 2 ·3H 2 O, NH 3 ·H 2 O, NaOH and NaNO 3 Cor res pon din g author. Tel .: +86 551 2901 450; fax: +86 551 2901450. E-mai l addres s: [email protected] (W.Zhang). as re ac t an ts by so lv ot he rmal me th od at 1 00 C for24h. Liu and Xue [12] report ed the synt hesisof poro us CuO hollo w arch itec tures wit h diameters of 1–1 .7 m by th er m al o xi da ti on of CuS an d Cu 2 S solid pre cur sors at 700 C for 4 h, res pec tiv ely. Theprecursors wer e synt hesi zed by solvot hermal meth od using Cu(NO 3 ) 2 ·3H 2 O and thiourea as reac tants wi th th e assi stan ce of PVP at 120 C for 20h. Bour ret and Lenn ox [13] synth esized porous CuO holl ow mi cro- sph eres ass emb led by nan ori bbo ns wit h dia met er of 2.5 –5 m by the rmo lysis of porous Cu(OH) 2  hollow micros pheres at 600 C for 15h. The Cu(OH) 2  pre cur sorwasfabricated by template method at room temperat ure for 35min , us ing CuCl 2 ·2H 2 O, n-but ylamine as react antsand wate r-in -oilemulsionas softtemplatein H 2 O/CH 2 Cl 2 system. Among al l those potent ial appl ic at ions , CuO as an ode materi- als for lit hi um ion bat ter ies hav e att rac ted muc h int ere sts because of th eir hi gh th eoretica l capaci ty (6 70mAh g 1 ), hig h sa fe ty an d lo w co st. I t has bee n rep or te d that th e mo rp hol og y an d si ze of  CuO could inu ence its elect roch emic al perfo rmances [14,15] . For instance, Zh eng et al. [16] synthesiz ed CuO nanoparticles wit h an av e ra ge s iz e of 10nm vi a th er m al d ec om p os it ion of CuC 2 O 4  pre- cu rs or at 4 00 C fo r 4h, whic h cou ld del iver an initial di sc harg e capaci ty of 810 mAhg 1 at a cu r re nt den si ty of 0.1mAcm 2 .The s ec o nd an d th ir d di sc ha rg e ca pa ci ti es we re ab o ut 35 0mAhg 1 and 120 mAhg 1 , respec ti vely. The CuO nanoparticles had a poor cycle per for man ce. Li et al. rep ort ed [17] thesynt hesis of CuO na n- ot ub es by he a ti n g Cu na n ow ir es a t 6 00 C fo r 3h, whic h sh owed 0169-4332/$ seefrontmatter © 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.apsusc.2011.08.127

Upload: saleh90

Post on 14-Oct-2015

53 views

Category:

Documents


0 download

TRANSCRIPT

  • Applied Surface Science 258 (2011) 1317 1321

    Contents lists available at SciVerse ScienceDirect

    Applied Surface Science

    j our nal ho me p age: www.elsev ier .com

    Facile s semtheir el

    Mei Kong hanSchool of Chem l Chem

    a r t i c l

    Article history:Received 18 MReceived in reAccepted 30 AAvailable onlin

    Keywords:CuOHollow nanospSynthesisKirkendall effeLithium ion ba

    rage theraract

    miche baollow

    and y nanuO n

    of ntance

    contalithium ion insertion and extraction.

    2011 Elsevier B.V. All rights reserved.

    1. Introdu

    Hollow to their higpotential apdevices anddeveloped fors includinand ultrasobased methof hollow ndation and from the didiffusion co

    CuO, an gap (Eg = 1.optical switsidering its been prepahollow micrnanoribbon

    CorresponE-mail add

    0169-4332/$ doi:10.1016/j.ction

    nanostructures have been paid much attention dueh specic surface area, low density and widespreadplications in drug delivery, chemical sensors, photonic

    lightweight ller [1,2]. A variety of methods have beenor the synthesis of nanostructures with hollow interi-g template methods [3,4], hydrothermal treatment [5]nic treatment [6]. In particularly, the Kirkendall effect-ods have attracted great interests for the preparationanomaterials in recent years, such as oxidation, sul-phosphorization of metal nanoparticles, which resultsfferent diffusion rates between two components in auple [7,8].important p-type semiconductor with a narrow band2 eV), has potential applications in sensors, catalysts,ches, lithium ion batteries and solar cells [9,10]. Con-wide applications, various CuO hollow structures havered. Liu and Zeng [11] synthesized dandelion-like CuOospheres with diameters of 48 m, assembled by CuOs, using Cu(NO3)23H2O, NH3H2O, NaOH and NaNO3

    ding author. Tel.: +86 551 2901450; fax: +86 551 2901450.ress: [email protected] (W. Zhang).

    as reactants by solvothermal method at 100 C for 24 h. Liu andXue [12] reported the synthesis of porous CuO hollow architectureswith diameters of 11.7 m by thermal oxidation of CuS and Cu2Ssolid precursors at 700 C for 4 h, respectively. The precursors weresynthesized by solvothermal method using Cu(NO3)23H2O andthiourea as reactants with the assistance of PVP at 120 C for 20 h.Bourret and Lennox [13] synthesized porous CuO hollow micro-spheres assembled by nanoribbons with diameter of 2.55 m bythermolysis of porous Cu(OH)2 hollow microspheres at 600 C for15 h. The Cu(OH)2 precursor was fabricated by template method atroom temperature for 35 min, using CuCl22H2O, n-butylamine asreactants and water-in-oil emulsion as soft template in H2O/CH2Cl2system.

    Among all those potential applications, CuO as anode materi-als for lithium ion batteries have attracted much interests becauseof their high theoretical capacity (670 mAh g1), high safety andlow cost. It has been reported that the morphology and size ofCuO could inuence its electrochemical performances [14,15]. Forinstance, Zheng et al. [16] synthesized CuO nanoparticles with anaverage size of 10 nm via thermal decomposition of CuC2O4 pre-cursor at 400 C for 4 h, which could deliver an initial dischargecapacity of 810 mAh g1 at a current density of 0.1 mA cm2. Thesecond and third discharge capacities were about 350 mAh g1

    and 120 mAh g1, respectively. The CuO nanoparticles had a poorcycle performance. Li et al. reported [17] the synthesis of CuO nan-otubes by heating Cu nanowires at 600 C for 3 h, which showed

    see front matter 2011 Elsevier B.V. All rights reserved.apsusc.2011.08.127ynthesis of CuO hollow nanospheres asectrochemical performance

    , Weixin Zhang , Zeheng Yang, Shaoying Weng, Zical Engineering, Anhui Key Laboratory of Controllable Chemical Reaction and Materia

    e i n f o

    ay 2011vised form 29 August 2011ugust 2011e 29 September 2011

    heres

    cttteries

    a b s t r a c t

    CuO hollow nanospheres with an avesuccessfully synthesized via a simpleprecursor. The products have been chand eld emission scanning electronresults from the Kirkendall effect on telectrochemical performance of CuO hbeen evaluated by cyclic voltammetryCuO hollow nanospheres assembled bcycle performance than the reported Cdemonstrated to take the advantagesshorten the lithium ion transport disprovide suitable electrode/electrolyte/ loc ate /apsusc

    bled by nanoparticles and

    gxian Chenical Engineering, Hefei University of Technology, Hefei 230009, China

    diameter of 400 nm and shell thickness of 40 nm have beenmal oxidation strategy with Cu2O solid nanospheres as theerized by X-ray diffraction, transmission electron microscopyroscopy. The formation of CuO hollow nanospheres mainlysis of temperature-dependent experiments. Furthermore, the

    nanospheres as anode materials for lithium ion batteries hasgalvanostatic discharge-charge experiments. The as-preparedoparticles exhibit higher initial discharge capacity and betteranoparticles. The hierarchical hollow nanospheres have beenanoparticles and hollow architectures, which could not only

    and increase the kinetics of conversion reactions, but alsoct area and accommodate the volume change associated with

  • 1318 M. Kong et al. / Applied Surface Science 258 (2011) 1317 1321

    an initial discharge capacity of 910 mAh g1 and the 10th dis-charge capacity of about 100 mAh g1 at a current density of50 mA g1.

    In this paper, we report a facile route to synthesize CuO hol-low nanospoxidation oCu2O solid scale througout any surCuO hollowfor lithium show highecompared wets from tnanoparticl

    2. Experim

    2.1. Synthe

    All the rand used wnanosphere[18]. The wperature unCuSO45H2Otilled waterof NaOH sosolution in quickly pouyellow precdeionized wat 60 C.

    The CuOtion of Cu25 C min1. product wa

    2.2. Charac

    The as-pdiffraction a Cu K rad80 mA. Fieldsurement wmicroscopesion electrodiffraction (mission eleof 200 kV. Fon a Perkindard KBr pe

    2.3. Electro

    The electype cells (Cwere prepaacetylene bratio of 80slurry was u70 C for 4 hwith lithiumlene membmixture of e

    1

    1 1

    1|

    Rel

    ativ

    e In

    tens

    ity

    1 1

    11 1

    1

    RD pnt at 4

    voluonduina) 13.

    on aent

    of 0

    ults

    com by X

    of tre. A

    No. t obt

    in w CuOed inical

    2. Af nanhe hsurfay of here

    andters s shre. F, it cah an

    TEM investigation was used to provide further insight intoO hollow structure. Fig. 3a shows the TEM image of therecursor, indicating that the Cu2O nanospheres have a solidre with a diameter of 400 nm. The TEM image of CuO is

    in Fig. 3b. The contrast in brightness between the darknd bright centers conrms the hollow structure of CuO with

    hickness of about 40 nm, which is consistent with FESEM. The corresponding SAED patterns in Fig. S1a and b (Sup-

    g information) display the characteristic diffraction rings ofu2O and monoclinic CuO, respectively, indicating the poly-line nature of the products.study the formation mechanism of CuO hollow structure,s were collected after heating the Cu2O precursor in air at

    and 300 C for 2 h, respectively. After 2 h of thermal treat-n air at 250 C, a core-shell structure with a little void starts toheres with uniform diameters in large scale by thermalf Cu2O solid nanospheres at 400 C for 2 h. The uniformnanospheres as the precursor were prepared in largeh a solution-phase method at room temperature with-

    factant or organic solvent. The formation mechanism of nanospheres has been proposed. As anode materialsion batteries, the as-prepared CuO hollow nanospheresr initial discharge capacity and better cycle performanceith the reported CuO nanoparticles, which mainly ben-he hierarchical hollow nanostructures assembled byes.

    ental details

    sis

    eagents used in the experiments were analytical gradeithout further purication. The synthesis of Cu2O solids as the precursor was referred to our previous reporthole reaction was conducted in a beaker at room tem-der constant magnetic stirring. Typically, 0.375 g of

    and 2 g of glucose were dissolved in 100 mL of dis-. Then, 25 mL of NH3H2O solution (0.04 M) and 25 mLlution (0.20 M) were added dropwise into the aboveturn. 10 min later, 50 mL of ascorbic acid (0.03 M) wasred into the mixture. After stirring for another 1 h, theipitates were collected by centrifugation, washed withater and ethanol for several times and then dried in air

    hollow nanospheres were prepared by thermal oxida-O precursor in air at 400 C for 2 h at a heating rate ofAfter cooling to room temperature naturally, the blacks obtained.

    terization

    repared samples were characterized by X-ray powder(XRD) in a Rigaku D/max-B X-ray diffractometer withiation source ( = 0.154178 nm) operated at 40 kV and-emission scanning electron microscopy (FESEM) mea-as carried out with a FEI Sirion-200 scanning electron

    operated at an acceleration voltage of 5 kV. Transmis-n microscopy (TEM) images and selected area electronSAED) patterns were taken with a Hitachi H-800 trans-ctron microscope performed at an accelerating voltageourier Transform Infrared (FTIR) spectra were recordedElmer Spectrum 100 FTIR Spectrometer using the stan-llet technique in the range of 4004000 cm1.

    chemical measurements

    trochemical measurements were carried out using coin-R2032) at room temperature. The working electrodes

    red by mixing the as-prepared CuO hollow nanospheres,lack and polyvinylidene uoride (PVDF) at a weight:10:10 in N-methylpyrrolidone (NMP). The resultingniformly spread onto a Cu foil and dried in vacuum at. The cells were assembled in an argon-lled glove box

    disk as counter electrode, microporous polypropy-rane (Celgard-2400) as separator and 1 M LiPF6 in athylene carbonate (EC) and dimethyl carbonate (DMC)

    Fig. 1. Xtreatme

    (1:1 inwere cCo., Chof 0.00formedInstrumrange

    3. Res

    Theminedpatternperatu(JCPDSproducfor 2 h,oclinicdetect

    Typin Fig.sists oscale. Trough pholognanosp400 nmdiamespherestructuFig. 2dis roug

    Thethe CuCu2O pstructushownedges ashell timagesportincubic Ccrystal

    To sample250 Cment i0 20 30 40 50 60 70

    (b) 1 1 0

    2 2

    0

    2 0

    0

    1 1

    1

    1 1

    0

    2 / degre e

    |||

    2 2

    03

    1 1

    1 1

    32

    0 2

    0 2

    0

    2 0

    2

    (a)

    atterns of (a) the precursor and (b) the nal product after thermal00 C for 2 h in air.

    me) as electrolyte. Galvanostatic chargedischarge testscted on a BTS battery test system (Shenzhen Newareat a current density of 67 mA g1 in a potential range0 V. Cyclic voltammetry (CV) measurements were per-

    CHI604C electrochemical analyzer (Shanghai Chenhua Co., China) at a scan rate of 0.1 mV s1 in the potential3.0 V.

    and discussion

    position and phase purity of the products were deter--ray powder diffraction (XRD). Fig. 1a shows the XRDhe precursor precipitated in the solution at room tem-ll the diffraction peaks can be indexed to cubic Cu2O05-0667). Fig. 1b displays the XRD pattern of the nalained by thermal oxidation of Cu2O precursor at 400 Chich all the diffraction peaks can be indexed to the mon-

    (JCPDS No. 48-1548). No impurities could be obviously the XRD patterns.FESEM images of the as-prepared products are showns can be seen in Fig. 2a, the Cu2O precursor con-ospheres with an average diameter of 400 nm in largeigh-magnication FESEM image in Fig. 2b displays thece of these nanospheres. Fig. 2c and d shows the mor-CuO prepared through thermal oxidation of the Cu2Os. The average diameter and shell thickness are about

    40 nm, respectively, without any obvious changes ofcompared with Cu2O precursor. Many broken hollowown in Fig. 2c reveal the existence of hollow nano-rom the high-magnication FESEM image displayed inn be seen that the shell of the CuO hollow nanospheresd some small nanoparticles can be clearly observed.

  • M. Kong et al. / Applied Surface Science 258 (2011) 1317 1321 1319

    (c, d)

    form, indicainformationbecome larg

    Similar pcollected that 400 C forlution aftershown in Fiheating at 4layer and thing time atand the core15 min of hlow sphere

    Fig. 3. TEM im

    pleg at 4the b

    struginnihin Chereh thFig. 2. FESEM images of (a, b) Cu2O nanospheres and

    ting condensation of abundant vacancies (Supporting, Fig. S2a). When heated at 300 C for 2 h, the voidser (Supporting information, Fig. S2b).henomena were also observed when the samples wererough thermal oxidation of the Cu2O solid nanospheres

    different time. The TEM images of the morphology evo- heating the samples at 400 C for different time wereg. S3 (Supporting information). It can be seen that after

    are comheatin

    On hollowthe beand a tnanospthroug00 C for 5 min, a sphere with voids between the surfacee inside core can be observed (Fig. S3a). When the heat-

    400 C is prolonged to 8 min, the voids become larger-shell structure becomes more obvious (Fig. S3b). Aftereating at 400 C, the core almost disappears and a hol-gradually forms (Fig. S3c). Finally the solid nanospheres

    ages of (a) Cu2O nanospheres and (b) CuO hollow nanospheres.

    Because of outward thsequently, eappears.

    Interestiby Lis grodimethylfotransformein air at 500The possiblin our workglucose, is To further spectra of investigatemation). Fignanosphereresponds todue to adsoand 1610 cmbending, reregion corr1460 cm1

    ated with tconrms thFTIR spectrthere still eCuO hollow nanospheres.

    tely transformed into hollow nanospheres after 2 h of00 C (Fig. 3d).asis of above observations, the formation process of CuOcture is much related with the Kirkendall effect [7,8]. Atng of the thermal oxidation, Cu2O reacts with O2 in airuO layer would be formed on the surface of Cu2O solids. Subsequently, the Cu+ in the core diffuse outwarde CuO shell, meanwhile the O2 in air diffuse inward.

    the different diffusion rates, Cu+ diffuse much fasteran O2 inward and the hollow interior forms [19]. Con-xcess vacancies occur in the core and hollow structure

    ngly, the result here is quite different from that reportedup [20], who used a solution-phase method in N,N-rmamide at 8595 C to get Cu2O solid nanospheres andd them into CuO solid nanospheres by thermal oxidation

    C for 2 h, without any obvious change of morphology.e reason may be that the Cu2O nanosphere precursor, synthesized at room temperature in the presence ofdifferent from the one reported in the literature [20].characterize the as-prepared Cu2O nanospheres, FTIRthe as-prepared Cu2O nanospheres and glucose wered, respectively, as shown in Fig. S4 (Supporting infor-. S4a shows the FTIR spectra of the as-prepared Cu2Os. The characteristic absorption band at 629 cm1 cor-

    the CuO vibration of the Cu2O nanocrystals. The bandsrptions of water molecules are observed at 3300 cm11, which are attributed to the OH stretching and OH

    spectively. Besides, the bands in the 28003000 cm1

    espond to the CH stretching. The bands located atand 1270 cm1 are assigned to the vibrations associ-he CH2 group, and typically the band near 1050 cm1

    e existence of carbohydrate [21]. Compared with thea of glucose in Fig. S4b, the result clearly suggests thatxist some glucose molecules in the Cu2O spheres even

  • 1320 M. Kong et al. / Applied Surface Science 258 (2011) 1317 1321

    0.0 0.5 1.0 1.5 2.0 2.5 3.0-2.5

    -2.0

    -1.5

    -1.0

    -0.5

    0.0

    0.5

    1.0

    0.83 V

    1.01 V

    2.36 V

    0.73 V 3rd 2nd

    1st

    Cur

    rent

    / m

    A

    Potential / V vs. Li+/Li

    1.15 V

    Fig. 4. Cyclic voltammograms of the CuO/Li cell in the rst, second and third cyclesat a scan rate of 0.1 mV s1.

    after washing the samples with water and ethanol several times[22,23]. Thus, the aggregates of Cu2O nanoparticles with the mod-ication of the glucose molecules may play an important role inthe facile formation of CuO hollow nanostructures [24,25]. Mean-while, durinmolecules igases, whicthe formati

    The eleclow nanosplithium iongrams of thcycle, two are attributtrolyte inteat 2.36 V is tice of CuO 0.73 V and indicating tcycle, the pdecreases s

    Fig. 5 diat a currencess, there and 0.80.0CV measur

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    Pote

    ntia

    l / V

    vs.

    Li+

    /Li

    Fig. 5. The di67 mA g1 in aperformance o

    which is higher than the theoretical capacity of CuO (670 mAh g1).The extra discharge capacity is mainly attributed to the formationof a solid electrolyte interface (SEI) lm during the rst dis-charge/charge process [27,30]. The capacity fades to 425 mAh g1

    in the secocapacity grCuO hollowinitial dischprevious reonly deliverent density120 mAh g

    chical holloand hollowresult fromion transporeactions. Thierarchicaelectrode/echange asso

    4. Conclus

    s where

    of C. Thrisonhereollow

    fromachies. Thignis, ther lith4 mAanopructuain e

    suitnopa

    the d in

    wled

    authl Scg the thermal oxidation process, the remnant glucosen the Cu2O spheres were decomposed into CO2 and H2Oh would emit out of the spheres and were benecial toon of the CuO hollow nanostructures [26].trochemical performances of the as-prepared CuO hol-heres have been evaluated as anode materials for

    batteries. Fig. 4 shows the rst three cyclic voltammo-e CuO/Li cell at a scan rate of 0.1 mV s1. In the rstcathodic peaks located at 1.01 and 0.83 V (vs. Li+/Li)ed to the electrode reaction and growth of solid elec-rface, respectively [27,28]. Meanwhile, the anodic peakcorresponding to the Li extraction from the crystal lat-[29]. In the following cycle, two cathodic peaks shift to1.15 V along with the decrease of each peak intensity,hat the reversible capacity greatly loses. In the thirdeak potentials remain similar and the peak intensitylightly.splays the dischargecharge curves of the CuO/Li cellt density of 67 mA g1. During the rst discharge pro-are two obvious plateaus at the potential of 1.221.0 V1 V (vs. Li+/Li), which is consistent with the results ofement. The rst discharge capacity is 1134 mAh g1,

    1000

    1200

    mA

    h g

    1

    2nd3rd

    Thinanospdationfor 2 hcompananospCuO hresultseasily procesgreat sBesiderials foof 113CuO nnanostthe stroffer athe nareduceions an

    Ackno

    TheNatura0 1 2 3 4 5 6 7 8 9 100

    200

    400

    600

    800

    Spec

    ific

    capa

    city

    /

    Cycle nu mber

    0 20 0 40 0 60 0 800 10 00 120 0

    3rd

    2nd

    1st

    Specific capacity / mAh g1

    1st

    schargecharge curves of the CuO/Li cell at a current density of potential range of 0.0013.0 V. The inset is the corresponding cyclicf the cell.

    20976033 aCentral Uniment of An

    Appendix A

    Supplemthe online v

    References

    [1] S.W. Cao,[2] Y.F. Zhu, [3] G. Jia, H.P[4] X.X. Li, Y.[5] M.W. Xu,[6] J.J. Zhu, Snd discharge cycle and after 10 cycles the dischargeadually decreased to 190 mAh g1 (inset in Fig. 5). The

    nanospheres assembled by nanoparticles show higherarge capacity and better cycle performance than theport of CuO nanoparticles with size of 10 nm, which canr an initial discharge capacity of 810 mAh g1 at a cur-

    of 0.1 mA cm2 and the discharge capacity decreased to1 after 3 cycles [16]. The results indicate that the hierar-w nanospheres can take the advantages of nanoparticles

    architectures. The high initial discharge capacity may the nanoparticles, which could shorten the lithiumrt distance and increase the kinetics of conversionhe good cycle performance is much related with thel hollow nanostructures, which could provide suitablelectrolyte contact area and accommodate the volumeciated with lithium ion insertion and extraction.

    ions

    ork demonstrates the synthesis of CuO hollows with diameters of about 400 nm by thermal oxi-u2O solid nanospheres as the precursor in air at 400 Ce morphology of CuO does not change obviously in

    with Cu2O precursor and the as-prepared CuO hollows are assembled by nanoparticles. The formation of

    nanospheres from Cu2O solid nanospheres mainly the Kirkendall effect. The whole process can be

    ved without any surfactant, organic solvent or etchingis facile, green and low-cost synthesis route may be ofcance to prepare other metal oxide hollow structures.

    as-prepared CuO hollow nanospheres as anode mate-ium ion batteries show higher initial discharge capacityh g1 and better cycle performance than the reportedarticles. It is attributed to the hierarchical hollowres which could provide enhanced accommodation ofnergy associated with lithium insertion/removal andable electrode/electrolyte contact area. Furthermore,rticles assembling the hierarchical nanospheres couldtransport or diffusion distances of electrons and lithiumcrease the kinetics of conversion reactions.

    gements

    ors are grateful to the nancial supports of the Nationalience Foundation of China (NSFC Grants 20871038,nd 21176054), the Fundamental Research Funds for theversities (2010HGZY0012) and the Education Depart-hui Provincial Government (TD200702).

    . Supplementary data

    entary data associated with this article can be found, inersion, at doi:10.1016/j.apsusc.2011.08.127.

    Y.J. Zhu, M.Y. Ma, L. Li, L. Zhang, J. Phys. Chem. C 112 (2008) 1851.D.H. Fan, W.Z. Shen, Langmuir 24 (2008) 11131.. You, K. Liu, Y.H. Zheng, N. Guo, H.J. Zhang, Langmuir 26 (2010) 5122.J. Xiong, Z.Q. Li, Y. Xie, Inorg. Chem. 45 (2006) 3493.

    L.B. Kong, W.J. Zhou, H.L. Li, J. Phys. Chem. C 111 (2007) 19141.. Xu, H. Wang, J.M. Zhu, H.Y. Chen, Adv. Mater. 15 (2003) 156.

  • M. Kong et al. / Applied Surface Science 258 (2011) 1317 1321 1321

    [7] Y.D. Yin, R.M. Rioux, C.K. Erdonmez, S. Hughes, G.A. Somorjai, A.P. Alivisatos,Science 304 (2004) 711.

    [8] R.K. Chiang, R.T. Chiang, Inorg. Chem. 46 (2007) 369.[9] J.Y. Li, S.L. Xiong, J. Pan, Y.T. Qian, J. Phys. Chem. C 114 (2010) 9645.

    [10] Y.L. Liu, L. Liao, J.C. Li, C.X. Pan, J. Phys. Chem. C 111 (2007) 5050.[11] B. Liu, H.C. Zeng, J. Am. Chem. Soc. 126 (2004) 8124.[12] J. Liu, D.F. Xue, Adv. Mater. 20 (2008) 2622.[13] G.R. Bourret, R.B. Lennox, J. Am. Chem. Soc. 132 (2010) 6657.[14] S. Grugeon, S. Laruelle, R.H. Urbina, L. Dupont, P. Poizot, J.M. Tarascon, J. Elec-

    trochem. Soc. 148 (2001) A285.[15] J.C. Park, J. Kim, H. Kwon, H. Song, Adv. Mater. 21 (2009) 803.[16] X.J. Zhang, D.G. Zhang, X.M. Ni, H.G. Zheng, Solid-State Electron. 52 (2008) 245.[17] C. Li, W. Wei, S.M. Fang, H.X. Wang, Y. Zhang, Y.H. Gui, J. Power Sources 195

    (2010) 2939.[18] Z.H. Yang, D.P. Zhang, W.X. Zhang, M. Chen, J. Phys. Chem. Solids 70 (2009) 840.[19] R. Nakamura, D. Tokozakura, H. Nakajima, J. Appl. Phys. 101 (2007) 074303.

    [20] J.T. Zhang, J.F. Liu, Q. Peng, X. Wang, Y.D. Li, Chem. Mater. 18 (2006) 867.[21] S. Pavlovic, P.R.G. Brandao, Miner. Eng. 16 (2003) 1117.[22] M.B. Mahajan, M.S. Pavan, P.A. Joy, Solid State Commun. 149 (2009) 2199.[23] A. Ahmed, N.S. Gajbhiyen, A.G. Joshi, J. Solid State Chem. 184 (2011) 2209.[24] H.T. Zhu, J.X. Wang, G.Y. Xu, Cryst. Growth Des. 9 (2009) 633.[25] H.T. Zhu, J.X. Wang, D.X. Wu, Inorg. Chem. 48 (2009) 7099.[26] Z.H. Yang, W.X. Zhang, Q. Wang, X.M. Song, Y.T. Qian, Chem. Phys. Lett. 418

    (2006) 46.[27] A. Dbart, L. Dupont, P. Poizot, J.B. Leriche, J.M. Tarascon, J. Electrochem. Soc.

    148 (2001) A1266.[28] X.P. Gao, J.L. Bao, G.L. Pan, H.Y. Zhu, P.X. Huang, F. Wu, D.Y. Song, J. Phys. Chem.

    B 108 (2004) 5547.[29] P. Novak, Electrochim. Acta 30 (1985) 1687.[30] F.S. Ke, L. Huang, G.Z. Wei, L.J. Xue, J.T. Li, B. Zhang, S.R. Chen, X.Y. Fan, S.G. Sun,

    Electrochim. Acta 54 (2009) 5825.

    Facile synthesis of CuO hollow nanospheres assembled by nanoparticles and their electrochemical performance1 Introduction2 Experimental details2.1 Synthesis2.2 Characterization2.3 Electrochemical measurements

    3 Results and discussion4 ConclusionsAcknowledgementsAppendix A Supplementary dataAppendix A Supplementary data