eye selectivity peaks in middle layers of poster print

1
Functional data were motion- and distortion- corrected using AFNI 8 . Distortion-matched T1-weighted EPI (green overlay: GM) guided the nonlinear warping of functional to anatomical data. Regression analysis (GLM) assessed fMRI response modulation for two stimulus conditions (all L and all R) in each voxel. Control GLM assessed responses to M- and P-targeted stimuli (collapsing across L and R). Voxels near pial vessels were excluded from analysis. GM in reference anatomy was segmented using an equivolume 9 solution. Each functional voxel was then assigned a depth, and depth-dependent fMRI profiles were formed by averaging response in 6 bins. Neurons in primary visual cortex are driven primarily by visual input from either the left or the right eye. These neurons are organized in alternating left-right stripes known as ocular dominance columns (ODCs). In monkeys, ocular dominance is strongest in middle cortical layers 1 . Cells are less monocular in superficial and deep layers 1 . High-field fMRI can reveal information about cortical structure on the scale of columns 2 and layers 3 . ODCs have been demonstrated in humans 2,4,5,6 . Using GE EPI, we used known cytoarchitecture of ODCs and eye selectivity to test the fidelity of 7T fMRI in human subjects. Participants. Seven healthy adults (2 male, mean age = 33 ± 11 years) participated in two scanning sessions. Stimuli. Flickering checkerboards were presented to either left (L) or right (R) eye. The checkerboards targeted either parvocellular (P) pathways (0.5 Hz, high spatial frequency, chromatic isoluminant) or magnocellular (M) pathways (12 Hz, low spatial frequency, achromatic). Design. Four stimulus conditions (L/R x M/P) repeated 4 times in each scan, randomly interleaved. Data acquisition. 7T Siemens scanner with a custom-made 32-channel receive, 4-channel transmit head coil GE EPI images at 0.8 mm isotropic resolution (TR/TE: 2 s/ 22.6 ms; FOV = 168 x 200 mm; R = 3; echo spacing = 1.01 ms, 6/8 Partial Fourier) T1-weighed GE EPI sequences 7 were obtained in each session. 3T structural scans were acquired separately. Eye selectivity peaks in middle layers of human visual cortex: Evidence from 7T fMRI data Kimberly B. Weldon 1 , Marisa J. Sanchez 1,2 , Philip C. Burton 1,3 , and Cheryl A. Olman 1,3 1 Center for Magnetic Resonance Research, University of Minnesota; 2 Department of Psychiatry, University of Minnesota; 3 Department of Psychology, University of Minnesota Contact: [email protected] Results Columnar structure was evident in eye-selectivity maps. Eye selectivity in V1 was enhanced in the middle layers, but not deep or superficial layers, compared to a control analysis in V2. Eye selectivity was weaker than expected; this can be explained by blurring in the data. Increased eye selectivity in deeper GM was not anticipated. Control analysis of color selectivity indicates it is not a non- specific hemodynamic or partial voluming effect. Discussion Introduction Analysis 1. Hubel, D. H., & Wiesel, T. N. (1968). Receptive fields and functional architecture of monkey striate cortex. The Journal of physiology, 195(1), 215-243. 2. Nasr, S., Polimeni, J. R., & Tootell, R. B. (2016). Interdigitated color-and disparity-selective columns within human visual cortical areas V2 and V3. Journal of Neuroscience, 36(6), 1841-1857. 3. Olman, C. A., Harel, N., Feinberg, D. A., He, S., Zhang, P., Ugurbil, K., & Yacoub, E. (2012). Layer-specific fMRI reflects different neuronal computations at different depths in human V1. PloS one, 7(3), e32536. 4. Horton, J. C., & Hedley-Whyte, E. T. (1984). Mapping of cytochrome oxidase patches and ocular dominance columns in human visual cortex. Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 304(1119), 255-272. 5. Yacoub, E., Shmuel, A., Logothetis, N., & Uğurbil, K. (2007). Robust detection of ocular dominance columns in humans using Hahn Spin Echo BOLD functional MRI at 7 Tesla. Neuroimage, 37(4), 1161-1177. 6. Cheng, K., Waggoner, R. A., & Tanaka, K. (2001). Human ocular dominance columns as revealed by high-field functional magnetic resonance imaging. Neuron, 32(2), 359-374. 7. van der Zwaag, W., Buur, P. F., Fracasso, A., van Doesum, T., Uludağ, K., Versluis, M. J., & Marques, J. P. (2018). Distortion-matched T1 maps and unbiased T1-weighted images as anatomical reference for high-resolution fMRI. NeuroImage, 176, 41-55. 8. Cox, R. W. (1996). AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical research, 29(3), 162-173. 9. Waehnert, M. D., Dinse, J., Weiss, M., Streicher, M. N., Waehnert, P., Geyer, S., ... & Bazin, P. L. (2014). Anatomically motivated modeling of cortical laminae. Neuroimage, 93, 210-220. 4 RM LM RP RM LM LP RP RM RP LM LP RM LP RP LM 2 LP Subject 1 Subject 3 Materials and Methods Subject 2 Control = Left = Right Acknowledgements: NIH grants R01 MH111447, R21 EY025731, P41 EB015894, P30 NS076408, S10 RR026783, WM KECK Foundation Parvocellular Selectivity Relative (equivolume) Distance from WM (P-M)/(P+M) Relative (equivolume) Distance from WM |L-R|/(L+R) |L-R|/(L+R) |L-R|/(L+R) Eye Selectivity (V1) Eye Selectivity (V2) Eye Selectivity control V1 V2 periphery parafovea * * * * *

Upload: others

Post on 18-Nov-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

PosterPrintSize:Thispostertemplateis50”highby30”wideandisprintedat120%fora60”highby36”wideposter.Itcanbeusedtoprintanyposterwitha5:3aspectratio.

Placeholders:Thevariouselementsincludedinthisposterareonesweoftenseeinmedical,research,andscientificposters.Feelfreetoedit,move,add,anddeleteitems,orchangethelayouttosuityourneeds.Alwayscheckwithyourconferenceorganizerforspecificrequirements.

ImageQuality:YoucanplacedigitalphotosorlogoartinyourposterfilebyselectingtheInsert,Picturecommand,orbyusingstandardcopy&paste.Forbestresults,allgraphicelementsshouldbeatleast150-200pixelsperinchintheirfinalprintedsize.Forinstance,a1600x1200pixelphotowillusuallylookfineupto8“-10”wideonyourprintedposter.Topreviewtheprintqualityofimages,selectamagnificationof100%whenpreviewingyourposter.Thiswillgiveyouagoodideaofwhatitwilllooklikeinprint.Ifyouarelayingoutalargeposterandusinghalf-scaledimensions,besuretopreviewyourgraphicsat200%toseethemattheirfinalprintedsize.Pleasenotethatgraphicsfromwebsites(suchasthelogoonyourhospital'soruniversity'shomepage)willonlybe72dpiandnotsuitableforprinting.

[Thissidebarareadoesnotprint.]

ChangeColorTheme:Thistemplateisdesignedtousethebuilt-incolorthemesinthenewerversionsofPowerPoint.Tochangethecolortheme,selecttheDesigntab,thenselecttheColorsdrop-downlist.Thedefaultcolorthemeforthistemplateis“Office”,soyoucanalwaysreturntothataftertryingsomeofthealternatives.

PrintingYourPoster:Onceyourposterfileisready,visitwww.genigraphics.comtoorderahigh-quality,affordableposterprint.EveryorderreceivesafreedesignreviewandwecandeliverasfastasnextbusinessdaywithintheUSandCanada.Genigraphics®hasbeenproducingoutputfromPowerPoint®longerthananyoneintheindustry;datingbacktowhenwehelpedMicrosoft®designthePowerPointsoftware.

USandCanada:1-800-790-4001Email:[email protected]

[Thissidebarareadoesnotprint.]

•  Functionaldataweremotion-anddistortion-correctedusingAFNI8.Distortion-matchedT1-weightedEPI(greenoverlay:GM)guidedthenonlinearwarpingoffunctionaltoanatomicaldata.

•  Regressionanalysis(GLM)assessedfMRIresponsemodulationfortwostimulusconditions(allLandallR)ineachvoxel.ControlGLMassessedresponsestoM-andP-targetedstimuli(collapsingacrossLandR).Voxelsnearpialvesselswereexcludedfromanalysis.•  GMinreferenceanatomywassegmentedusinganequivolume9solution.Eachfunctionalvoxelwasthenassignedadepth,anddepth-dependentfMRIprofileswereformedbyaveragingresponsein6bins.

•  Neuronsinprimaryvisualcortexaredrivenprimarilybyvisualinputfromeithertheleftortherighteye.Theseneuronsareorganizedinalternatingleft-rightstripesknownasoculardominancecolumns(ODCs).

•  Inmonkeys,oculardominanceisstrongestinmiddlecorticallayers1.Cellsarelessmonocularinsuperficialanddeeplayers1.

•  High-fieldfMRIcanrevealinformationaboutcorticalstructureonthescaleofcolumns2andlayers3.ODCshavebeendemonstratedinhumans2,4,5,6.

•  UsingGEEPI,weusedknowncytoarchitectureofODCsandeyeselectivitytotestthefidelityof7TfMRIinhumansubjects.

Participants.Sevenhealthyadults(2male,meanage=33±11years)participatedintwoscanningsessions.

Stimuli.Flickeringcheckerboardswerepresentedtoeitherleft(L)orright(R)eye.Thecheckerboardstargetedeitherparvocellular(P)pathways(0.5Hz,highspatialfrequency,chromaticisoluminant)ormagnocellular(M)pathways(12Hz,lowspatialfrequency,achromatic).Design.Fourstimulusconditions(L/RxM/P)repeated4timesineachscan,randomlyinterleaved.

Dataacquisition.•  7TSiemensscannerwithacustom-made32-channelreceive,4-channeltransmitheadcoil

•  GEEPIimagesat0.8mmisotropicresolution(TR/TE:2s/22.6ms;FOV=168x200mm;R=3;echospacing=1.01ms,6/8PartialFourier)

•  T1-weighedGEEPIsequences7wereobtainedineachsession.3Tstructuralscanswereacquiredseparately.

Eyeselectivitypeaksinmiddlelayersofhumanvisualcortex:Evidencefrom7TfMRIdata

KimberlyB.Weldon1,MarisaJ.Sanchez1,2,PhilipC.Burton1,3,andCherylA.Olman1,3

1CenterforMagneticResonanceResearch,UniversityofMinnesota;2DepartmentofPsychiatry,UniversityofMinnesota;3DepartmentofPsychology,UniversityofMinnesota

Contact:[email protected]

Results

•  Columnarstructurewasevidentineye-selectivitymaps.•  EyeselectivityinV1wasenhancedinthemiddlelayers,butnotdeeporsuperficiallayers,comparedtoacontrolanalysisinV2.

•  Eyeselectivitywasweakerthanexpected;thiscanbeexplainedbyblurringinthedata.

•  IncreasedeyeselectivityindeeperGMwasnotanticipated.Controlanalysisofcolorselectivityindicatesitisnotanon-specifichemodynamicorpartialvolumingeffect.

Discussion

Introduction Analysis

1.  Hubel,D.H.,&Wiesel,T.N.(1968).Receptivefieldsandfunctionalarchitectureofmonkeystriatecortex.TheJournalofphysiology,195(1),215-243.2.  Nasr,S.,Polimeni,J.R.,&Tootell,R.B.(2016).Interdigitatedcolor-anddisparity-selectivecolumnswithinhumanvisualcorticalareasV2andV3.JournalofNeuroscience,36(6),1841-1857.3.  Olman,C.A.,Harel,N.,Feinberg,D.A.,He,S.,Zhang,P.,Ugurbil,K.,&Yacoub,E.(2012).Layer-specificfMRIreflectsdifferentneuronalcomputationsatdifferentdepthsinhumanV1.PloSone,7(3),

e32536.4.  Horton,J.C.,&Hedley-Whyte,E.T.(1984).Mappingofcytochromeoxidasepatchesandoculardominancecolumnsinhumanvisualcortex.PhilosophicalTransactionsoftheRoyalSocietyofLondon.B,

BiologicalSciences,304(1119),255-272.5.  Yacoub,E.,Shmuel,A.,Logothetis,N.,&Uğurbil,K.(2007).RobustdetectionofoculardominancecolumnsinhumansusingHahnSpinEchoBOLDfunctionalMRIat7Tesla.Neuroimage,37(4),1161-1177.6.  Cheng,K.,Waggoner,R.A.,&Tanaka,K.(2001).Humanoculardominancecolumnsasrevealedbyhigh-fieldfunctionalmagneticresonanceimaging.Neuron,32(2),359-374.7.  vanderZwaag,W.,Buur,P.F.,Fracasso,A.,vanDoesum,T.,Uludağ,K.,Versluis,M.J.,&Marques,J.P.(2018).Distortion-matchedT1mapsandunbiasedT1-weightedimagesasanatomicalreferencefor

high-resolutionfMRI.NeuroImage,176,41-55.8.  Cox,R.W.(1996).AFNI:softwareforanalysisandvisualizationoffunctionalmagneticresonanceneuroimages.ComputersandBiomedicalresearch,29(3),162-173.9.  Waehnert,M.D.,Dinse,J.,Weiss,M.,Streicher,M.N.,Waehnert,P.,Geyer,S.,...&Bazin,P.L.(2014).Anatomicallymotivatedmodelingofcorticallaminae.Neuroimage,93,210-220.

4

RM LM RP RM LM LPRP RM RP LMLP RM LP RPLM

2

LP

Subject1

Subject3

MaterialsandMethods

Subject2

Control

=Left=Right

Acknowledgements:NIHgrantsR01MH111447,R21EY025731,P41EB015894,P30NS076408,S10RR026783,WMKECKFoundation

ParvocellularSelectivity

Relativ

e(equ

ivolum

e)Distancefrom

WM

(P-M)/(P+M)

Relativ

e(equ

ivolum

e)Distancefrom

WM

|L-R|/(L+R) |L-R|/(L+R) |L-R|/(L+R)

EyeSelectivity(V1) EyeSelectivity(V2) EyeSelectivity

control

V1V2

perip

hery

parafovea

*

*

*

**