extragalac)c*cosmic*rays*above* the*iron*knee* · 2016-03-02 · mcmc*likelihood*scan:*...

28
10 -5 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 2 10 14 10 15 10 16 10 17 10 18 10 19 10 20 x -2.7 x -3.1 "Knee" "Ankle" SNR p SNR Fe extragal. ? E 2 dN/dE E [eV] Extragalac)c Cosmic Rays above the Iron Knee Andrew Taylor Based on Phys.Rev. D92 (2015) 6, 063011 astro-ph/1505.06090 1

Upload: others

Post on 07-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Extragalac)c*Cosmic*Rays*above* the*Iron*Knee* · 2016-03-02 · MCMC*Likelihood*Scan:* Spectral*+Composi)on*Fits* n=3*evolu)on*result L(fp, fHe, fN, fSi, Emax, ↵) / exp( protons2/2)

10-5

10-4

10-3

10-2

10-1

100

101

102

1014 1015 1016 1017 1018 1019 1020

x-2.7

x-3.1

"Knee"

"Ankle"

SNR p SNR Fe extragal.?

E2 dN/d

E

E [eV]

Extragalac)c  Cosmic  Rays  above  the  Iron  Knee  

Andrew  Taylor   Based on Phys.Rev.  D92  (2015)  6,  063011 astro-ph/1505.06090      

1  

Page 2: Extragalac)c*Cosmic*Rays*above* the*Iron*Knee* · 2016-03-02 · MCMC*Likelihood*Scan:* Spectral*+Composi)on*Fits* n=3*evolu)on*result L(fp, fHe, fN, fSi, Emax, ↵) / exp( protons2/2)

10-5

10-4

10-3

10-2

10-1

100

101

102

1014 1015 1016 1017 1018 1019 1020

x-2.7

x-3.1

"Knee"

"Ankle"

SNR p SNR Fe extragal.?

E2 dN/d

E

E [eV]

Separate  Probes  of  the  Transi)on  Energy  

Where  does  the  energy  flux  go?  (or  do  these  CR  propagate  unimpeded?)….energy  is  conserved  aJer  all  

Anisotropy constraint- Pierre Auger Collab. astro-ph/1212.3083      

2  

Page 3: Extragalac)c*Cosmic*Rays*above* the*Iron*Knee* · 2016-03-02 · MCMC*Likelihood*Scan:* Spectral*+Composi)on*Fits* n=3*evolu)on*result L(fp, fHe, fN, fSi, Emax, ↵) / exp( protons2/2)

Why  Consider  UHECR  to  Understand  the  Galac)c/Extragalac)c  Transi)on?  •  Since  the  ankle  feature  appears  at  an  energy  of  ~1018.6  eV,  a  

new  extragalac)c  source  class  is  presumed  to  begin  to  dominate  here  (in  the  first  instance)  

•  Informa)on  obtained  from  inves)ga)ons  into  the  UHECR  sources  may  provide  new  insights  into  Galac)c-­‐Extragalac)c  transi)on  energy  

0.01

0.1

1

10

100

1000

17.5 18 18.5 19 19.5 20 20.5

E2 dN

/dE

[eV

cm-2

s-1

sr-1

]

log10 Energy [eV]3  

Page 4: Extragalac)c*Cosmic*Rays*above* the*Iron*Knee* · 2016-03-02 · MCMC*Likelihood*Scan:* Spectral*+Composi)on*Fits* n=3*evolu)on*result L(fp, fHe, fN, fSi, Emax, ↵) / exp( protons2/2)

Cosmic  Ray  Proton  Interac@ons  

p   γ  

R =2m2

p

E2p

Z1

✏2dN�

d✏

Z 4Ep✏/mp

0kp�✏

0�p�(Ep, ✏0)d✏0

4  

Page 5: Extragalac)c*Cosmic*Rays*above* the*Iron*Knee* · 2016-03-02 · MCMC*Likelihood*Scan:* Spectral*+Composi)on*Fits* n=3*evolu)on*result L(fp, fHe, fN, fSi, Emax, ↵) / exp( protons2/2)

Composi@on-­‐  Consider  Nuclei?  

���

���

���

���

���

�� ���� �� ���� ��

�������

������

��������

����

����������

���

����� ������ ����

����� ����

��

��

��

��

��

��

��

��

�� ���� �� ���� ��

�������

������

��������

����

����� �

�������

���

����� ������ ����

����� ����

5  

Page 6: Extragalac)c*Cosmic*Rays*above* the*Iron*Knee* · 2016-03-02 · MCMC*Likelihood*Scan:* Spectral*+Composi)on*Fits* n=3*evolu)on*result L(fp, fHe, fN, fSi, Emax, ↵) / exp( protons2/2)

Cosmic  Ray  Nuclei  Interac@ons  

γ  N  

R =2m2

N

E2N

Z1

✏2dN�

d✏

Z 4EN✏/mN

0kN�✏

0�N�(EN, ✏0)d✏0

6  

Page 7: Extragalac)c*Cosmic*Rays*above* the*Iron*Knee* · 2016-03-02 · MCMC*Likelihood*Scan:* Spectral*+Composi)on*Fits* n=3*evolu)on*result L(fp, fHe, fN, fSi, Emax, ↵) / exp( protons2/2)

Sources  of  Cosmic  Ray  Nuclei  Must  be  Nearby  

���

���

���

���

���

�� ���� �� ���� ��

�������

������

��������

����

����������

���

����� ������ ����

����� ����

��

��

��

��

��

��

��

��

�� ���� �� ���� ��

�������

������

��������

����

����� �

�������

���

����� ������ ����

����� ����

7  

Page 8: Extragalac)c*Cosmic*Rays*above* the*Iron*Knee* · 2016-03-02 · MCMC*Likelihood*Scan:* Spectral*+Composi)on*Fits* n=3*evolu)on*result L(fp, fHe, fN, fSi, Emax, ↵) / exp( protons2/2)

Nuclei  Propaga@on  and  Disintegra@on  

From astro-ph/1107.2055      8  

Page 9: Extragalac)c*Cosmic*Rays*above* the*Iron*Knee* · 2016-03-02 · MCMC*Likelihood*Scan:* Spectral*+Composi)on*Fits* n=3*evolu)on*result L(fp, fHe, fN, fSi, Emax, ↵) / exp( protons2/2)

Assump)ons  on  Source  Popula)on  

dN

dVC/ (1+ z)n

EZ,max

= (Z/26)⇥EFe,max

dN

dE/ E�↵

exp[�E/EZ,max

]

z < zmax

n = �6, �3, 0, 3

9  

Page 10: Extragalac)c*Cosmic*Rays*above* the*Iron*Knee* · 2016-03-02 · MCMC*Likelihood*Scan:* Spectral*+Composi)on*Fits* n=3*evolu)on*result L(fp, fHe, fN, fSi, Emax, ↵) / exp( protons2/2)

MCMC  Likelihood  Scan:  Spectral  +  Composi)on  Fits  

n=3  evolu)on  result  

L(fp, fHe, fN, fSi,Emax,↵) / exp(��2/2)

0.01

0.1

1

10

100

1000

17.5 18 18.5 19 19.5 20 20.5

E2 dN

/dE

[eV

cm-2

s-1

sr-1

]

log10 Energy [eV]

EFe, max=1020.2 eV

α=0.6

A=1-2A=3-6

A=7-19A=20-39A=40-56

650

700

750

800

850

17.5 18 18.5 19 19.5 20 20.5

<Xm

ax>

[g c

m-2

]

log10 Energy [eV]

protons

Iron

Auger 2014

10

20

30

40

50

60

70

80

17.5 18 18.5 19 19.5 20 20.5

RM

S(X m

ax) [

g cm

-2]

log10 Energy [eV]

protons

Iron

Auger 2014

10  

Page 11: Extragalac)c*Cosmic*Rays*above* the*Iron*Knee* · 2016-03-02 · MCMC*Likelihood*Scan:* Spectral*+Composi)on*Fits* n=3*evolu)on*result L(fp, fHe, fN, fSi, Emax, ↵) / exp( protons2/2)

MCMC  Likelihood  Scan:  Spectral  +  Composi)on  Fits  

0.01

0.1

1

10

100

1000

17.5 18 18.5 19 19.5 20 20.5

E2 dN

/dE

[eV

cm-2

s-1

sr-1

]

log10 Energy [eV]

EFe, max=1020.5 eV

α=1.8

A=1-2A=3-6

A=7-19A=20-39A=40-56

!"#$

!%$$

!%#$

!&$$

!&#$

!'%(# !'& !'&(# !') !')(# !*$ !*$(#

+,-./0!12!3-4*5

672'$!89:;2<!1:=5!

>;7?79@

A;79

BC2:;!*$'D

!"#

!$#

!%#

!&#

!'#

!(#

!)#

!*#

!")+' !"* !"*+' !", !",+' !$# !$#+'

-./012345!67!82

9$:

;<7"#!=>?@7A!6?B:!

C@<D<>E

F@<>

GH7?@!$#"&

n=-­‐6  evolu)on  result  

L(fp, fHe, fN, fSi,Emax,↵) / exp(��2/2)

11  

Page 12: Extragalac)c*Cosmic*Rays*above* the*Iron*Knee* · 2016-03-02 · MCMC*Likelihood*Scan:* Spectral*+Composi)on*Fits* n=3*evolu)on*result L(fp, fHe, fN, fSi, Emax, ↵) / exp( protons2/2)

MCMC  Results  Table  

Hard  spectra  preferred  for  source  evolu)on  following  that  of  the  SFR  

Flafer  spectra  preferred  for  nega)ve  source  evolu)on  

12  

Page 13: Extragalac)c*Cosmic*Rays*above* the*Iron*Knee* · 2016-03-02 · MCMC*Likelihood*Scan:* Spectral*+Composi)on*Fits* n=3*evolu)on*result L(fp, fHe, fN, fSi, Emax, ↵) / exp( protons2/2)

High  Spectral  Peaked  Blazar  Evolu)on  

From  astro-­‐ph/1310.0006  (Ajello  et  al.  2014)  

• Reminder:    Blazar  -­‐>  BL  Lac  (FR1)  -­‐>  HSP    • Supports  idea  that  FSRQ  (gas  accre)ng)  AGN  evolve  into  BL  Lac  (gas  starved)  AGN  

n=-­‐6  evolu)on  result  

Archetypal  HSP  example  Mrk  501  

13  

Page 14: Extragalac)c*Cosmic*Rays*above* the*Iron*Knee* · 2016-03-02 · MCMC*Likelihood*Scan:* Spectral*+Composi)on*Fits* n=3*evolu)on*result L(fp, fHe, fN, fSi, Emax, ↵) / exp( protons2/2)

Secondary  (Guaranteed)  Gamma-­‐Ray  Fluxes  From  >1018.6eV  Component  

107 108 109 1010 1011 1012 1013 1014

E [eV]

10�1

100

101

102

103

E2 J

[eV

cm�

2s�

1sr�

1 ]

Fermin = 0 / proton onlyn = 3 / mixedn = 0 / mixedn =�3 / mixedn =�6 / mixed

n=3  to  -­‐6  evolu)on  scenarios  give  rise  to  between  40%  and  12%  of  Fermi  limit  

0.01

0.1

1

10

100

1000

17.5 18 18.5 19 19.5 20 20.5

E2 dN

/dE

[eV

cm-2

s-1

sr-1

]

log10 Energy [eV]

EFe, max=1020.5 eV

α=1.8

A=1-2A=3-6

A=7-19A=20-39A=40-56

n=-­‐6  evolu)on  result  

0.01

0.1

1

10

100

1000

17.5 18 18.5 19 19.5 20 20.5

E2 dN

/dE

[eV

cm-2

s-1

sr-1

]

log10 Energy [eV]

EFe, max=1020.2 eV

α=0.6

A=1-2A=3-6

A=7-19A=20-39A=40-56

n=3  evolu)on  result  

14  

Page 15: Extragalac)c*Cosmic*Rays*above* the*Iron*Knee* · 2016-03-02 · MCMC*Likelihood*Scan:* Spectral*+Composi)on*Fits* n=3*evolu)on*result L(fp, fHe, fN, fSi, Emax, ↵) / exp( protons2/2)

Does  a  Separate  Class  of  Extragalac)c    Source  Dominate  at  Lower  Energies?  

0.01

0.1

1

10

100

1000

10000

17 17.5 18 18.5 19 19.5 20 20.5

EFe, max=1020.50eV

α=2.0

E2 dN

/dE

[eV

cm-2

s-1

sr-1

]

log10 Energy [eV]

A=1-2A=3-6

A=7-19A=20-39A=40-56

Nega)ve  evolu)on  (HSP)  

Posi)ve  evolu)on  (ISP  +  LSP)  

15  

Page 16: Extragalac)c*Cosmic*Rays*above* the*Iron*Knee* · 2016-03-02 · MCMC*Likelihood*Scan:* Spectral*+Composi)on*Fits* n=3*evolu)on*result L(fp, fHe, fN, fSi, Emax, ↵) / exp( protons2/2)

Cascade  Contribu)on  from  Second  Source  Popula)on  

0.01

0.1

1

10

100

1000

10000

17 17.5 18 18.5 19 19.5 20 20.5

EFe, max=1020.50eV

α=2.0

E2 dN

/dE

[eV

cm-2

s-1

sr-1

]

log10 Energy [eV]

A=1-2A=3-6

A=7-19A=20-39A=40-56

n=3  to  -­‐6  evolu)on  scenarios  give  rise  to  between  100%  and  40%  of  Fermi  limit  

16  

Page 17: Extragalac)c*Cosmic*Rays*above* the*Iron*Knee* · 2016-03-02 · MCMC*Likelihood*Scan:* Spectral*+Composi)on*Fits* n=3*evolu)on*result L(fp, fHe, fN, fSi, Emax, ↵) / exp( protons2/2)

General  Problem  for  Cascade  Contribu)on?    

Fermi  Collabora@on  (2015)-­‐  astro-­‐ph/1511.00693  

dN

dS/ S�↵

I =

ZSdN

dSdS

“Our  analysis  permits  us  to  es)mate  that  point  sources,  and  in  par)cular  blazars,  explain  almost  the  totality  (86+16-­‐14  %)  of  the  >50  GeV  EGB.”  

Energy [MeV]210 310 410 510

]-1 s

r-1

s-2

dN

/dE

[MeV

cm

2 E

-610

-510

-410

-310

Total EGB

IGRB

°Resolved sources, |b|>20

IGRB - Abdo et al. 2010

17  

Page 18: Extragalac)c*Cosmic*Rays*above* the*Iron*Knee* · 2016-03-02 · MCMC*Likelihood*Scan:* Spectral*+Composi)on*Fits* n=3*evolu)on*result L(fp, fHe, fN, fSi, Emax, ↵) / exp( protons2/2)

107 108 109 1010 1011 1012 1013 1014

E [eV]

10�1

100

101

102

103

E2 J

[eV

cm�

2s�

1sr�

1 ]

Fermin = 0 / proton onlyn = 3 / mixedn = 0 / mixedn =�3 / mixedn =�6 / mixed

Cascade  Contribu)on  from  Second  Source  Popula)on  

nuclei  above  1018.6  eV  

protons  and  nuclei  above  1017.8  eV  

18  

Page 19: Extragalac)c*Cosmic*Rays*above* the*Iron*Knee* · 2016-03-02 · MCMC*Likelihood*Scan:* Spectral*+Composi)on*Fits* n=3*evolu)on*result L(fp, fHe, fN, fSi, Emax, ↵) / exp( protons2/2)

An  Alterna)ve  Interpreta)on  of  the  Nega)ve  Source  Evolu)on  Result  

The  nega)ve  evolu)on  scenarios  help  resolve  both:    •  “hard  spectrum”    •  “IGRB  excess”    problems……but  extragalac)c  protons  at  lower  energies  appear  to  be  problema)c,  par)cularly  for  posi)ve  evolu)on  scenarios.      Alterna)vely,  these  scenarios  may  simply  be  encapsula)ng    the  fact  that  we’ve  a  local  dominant  source  and  our  value  for    the  UHECR  sea  level  is  not  typical!  

19  

Page 20: Extragalac)c*Cosmic*Rays*above* the*Iron*Knee* · 2016-03-02 · MCMC*Likelihood*Scan:* Spectral*+Composi)on*Fits* n=3*evolu)on*result L(fp, fHe, fN, fSi, Emax, ↵) / exp( protons2/2)

Conclusions    •  A  nega)ve  source  evolu)on  allows  for  an  E-­‐2  type  spectra  to  explain  CR  above  the  ankle  (such  an  evolu)on  is  observed  for  the  HBL  blazars)  

•  The  posi)ve  evolu)on  of  other  blazar  classes  (ISP  +  LSP  or  FRSQ),  would  give  rise  to  sub  Ankle  extragalac)c  cosmic  rays  (which  again  allow  an  E-­‐2  type  spectra  for  this  component)  

•  New  es)ma)ons  of  the  diffuse  gamma-­‐ray  background  are  challenging  for  all  evolu)on  scenarios  accoun)ng  for  sub  Ankle  extragalac)c  protons  

20  

Page 21: Extragalac)c*Cosmic*Rays*above* the*Iron*Knee* · 2016-03-02 · MCMC*Likelihood*Scan:* Spectral*+Composi)on*Fits* n=3*evolu)on*result L(fp, fHe, fN, fSi, Emax, ↵) / exp( protons2/2)

Secondary  Neutrino  Fluxes  

1013 1014 1015 1016 1017 1018 1019 1020

E [eV]

10�3

10�2

10�1

100

101

E2 J

[eV

cm�

2s�

1sr�

1 ]

ARA-37 (3yr)n = 0 / proton onlyn = 3 / mixedn = 0 / mixedn =�3 / mixedn =�6 / mixed

21  

Page 22: Extragalac)c*Cosmic*Rays*above* the*Iron*Knee* · 2016-03-02 · MCMC*Likelihood*Scan:* Spectral*+Composi)on*Fits* n=3*evolu)on*result L(fp, fHe, fN, fSi, Emax, ↵) / exp( protons2/2)

Cascade  Contribu)on  Limit  

From  astro-­‐ph/1206.2923  (Inoue  et  al.  2012)  

Limit  on  Cascade  Component  is  around  40%  of  Fermi  limit  

Constraints  also  placed  on  evolu)on  of  contributors  to  cascade  component  

22  

Page 23: Extragalac)c*Cosmic*Rays*above* the*Iron*Knee* · 2016-03-02 · MCMC*Likelihood*Scan:* Spectral*+Composi)on*Fits* n=3*evolu)on*result L(fp, fHe, fN, fSi, Emax, ↵) / exp( protons2/2)

General  Problem  for  Cascade  Contribu)on?    

Fermi  Collabora)on  (2015)-­‐  astro-­‐ph/1511.00693  

dN

dS/ S�↵

I =

ZSdN

dSdS

“Our  analysis  permits  us  to  es)mate  that  point  sources,  and  in  par)cular  blazars,  explain  almost  the  totality  (86+16-­‐14  %)  of  the  >50  GeV  EGB.”  

10-2

10-1

100

101

102

10-13 10-12 10-11 10-10 10-9 10-8

x(2-1.65)

x(2-2.5)

S2 dN/d

S [c

m-2

s-1 s

r-1]

S [cm-2 s-1]

23  

Page 24: Extragalac)c*Cosmic*Rays*above* the*Iron*Knee* · 2016-03-02 · MCMC*Likelihood*Scan:* Spectral*+Composi)on*Fits* n=3*evolu)on*result L(fp, fHe, fN, fSi, Emax, ↵) / exp( protons2/2)

From  astro-­‐ph/1506.06554  (Padovani  et  al.  2015)  

Similar  Evolu)on  Observed  for    Non-­‐Blazar  AGN?  

Radio  Loud  AGN  are  suggested  to  have  posi)ve  evolu)on  (n=2)  up  to  z=0.5,  followed  by  nega)ve  evolu)on  (n=-­‐4)  beyond  this.  

24  

Page 25: Extragalac)c*Cosmic*Rays*above* the*Iron*Knee* · 2016-03-02 · MCMC*Likelihood*Scan:* Spectral*+Composi)on*Fits* n=3*evolu)on*result L(fp, fHe, fN, fSi, Emax, ↵) / exp( protons2/2)

What  About  the  Contribu)on  from  Other  FR1  AGN  (LSP  +  ISP)?  

HSP  AGN  

ISP  +  LSP  AGN  

25  

Page 26: Extragalac)c*Cosmic*Rays*above* the*Iron*Knee* · 2016-03-02 · MCMC*Likelihood*Scan:* Spectral*+Composi)on*Fits* n=3*evolu)on*result L(fp, fHe, fN, fSi, Emax, ↵) / exp( protons2/2)

Intermediate/Low  Spectral  Peaked  Blazar  Evolu)on  

From  astro-­‐ph/1310.0006  (Ajello  et  al.  2014)   26  

Page 27: Extragalac)c*Cosmic*Rays*above* the*Iron*Knee* · 2016-03-02 · MCMC*Likelihood*Scan:* Spectral*+Composi)on*Fits* n=3*evolu)on*result L(fp, fHe, fN, fSi, Emax, ↵) / exp( protons2/2)

Source  RedshiJs  Contribu)ng  to  Arriving  Flux    

0.01

0.1

1

10

100

1000

10000

17 17.5 18 18.5 19 19.5 20

EFe, max=1020.20eV

α=0.60

E2 dN

/dE

[eV

cm-2

s-1

sr-1

]

log10 Energy [eV]

totalz<7e-4

7e-4<z<2e-32e-3<z<6e-36e-3<z<2e-22e-2<z<6e-26e-2<z<2e-12e-1<z<6e-1

0.01

0.1

1

10

100

1000

10000

17 17.5 18 18.5 19 19.5 20

EFe, max=1020.50eV

α=1.80

E2 dN

/dE

[eV

cm-2

s-1

sr-1

]

log10 Energy [eV]

totalz<7e-4

7e-4<z<2e-32e-3<z<6e-36e-3<z<2e-22e-2<z<6e-26e-2<z<2e-12e-1<z<6e-1

27  

Page 28: Extragalac)c*Cosmic*Rays*above* the*Iron*Knee* · 2016-03-02 · MCMC*Likelihood*Scan:* Spectral*+Composi)on*Fits* n=3*evolu)on*result L(fp, fHe, fN, fSi, Emax, ↵) / exp( protons2/2)

Injec)on  Species  Contribu)ng  to  Arriving  Flux    

0.01

0.1

1

10

100

1000

17.5 18 18.5 19 19.5 20 20.5

E2 dN

/dE

[eV

cm-2

s-1

sr-1

]

log10 Energy [eV]

EFe, max=1020.2 eV

α=0.6

pHe

NSi

Fe

0.01

0.1

1

10

100

1000

17.5 18 18.5 19 19.5 20 20.5

E2 dN

/dE

[eV

cm-2

s-1

sr-1

]

log10 Energy [eV]

EFe, max=1020.5 eV

α=1.8

pHe

NSi

Fe

28