extensions of holder¨ -type inequalities on time scales and their … · 2017. 7. 12. ·...

17
Available online at www.isr-publications.com/jnsa J. Nonlinear Sci. Appl., 10 (2017), 937–953 Research Article Journal Homepage: www.tjnsa.com - www.isr-publications.com/jnsa Extensions of H ¨ older-type inequalities on time scales and their applications Jing-Feng Tian a , Ming-Hu Ha b,* a College of Science and Technology, North China Electric Power University, Baoding, Hebei Province, 071051, P. R. China. b School of Science, Hebei University of Engineering, Handan, Hebei Province, 056038, P. R. China. Communicated by Sh. Wu Abstract In this paper, we present some new extensions of H¨ older-type inequalities on time scales via diamond-α integral. Moreover, the obtained results are used to generalize Minkowski’s inequality and Beckenbach-Dresher’s inequality on time scales. c 2017 All rights reserved. Keywords: older-type inequality, diamond-α integral, time scales, Minkowski’s inequality, Beckenbach-Dresher’s inequality. 2010 MSC: 26D15, 39A13. 1. Introduction Let f(x) and g(x) be continuous real-valued functions on [a, b] and 1 p + 1 q = 1. (I) If p> 1 and if f(x) > 0, g(x) > 0, then the following H¨ older’s inequality holds (see [14]): Z b a f(x)g(x)dx 6 Z b a f p (x)dx 1 p Z b a g q (x)dx 1 q . (1.1) (II) If 0 <p< 1 and if f(x) > 0, g(x) > 0, then the following reverse H¨ older’s inequality (see [11]) holds: Z b a f(x)g(x)dx > Z b a f p (x)dx 1 p Z b a g q (x)dx 1 q . (1.2) As is well-known, the above H¨ older-type inequalities play an important role in different branches of modern mathematics such as classical real and complex analysis, probability and statistics, numerical analysis, qualitative theory of differential equations and their applications. Various refinements, exten- sions and applications of inequality (1.1) and (1.2) have appeared in the literature. For example, Wu [24, 25] presented some new sharpened and generalized versions of H¨ older’s inequality in classical real * Corresponding author Email addresses: [email protected] (Jing-Feng Tian), [email protected] (Ming-Hu Ha) doi:10.22436/jnsa.010.03.07 Received 2016-06-16

Upload: others

Post on 31-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Extensions of Holder¨ -type inequalities on time scales and their … · 2017. 7. 12. · analysis, qualitative theory of differential equations and their applications. Various refinements,

Available online at www.isr-publications.com/jnsaJ. Nonlinear Sci. Appl., 10 (2017), 937–953

Research Article

Journal Homepage: www.tjnsa.com - www.isr-publications.com/jnsa

Extensions of Holder-type inequalities on time scales and their applications

Jing-Feng Tiana, Ming-Hu Hab,∗

aCollege of Science and Technology, North China Electric Power University, Baoding, Hebei Province, 071051, P. R. China.bSchool of Science, Hebei University of Engineering, Handan, Hebei Province, 056038, P. R. China.

Communicated by Sh. Wu

AbstractIn this paper, we present some new extensions of Holder-type inequalities on time scales via diamond-α integral. Moreover,

the obtained results are used to generalize Minkowski’s inequality and Beckenbach-Dresher’s inequality on time scales. c©2017All rights reserved.

Keywords: Holder-type inequality, diamond-α integral, time scales, Minkowski’s inequality, Beckenbach-Dresher’s inequality.2010 MSC: 26D15, 39A13.

1. Introduction

Let f(x) and g(x) be continuous real-valued functions on [a,b] and 1p + 1

q = 1.

(I) If p > 1 and if f(x) > 0, g(x) > 0, then the following Holder’s inequality holds (see [14]):∫ba

f(x)g(x)dx 6

( ∫ba

fp(x)dx

) 1p( ∫b

a

gq(x)dx

) 1q

. (1.1)

(II) If 0 < p < 1 and if f(x) > 0, g(x) > 0, then the following reverse Holder’s inequality (see [11]) holds:∫ba

f(x)g(x)dx >

( ∫ba

fp(x)dx

) 1p( ∫b

a

gq(x)dx

) 1q

. (1.2)

As is well-known, the above Holder-type inequalities play an important role in different branches ofmodern mathematics such as classical real and complex analysis, probability and statistics, numericalanalysis, qualitative theory of differential equations and their applications. Various refinements, exten-sions and applications of inequality (1.1) and (1.2) have appeared in the literature. For example, Wu[24, 25] presented some new sharpened and generalized versions of Holder’s inequality in classical real

∗Corresponding authorEmail addresses: [email protected] (Jing-Feng Tian), [email protected] (Ming-Hu Ha)

doi:10.22436/jnsa.010.03.07

Received 2016-06-16

Page 2: Extensions of Holder¨ -type inequalities on time scales and their … · 2017. 7. 12. · analysis, qualitative theory of differential equations and their applications. Various refinements,

J.-F. Tian, M.-H. Ha, J. Nonlinear Sci. Appl., 10 (2017), 937–953 938

analysis. Tian and Ha [20, 21] gave two new properties of generalized Holder’s inequalities. Liu [12]established an important Holder-type inequality for fuzzy variables. For more detail expositions, theinterested reader may consult [1, 2, 13, 18, 19], and the references therein. Among various extensions of(1.1) and (1.2), Wong et al. in [23] first established the following time scale versions of Holder’s inequalityand reverse Holder’s inequality by using the delta-integral (i.e. ∆-integral).

Theorem 1.1. Let T be a time scale, a,b ∈ T with a < b, let 1p + 1

q = 1 and let f,g,h ∈ Crd([a,b]T, R). Ifp > 1, then ∫b

a

|h(x)||f(x)g(x)|∆x 6

( ∫ba

|h(x)||f(x)|p∆x

) 1p( ∫b

a

|h(x)||g(x)|q∆x

) 1q

. (1.3)

If 0 < p < 1, then the above inequality (1.3) is reversed.

Later in 2008, Ozkan et al. [15] presented the following time scale versions of Holder’s inequalityand reverse Holder’s inequality by using the nabla-integral (i.e., ∇-integral) and diamond-α integral (i.e.�α-integral).

Theorem 1.2. Let T be a time scale, a,b ∈ T with a < b, let 1p + 1

q = 1, and let f,g,h ∈ Cld([a,b]T, R). Ifp > 1, then ∫b

a

|h(x)||f(x)g(x)|∇x 6( ∫b

a

|h(x)||f(x)|p∇x) 1p( ∫b

a

|h(x)||g(x)|q∇x) 1q

. (1.4)

If 0 < p < 1, then the above inequality (1.4) is reversed.

Theorem 1.3. Let 1p + 1

q = 1, let T be a time scale, a,b ∈ T with a < b, and let f,g,h : [a,b]T → R be�α-integrable functions. If p > 1, then∫b

a

|h(x)||f(x)g(x)| �α x 6( ∫b

a

|h(x)||f(x)|p �α x) 1p( ∫b

a

|h(x)||g(x)|q �α x) 1q

. (1.5)

If 0 < p < 1, then the inequality (1.5) is reversed.

In 2010, Yang [26] derived a functional generalization of diamond-α integral Holder’s inequality ontime scales as follows.

Theorem 1.4. Let T be a time scale, a,b ∈ T with a < b, let {fj(x)}mj=1, {gj(x)}kj=1 and {hj(x)}lj=1 be continuous

real-valued functions on [a,b]T, and let Hl(x1, x2, · · · , xl) > 0, Fm(x1, x2, · · · , xm) and Gk(x1, x2, · · · , xk) bethree arbitrary functions of l, m and k variables, respectively. If p > 1 with 1

p + 1q = 1, then∫b

a

Hl(h1,h2, · · · ,hl)|Fm(f1, f2, · · · , fm)Gk(g1,g2, · · · ,gk)| �α x

6( ∫ba

Hl(h1,h2, · · · ,hl)|Fm(f1, f2, · · · , fm)|p �α x)1/p

×( ∫ba

Hl(h1,h2, · · · ,hl)|Gk(g1,g2, · · · ,gk)|q �α x)1/q

.

(1.6)

Recently, Chen and Chen in [6] gave the following reversed version of inequality (1.6).

Theorem 1.5. Let T be a time scale, a,b ∈ T with a < b, let {fj(x)}mj=1, {gj(x)}kj=1 and {hj(x)}lj=1 be continuous

real-valued functions on [a,b]T, and let Hl(x1, x2, · · · , xl) > 0, Fm(x1, x2, · · · , xm) and Gk(x1, x2, · · · , xk) bethree arbitrary functions of l, m and k variables, respectively. If 0 < p < 1, 1

p + 1q = 1, then∫b

a

Hl(h1,h2, · · · ,hl)|Fm(f1, f2, · · · , fm)Gk(g1,g2, · · · ,gk)| �α x

>( ∫ba

Hl(h1,h2, · · · ,hl)|Fm(f1, f2, · · · , fm)|p �α x)1/p

×( ∫ba

Hl(h1,h2, · · · ,hl)|Gk(g1,g2, · · · ,gk)|q �α x)1/q

.

(1.7)

Page 3: Extensions of Holder¨ -type inequalities on time scales and their … · 2017. 7. 12. · analysis, qualitative theory of differential equations and their applications. Various refinements,

J.-F. Tian, M.-H. Ha, J. Nonlinear Sci. Appl., 10 (2017), 937–953 939

The aim of this paper is to present some new extensions of the above Holder-type inequalities (1.3),(1.4), (1.5), (1.6), (1.7). Some related inequalities are also considered.

2. Preliminaries

In this section, we recall the following concepts related to the notion of time scales. A time scale T

is an arbitrary nonempty closed subset of the real numbers R. The calculus of time scales was initiatedby Hilger [8] in order to unify discrete and continuous analysis. The forward jump operator and thebackward jump operator [8] are defined by:

σ(t) := inf{s ∈ T : s > t}, ρ(t) := sup{s ∈ T : s < t},

(supplemented by inf ∅ = sup T and sup ∅ = inf T). A point t ∈ T is called right-scattered, right-dense,left-scattered, left-dense, if σ(t) > t, σ(t) = t, ρ(t) < t, ρ(t) = t holds, respectively [8].

Throughout the text, we shall denote a time scales interval by

[a,b]T = {t ∈ T : a 6 t 6 b,a,b ∈ T},

and denote

Tk :=

{T − {t1}, if T has a left-scattered maximum t1,T, otherwise,

Tk :=

{T − {t2}, if T has a right-scattered minimum t2,T, otherwise,

andT∗ = Tk ∩Tk.

Definition 2.1 ([5]). A function f : T → R is said to be rd-continuous, if it is continuous at each right-dense point and the left sided limit exists at every left-dense point. The set of all rd-continuous functionsis denoted by Crd[T, R].

Definition 2.2 ([5]). A function f : T → R is said to be ld-continuous, if it is continuous at all left-densepoints in T and its right-sided limits finite at all right-dense points in T. The set of all ld-continuousfunctions is denoted by Cld[T, R].

Definition 2.3 ([9]). A function f : Tk → R is called differentiable at t ∈ Tk, with delta derivative f∆(t),if given ε > 0 there exists a neighborhood U of t such that

|f(σ(t)) − f(s) − f∆(t)(σ(t) − s)| 6 ε|σ(t) − s|,

for all s ∈ U.

Remark 2.4 ([9]). If T = R, then f∆(t) becomes the usual derivative, that is, f∆(t) = f ′(t). If T = Z, thenf∆(t) reduces to the usual forward difference, that is, f∆(t) = ∆f(t).

Definition 2.5 ([9]). A function F : T→ R is called a delta antiderivative of f : T→ R provided F∆ = f(t)holds for all t ∈ T. In this case we define the delta integral of f by∫t

s

f(τ)∆τ = F(t) − F(s),

where s, t ∈ T.

Definition 2.6 ([4]). A function f : Tk → R is called nabla differentiable at t ∈ Tk, with nabla derivativef∇(t), if given ε > 0 there exists a neighborhood V of t such that

|f(ρ(t)) − f(s) − f∇(t)(ρ(t) − s)| 6 ε|ρ(t) − s|,

for all s ∈ V.

Page 4: Extensions of Holder¨ -type inequalities on time scales and their … · 2017. 7. 12. · analysis, qualitative theory of differential equations and their applications. Various refinements,

J.-F. Tian, M.-H. Ha, J. Nonlinear Sci. Appl., 10 (2017), 937–953 940

Definition 2.7 ([4]). A function G : T → R is called a nabla antiderivative of g : T → R providedG∇ = g(t) holds for all t ∈ T. In this case we define the nabla integral of g by∫t

s

g(τ)∇τ = G(t) −G(s),

where s, t ∈ T.

Definition 2.8 ([17]). Let T be a time scale and f(t) be differentiable on T in the 4 and ∇ senses. Fort ∈ T we define the diamond-α derivative f�α(t) by

f�α(t) = αf4(t) + (1 −α)f∇(t), 0 6 α 6 1.

Thus f is diamond-α differentiable if and only if f is 4 and ∇ differentiable.

Remark 2.9 ([17]). The diamond-α derivative reduces to the standard4 derivative for α = 1 or the standard∇ derivative for α = 0.

Proposition 2.10 ([17]). Let f,g : T→ R be diamond-α differentiable at t ∈ T. Then

(i) f+ g : T→ R is diamond-α differentiable at t ∈ T with

(f+ g)�α(t) = f�α(t) + g�α(t).

(ii) For any constant c, cf : T→ R is diamond-α differentiable at t ∈ T with

(cf)�α(t) = cf�α(t).

(iii) fg : T→ R is diamond-α differentiable at t ∈ T with

(fg)�α(t) = f�α(t)g(t) +αfσ(t)g4(t) + (1 −α)fρ(t)g∇(t).

Definition 2.11 ([17]). Let a, t ∈ T and h : T → R. Then the diamond-α integral from a to t of h isdefined by ∫t

a

h(τ) �α τ = α∫ta

h(τ)4τ+ (1 −α)

∫ta

h(τ)∇τ, 0 6 α 6 1.

Remark 2.12 ([17]). We may notice that since the �α integral is a combined4 and ∇ integral, we in generaldo not have ( ∫t

a

h(τ) �α τ)�α

= h(t), t ∈ T.

Proposition 2.13 ([17]). Let T be a time scale, a,b ∈ T with a < b. Assume that f(x) and g(x) are �α-integrablefunctions on [a,b]T. Then

(i)∫ta[f(τ) + g(τ)] �α τ =

∫ta f(τ) �α τ+

∫ta g(τ) �α τ;

(ii)∫ta cf(τ) �α τ = c

∫ta f(τ) �α τ;

(iii)∫ta f(τ) �α τ = −

∫at f(τ) �α τ;

(iv)∫ta f(τ) �α τ =

∫ba f(τ) �α τ+

∫tb f(τ) �α τ;

(v)∫aa f(τ) �α τ = 0.

For more details on time scales theory, readers may consult [3, 9, 10, 16, 22] and the references therein.Now, we present the following extensions of Holder’s and reverse Holder’s inequality on time scales viathe diamond-α integral.

Page 5: Extensions of Holder¨ -type inequalities on time scales and their … · 2017. 7. 12. · analysis, qualitative theory of differential equations and their applications. Various refinements,

J.-F. Tian, M.-H. Ha, J. Nonlinear Sci. Appl., 10 (2017), 937–953 941

3. Main results

In this section, we shall give the following lemmas firstly before we give our results.

Lemma 3.1 ([17]). Let T be a time scale, a,b ∈ T with a < b. Assume that f(x) and g(x) are �α-integrablefunctions on [a,b]T.

(1) If f(x) > 0 for all x ∈ [a,b]T, then∫ba f(x) �α x > 0.

(2) If f(x) 6 g(x) for all x ∈ [a,b]T, then∫ba f(x) �α x 6

∫ba g(x) �α x.

(3) If f(x) > 0 for all x ∈ [a,b]T, then f(x) = 0 if and only if∫ba f(x) �α x = 0.

Lemma 3.2 (Radon’s inequality, see page 61 in [7]). Let ζi > 0 and ξi > 0, for i = 1, 2, · · · ,m.

(a) If γ > 0 or γ < −1, then (∑mi=1 ζi

)γ+1(∑mi=1 ξi

)γ 6m∑i=1

(ζγ+1i

ξγi

). (3.1)

(b) If −1 < γ < 0, then inequality (3.1) is reversed.

Next, we give the following extension of Schlomilch’s inequality [7] on time scales for diamond-αintegral.

Lemma 3.3. Let T be a time scale, a,b ∈ T with a < b, let {fj(x)}mj=1 and {hj(x)}lj=1 be continuous real-valued

functions on [a,b]T, let Hl(x1, x2, · · · , xl) > 0 with∫baHl(h1,h2, · · · ,hl) �α x = 1 and let Fm(x1, x2, · · · , xm)

be an arbitrary function of m variables. If s > r > 0, then( ∫ba

Hl(h1,h2, · · · ,hl)|Fm(f1, f2, · · · , fm)|s �α x) 1s

>

( ∫ba

Hl(h1,h2, · · · ,hl)|Fm(f1, f2, · · · , fm)|r �α x) 1r

.

Proof. In order to prove Lemma 3.3, we need Bernoulli’s inequality, that is, if x > 0, then

xp > px+ 1 − p, if p > 1.

Since s > r > 0, we have sr > 1. Thus, by Bernoulli’s inequality, we have∫ba

Hl(h1,h2, · · · ,hl)(

|Fm(f1, f2, · · · , fm)|∫baHl(h1,h2, · · · ,hl)|Fm(f1, f2, · · · , fm)| �α x

) sr

�α x

>∫ba

Hl(h1,h2, · · · ,hl)( s

r |Fm(f1, f2, · · · , fm)|∫baHl(h1,h2, · · · ,hl)|Fm(f1, f2, · · · , fm)| �α x

+ 1 −s

r

)�α x

= 1,

that is, ∫ba

Hl(h1,h2, · · · ,hl)|Fm(f1, f2, · · · , fm)|sr �α x

>

( ∫ba

Hl(h1,h2, · · · ,hl)|Fm(f1, f2, · · · , fm)| �α x) sr

.

Page 6: Extensions of Holder¨ -type inequalities on time scales and their … · 2017. 7. 12. · analysis, qualitative theory of differential equations and their applications. Various refinements,

J.-F. Tian, M.-H. Ha, J. Nonlinear Sci. Appl., 10 (2017), 937–953 942

Letting Fm be replaced by Frm in the above inequality, we get∫ba

Hl(h1,h2, · · · ,hl)|Fm(f1, f2, · · · , fm)|s �α x

>

( ∫ba

Hl(h1,h2, · · · ,hl)|Fm(f1, f2, · · · , fm)|r �α x) sr

.

Hence ( ∫ba

Hl(h1,h2, · · · ,hl)|Fm(f1, f2, · · · , fm)|s �α x) 1s

>

( ∫ba

Hl(h1,h2, · · · ,hl)|Fm(f1, f2, · · · , fm)|r �α x) 1r

.

Thus, the proof of Lemma 3.3 is completed.

By the same method as in Lemma 3.3, we can obtain the following Schlomilch’s inequality [7] on timescales.

Lemma 3.4. Let T be a time scale, a,b ∈ T with a < b, let h(x) : [a,b]T → [0,+∞) be �α-integrable functionsuch that

∫ba h(x) �α x = 1, and let f(x) : [a,b]T → [0,+∞) be �α-integrable function. If s > r > 0, then( ∫b

a

h(x)fs(x) �α x) 1s

>

( ∫ba

h(x)fr(x) �α x) 1r

.

Now, we present the following �α-integrable Holder-type inequalities.

Theorem 3.5. Let 1p + 1

q = 1r with p,q, r ∈ R − {0}, let T be a time scale, a,b ∈ T with a < b, let

{fj(x)}mj=1, {gj(x)}kj=1 and {hj(x)}

lj=1 be continuous real-valued functions on [a,b]T and let Hl(x1, x2, · · · , xl) >

0, Fm(x1, x2, · · · , xm) and Gk(x1, x2, · · · , xk) be three arbitrary functions of l,m and k variables, respectively.

(I) If p > 0 and q > 0 or p > 0, q < 0 and r < 0, then( ∫ba

Hl(h1,h2, · · · ,hl)|Frm(f1, f2, · · · , fm)Grk(g1,g2, · · · ,gk)| �α x) 1r

6

( ∫ba

Hl(h1,h2, · · · ,hl)|Fm(f1, f2, · · · , fm)|p �α x) 1p

×( ∫b

a

Hl(h1,h2, · · · ,hl)|Gk(g1,g2, · · · ,gk)|q �α x) 1q

.

(3.2)

(II) If p > 0, q < 0 and r > 0 or p < 0 and q < 0, then( ∫ba

Hl(h1,h2, · · · ,hl)|Frm(f1, f2, · · · , fm)Grk(g1,g2, · · · ,gk)| �α x) 1r

>

( ∫ba

Hl(h1,h2, · · · ,hl)|Fm(f1, f2, · · · , fm)|p �α x) 1p

×( ∫b

a

Hl(h1,h2, · · · ,hl)|Gk(g1,g2, · · · ,gk)|q �α x) 1q

.

(3.3)

Proof.

(I). Case 1: Let p > 0, q > 0. From 1p + 1

q = 1r , we find that

p

r> 1,

1p/r

+1q/r

= 1.

Hence, from inequality (1.6) we have

Page 7: Extensions of Holder¨ -type inequalities on time scales and their … · 2017. 7. 12. · analysis, qualitative theory of differential equations and their applications. Various refinements,

J.-F. Tian, M.-H. Ha, J. Nonlinear Sci. Appl., 10 (2017), 937–953 943

∫ba

Hl(h1,h2, · · · ,hl)|Frm(f1, f2, · · · , fm)Grk(g1,g2, · · · ,gk)| �α x

6

( ∫ba

Hl(h1,h2, · · · ,hl)|Frm(f1, f2, · · · , fm)|pr �α x

) rp

×( ∫b

a

Hl(h1,h2, · · · ,hl)|Grk(g1,g2, · · · ,gk)|qr �α x

) rq

,

which implies ( ∫ba

Hl(h1,h2, · · · ,hl)|Frm(f1, f2, · · · , fm)Grk(g1,g2, · · · ,gk)| �α x) 1r

6

( ∫ba

Hl(h1,h2, · · · ,hl)|Fm(f1, f2, · · · , fm)|p �α x) 1p

×( ∫b

a

Hl(h1,h2, · · · ,hl)|Gk(g1,g2, · · · ,gk)|q �α x) 1q

.

Case 2: Let p > 0, q < 0 and r < 0. By the same method as in the above Case 1, we can obtain the desiredinequality (3.2).

(II). Case 3: Let p > 0, q < 0 and r > 0. From 1p + 1

q = 1r , we find that

r

p> 1,

1r/p

+1

−q/p=p

r−p

q= p

(1r−

1q

)= 1.

Thus, from inequality (1.6) we have∫ba

Hl(h1,h2, · · · ,hl)|Fpm(f1, f2, · · · , fm)| �α x

=

∫ba

Hl(h1,h2, · · · ,hl)|Fpm(f1, f2, · · · , fm)||Gpk(g1,g2, · · · ,gk)||G−pk (g1,g2, · · · ,gk)| �α x

6

( ∫ba

Hl(h1,h2, · · · ,hl)|Fpm(f1, f2, · · · , fm)Gpk(g1,g2, · · · ,gk)|rp �α x

)pr

×( ∫b

a

Hl(h1,h2, · · · ,hl)|G−pk (g1,g2, · · · ,gk)|

−qp �α x

)−pq

=

( ∫ba

Hl(h1,h2, · · · ,hl)|Frm(f1, f2, · · · , fm)Grk(g1,g2, · · · ,gk)| �α x)pr

×( ∫b

a

Hl(h1,h2, · · · ,hl)|Gqk(g1,g2, · · · ,gk)| �α x

)−pq

,

which implies ( ∫ba

Hl(h1,h2, · · · ,hl)|Fpm(f1, f2, · · · , fm)| �α x) 1p

6

( ∫ba

Hl(h1,h2, · · · ,hl)|Frm(f1, f2, · · · , fm)Grk(g1,g2, · · · ,gk)| �α x) 1r

×( ∫b

a

Hl(h1,h2, · · · ,hl)|Gqk(g1,g2, · · · ,gk)| �α x

)− 1q

.

(3.4)

Page 8: Extensions of Holder¨ -type inequalities on time scales and their … · 2017. 7. 12. · analysis, qualitative theory of differential equations and their applications. Various refinements,

J.-F. Tian, M.-H. Ha, J. Nonlinear Sci. Appl., 10 (2017), 937–953 944

Therefore, by inequality (3.4), we have( ∫ba

Hl(h1,h2, · · · ,hl)|Frm(f1, f2, · · · , fm)Grk(g1,g2, · · · ,gk)| �α x) 1r

>

( ∫ba

Hl(h1,h2, · · · ,hl)|Fpm(f1, f2, · · · , fm)| �α x) 1p

×( ∫b

a

Hl(h1,h2, · · · ,hl)|Gqk(g1,g2, · · · ,gk)| �α x

) 1q

.

Case 4: Let p < 0 and q < 0. By the same method as in the above Case 3, we can obtain the desiredinequality (3.3). The proof of Theorem 3.5 is completed.

Corollary 3.6. (T = R) Let 1p + 1

q = 1r with p,q, r ∈ R − {0}, let {fj(x)}mj=1, {gj(x)}kj=1 and {hj(x)}

lj=1 be con-

tinuous real-valued functions on [a,b] and let Hl(x1, x2, · · · , xl) > 0, Fm(x1, x2, · · · , xm) and Gk(x1, x2, · · · , xk)be three arbitrary functions of l,m and k variables, respectively.

(I) If p > 0 and q > 0 or p > 0, q < 0 and r < 0, then( ∫ba

Hl(h1,h2, · · · ,hl)|Frm(f1, f2, · · · , fm)Grk(g1,g2, · · · ,gk)|dx) 1r

6

( ∫ba

Hl(h1,h2, · · · ,hl)|Fm(f1, f2, · · · , fm)|pdx

) 1p

×( ∫b

a

Hl(h1,h2, · · · ,hl)|Gk(g1,g2, · · · ,gk)|qdx) 1q

.

(II) If p > 0, q < 0 and r > 0 or p < 0 and q < 0, then( ∫ba

Hl(h1,h2, · · · ,hl)|Frm(f1, f2, · · · , fm)Grk(g1,g2, · · · ,gk)|dx) 1r

>

( ∫ba

Hl(h1,h2, · · · ,hl)|Fm(f1, f2, · · · , fm)|pdx

) 1p

×( ∫b

a

Hl(h1,h2, · · · ,hl)|Gk(g1,g2, · · · ,gk)|qdx) 1q

.

Corollary 3.7. (T = Z) Let 1p + 1

q = 1r with p,q, r ∈ R − {0}, let {ai1,ai2, . . . ,aim}ni=1, {bi1,bi2, . . . ,bik}ni=1

and {ci1, ci2, . . . , cil}ni=1 be real numbers for any m,k, l ∈ N, and let Hl(x1, x2, · · · , xl) > 0, Fm(x1, x2, · · · , xm)and Gk(x1, x2, · · · , xk) be three arbitrary functions of l,m and k variables, respectively.

(I) If p > 0 and q > 0 or p > 0, q < 0 and r < 0, then( n∑i=1

Hl(ci1, ci2, · · · , cil)|Frm(ai1,ai2, · · · ,aim)Grk(bi1,bi2, · · · ,bik)|) 1r

6

( n∑i=1

Hl(ci1, ci2, · · · , cil)|Fm(ai1,ai2, · · · ,aim)|p) 1p

×( n∑i=1

Hl(ci1, ci2, · · · , cil)|Gk(bi1,bi2, · · · ,bik)|q) 1q

.

Page 9: Extensions of Holder¨ -type inequalities on time scales and their … · 2017. 7. 12. · analysis, qualitative theory of differential equations and their applications. Various refinements,

J.-F. Tian, M.-H. Ha, J. Nonlinear Sci. Appl., 10 (2017), 937–953 945

(II) If p > 0, q < 0 and r > 0 or p < 0 and q < 0, then( n∑i=1

Hl(ci1, ci2, · · · , cil)|Frm(ai1,ai2, · · · ,aim)Grk(bi1,bi2, · · · ,bik)|) 1r

>

( n∑i=1

Hl(ci1, ci2, · · · , cil)|Fm(ai1,ai2, · · · ,aim)|p) 1p

×( n∑i=1

Hl(ci1, ci2, · · · , cil)|Gk(bi1,bi2, · · · ,bik)|q) 1q

.

Theorem 3.8. Let T be a time scale, a,b ∈ T with a < b, let {fj(x)}mj=1, {gj(x)}kj=1 and {hj(x)}

lj=1 be con-

tinuous real-valued functions on [a,b]T, let Hl(x1, x2, · · · , xl) > 0 with∫baHl(h1,h2, · · · ,hl) �α x = 1 and let

Fm(x1, x2, · · · , xm) and Gk(x1, x2, · · · , xk) be two arbitrary functions of m and k variables, respectively. If p > 0,q > 0 with 1

p + 1q < 1, then∫b

aHl(h1,h2, · · · ,hl)|Fm(f1, f2, · · · , fm)Gk(g1,g2, · · · ,gk)| �α x

6

( ∫baHl(h1,h2, · · · ,hl)|Fm(f1, f2, · · · , fm)|p �α x

) 1p

×( ∫baHl(h1,h2, · · · ,hl)|Gk(g1,g2, · · · ,gk)|q �α x

) 1q

.

Proof. Write ρ := 1p + 1

q , α = ρp, β = qρ. Then α > 1, β > 1 and 1α + 1

β = 1. Hence, from Lemma 3.3 withα < p, β < q and Theorem 1.4, we find that∫b

aHl(h1,h2, · · · ,hl)|Fm(f1, f2, · · · , fm)Gk(g1,g2, · · · ,gk)| �α x

6

( ∫baHl(h1,h2, · · · ,hl)|Fm(f1, f2, · · · , fm)|α �α x

) 1α

×( ∫baHl(h1,h2, · · · ,hl)|Gk(g1,g2, · · · ,gk)|β �α x

) 1β

6

( ∫baHl(h1,h2, · · · ,hl)|Fm(f1, f2, · · · , fm)|p �α x

) 1p

×( ∫baHl(h1,h2, · · · ,hl)|Gk(g1,g2, · · · ,gk)|q �α x

) 1q

.

The proof of Theorem 3.8 is completed.

Corollary 3.9. (T = R) Let {fj(x)}mj=1, {gj(x)}kj=1 and {hj(x)}lj=1 be continuous real-valued functions on [a,b],

let Hl(x1, x2, · · · , xl) > 0 with∫baHl(h1,h2, · · · ,hl)dx = 1 and let Fm(x1, x2, · · · , xm) and Gk(x1, x2, · · · , xk)

be two arbitrary functions of m and k variables, respectively. If p > 0, q > 0 with 1p + 1

q < 1, then∫baHl(h1,h2, · · · ,hl)|Fm(f1, f2, · · · , fm)Gk(g1,g2, · · · ,gk)|dx

6

( ∫baHl(h1,h2, · · · ,hl)|Fm(f1, f2, · · · , fm)|pdx

) 1p

×( ∫baHl(h1,h2, · · · ,hl)|Gk(g1,g2, · · · ,gk)|qdx

) 1q

.

Page 10: Extensions of Holder¨ -type inequalities on time scales and their … · 2017. 7. 12. · analysis, qualitative theory of differential equations and their applications. Various refinements,

J.-F. Tian, M.-H. Ha, J. Nonlinear Sci. Appl., 10 (2017), 937–953 946

Corollary 3.10. (T = Z) Let {ai1,ai2, . . . ,aim}ni=1, {bi1,bi2, . . . ,bik}ni=1 and {ci1, ci2, . . . , cil}ni=1 be real num-bers for any m,k, l ∈ N, let Hl(x1, x2, · · · , xl) > 0 with

∑ni=1Hl(ci1, ci2, · · · , cil) = 1, let Fm(x1, x2, · · · , xm)

and Gk(x1, x2, · · · , xk) be two arbitrary functions of m and k variables, respectively. If p > 0, q > 0 with1p + 1

q < 1, then

n∑i=1

Hl(ci1, ci2, · · · , cil)|Fm(ai1,ai2, · · · ,aim)Gk(bi1,bi2, · · · ,bik)|

6

( n∑i=1

Hl(ci1, ci2, · · · , cil)|Fm(ai1,ai2, · · · ,aim)|p) 1p

×( n∑i=1

Hl(ci1, ci2, · · · , cil)|Gk(bi1,bi2, · · · ,bik)|q) 1q

.

Theorem 3.11. Let T be a time scale, a,b ∈ T with a < b, let {f1j(x)}k1j=1, {f2j(x)}

k2j=1, . . ., {fmj(x)}kmj=1 and

{hj(x)}lj=1 be continuous real-valued functions on [a,b]T and let Hl(x1, x2, · · · , xl) > 0, Fk1(x1, x2, · · · , xk1),

Fk2(x1, x2, · · · , xk2), . . ., Fkm(x1, x2, · · · , xkm) be m+ 1 arbitrary functions of l, k1, k2, . . . , km variables, respec-tively.

(I) If 1 < λ1, λ2, · · · , λm <∞,∑mi=1

1λi

= 1, then∫ba

Hl(h1,h2, · · · ,hl)∣∣∣∣ m∏i=1

Fki(fi1, fi2, · · · , fiki)∣∣∣∣ �α x

6m∏i=1

( ∫ba

Hl(h1,h2, · · · ,hl)∣∣Fki(fi1, fi2, · · · , fiki)

∣∣λi �α x) 1λi

.

(3.5)

(II) If λ1 > 0, λ2, · · · , λm <∞ with∑mi=1

1λi

= 1, then inequality (3.5) is reversed.

Proof. We need to prove only Case (I). The proof of Case (II) is similar. Inequality (3.5) is trivially truewhen Fki(fi1, fi2, · · · , fiki) (i = 1, 2, · · · ,m) is identically zero. Let

m∏i=1

( ∫ba

Hl(h1,h2, · · · ,hl)∣∣Fki(fi1, fi2, · · · , fiki)

∣∣λi �α x) 1λi

6= 0,

and let

Φi =H

1λi

l (h1,h2, · · · ,hl)∣∣Fki(fi1, fi2, · · · , fiki)

∣∣( ∫baHl(h1,h2, · · · ,hl)

∣∣Fki(fi1, fi2, · · · , fiki)∣∣λi �α x) 1

λi

,

where i = 1, 2, · · · ,m.By the famous AG inequality

m∏i=1

Φi 6m∑i=1

Φλiiλi

, (3.6)

(where 1 < λ1, λ2, · · · , λm <∞,∑mi=1

1λi

= 1; If λ1 > 0, λ2, · · · , λm < 0,∑mi=1

1λi

= 1, then inequality (3.6)is reversed) we find that∫b

a

m∏i=1

Φi �α x 6∫ba

( m∑i=1

Φλiiλi

)�α x

=

m∑i=1

1λi

∫ba

Hl(h1,h2, · · · ,hl)|Fki(fi1, fi2, · · · , fik)|λi∫baHl(h1,h2, · · · ,hl)|Fki(fi1, fi2, · · · , fik)|λi �α x

�α x

Page 11: Extensions of Holder¨ -type inequalities on time scales and their … · 2017. 7. 12. · analysis, qualitative theory of differential equations and their applications. Various refinements,

J.-F. Tian, M.-H. Ha, J. Nonlinear Sci. Appl., 10 (2017), 937–953 947

=

m∑i=1

1λi

= 1.

Hence, we get the desired inequality (3.5).

Corollary 3.12. (T = R) Let {f1j(x)}k1j=1, {f2j(x)}

k2j=1, . . ., {fmj(x)}kmj=1 and {hj(x)}

lj=1 be continuous real-valued

functions on [a,b] and let Hl(x1, x2, · · · , xl)>0, Fk1(x1, x2,· · ·, xk1), Fk2(x1, x2,· · ·, xk2), . . ., Fkm(x1, x2,· · ·, xkm)be m+ 1 arbitrary functions of l, k1, k2, . . . , km variables, respectively.

(I) If 1 < λ1, λ2, · · · , λm <∞,∑mi=1

1λi

= 1, then

∫ba

Hl(h1,h2, · · · ,hl)∣∣∣∣ m∏i=1

Fki(fi1, fi2, · · · , fiki)∣∣∣∣dx

6m∏i=1

( ∫ba

Hl(h1,h2, · · · ,hl)∣∣Fki(fi1, fi2, · · · , fiki)

∣∣λidx) 1λi

.

(3.7)

(II) If λ1 > 0, λ2, · · · , λm <∞ with∑mi=1

1λi

= 1, then inequality (3.7) is reversed.

Corollary 3.13. (T = Z) let {a1i1,a1

i2, . . . ,a1ik1

}ni=1, {a2i1,a2

i2, . . . ,a2ik2

}ni=1, . . ., {ami1 ,ami2 , . . . ,amikm}ni=1 and

{ci1, ci2, . . . , cil}ni=1 be real numbers for any k1,k2, . . . ,km, l ∈N and letHl(x1, x2,· · ·, xl)>0, Fk1(x1, x2,· · ·, xk1),Fk2(x1, x2, · · · , xk2), . . ., Fkm(x1, x2, · · · , xkm) be m+ 1 arbitrary functions of l, k1, k2, . . . , km variables, respec-tively.

(I) If 1 < λ1, λ2, · · · , λm <∞,∑mi=1

1λi

= 1, then

n∑i=1

Hl(ci1, ci2, · · · , cil)∣∣∣∣ m∏j=1

Fkj(aji1,aji2, · · · ,ajikj)

∣∣∣∣6

m∏j=1

( n∑i=1

Hl(ci1, ci2, · · · , cil)∣∣Fkj(aji1,aji2, · · · ,ajikj)

∣∣λj) 1λj

.

(3.8)

(II) If λ1 > 0, λ2, · · · , λm <∞ with∑mi=1

1λi

= 1, then inequality (3.8) is reversed.

Theorem 3.14. Let T be a time scale, a,b ∈ T with a < b, let {f1j(x)}k1j=1, {f2j(x)}

k2j=1, . . ., {fmj(x)}kmj=1 and

{hj(x)}lj=1 be continuous real-valued functions on [a,b]T, letHl(x1, x2, · · · , xl) > 0 with

∫baHl(h1,h2, · · · ,hl) �α

x = 1 and let Fk1(x1, x2, · · · , xk1), Fk2(x1, x2, · · · , xk2), . . ., Fkm(x1, x2, · · · , xkm) be m arbitrary functions of k1,k2, . . . , km variables, respectively. If 1 < λ1, λ2, · · · , λm <∞ with

∑mi=1

1λi< 1, then

∫ba

Hl(h1,h2, · · · ,hl)∣∣∣∣ m∏i=1

Fki(fi1, fi2, · · · , fiki)∣∣∣∣ �α x

6m∏i=1

( ∫ba

Hl(h1,h2, · · · ,hl)∣∣Fki(fi1, fi2, · · · , fiki)

∣∣λi �α x) 1λi

.

Proof. Let ϕ := 1λ1

+ 1λ2

+ . . . + 1λm

< 1, βi := ϕλi < λi (i = 1, 2, . . . ,m). Then 1β1

+ 1β2

+ . . . + 1βm

= 1.Hence, from Theorem 3.11, Lemma 3.3 we obtain that∫b

a

Hl(h1,h2, · · · ,hl)∣∣∣∣ m∏i=1

Fki(fi1, fi2, · · · , fiki)∣∣∣∣ �α x

Page 12: Extensions of Holder¨ -type inequalities on time scales and their … · 2017. 7. 12. · analysis, qualitative theory of differential equations and their applications. Various refinements,

J.-F. Tian, M.-H. Ha, J. Nonlinear Sci. Appl., 10 (2017), 937–953 948

6m∏i=1

( ∫ba

Hl(h1,h2, · · · ,hl)∣∣Fki(fi1, fi2, · · · , fiki)

∣∣βi �α x) 1βi

6m∏i=1

( ∫ba

Hl(h1,h2, · · · ,hl)∣∣Fki(fi1, fi2, · · · , fiki)

∣∣λi �α x) 1λi

.

The proof of Theorem 3.14 is completed.

Corollary 3.15. (T = R) Let {f1j(x)}k1j=1, {f2j(x)}

k2j=1, . . ., {fmj(x)}kmj=1 and {hj(x)}

lj=1 be continuous real-valued

functions on [a,b], let Hl(x1, x2, · · · , xl) > 0 with∫baHl(h1,h2, · · · ,hl)dx = 1, let

Fk1(x1, x2, · · · , xk1), Fk2(x1, x2, · · · , xk2), . . . , Fkm(x1, x2, · · · , xkm)

be m arbitrary functions of k1, k2, . . . , km variables, respectively. If 1 < λ1, λ2, · · · , λm <∞ with∑mi=1

1λi< 1,

then ∫ba

Hl(h1,h2, · · · ,hl)∣∣∣∣ m∏i=1

Fki(fi1, fi2, · · · , fiki)∣∣∣∣dx

6m∏i=1

( ∫ba

Hl(h1,h2, · · · ,hl)∣∣Fki(fi1, fi2, · · · , fiki)

∣∣λidx) 1λi

.

Corollary 3.16. (T = Z) Let {a1i1,a1

i2, . . . ,a1ik1

}ni=1, {a2i1,a2

i2, . . . ,a2ik2

}ni=1, . . ., {ami1 ,ami2 , . . . ,amikm}ni=1 and

{ci1, ci2, . . . , cil}ni=1 be real numbers for any k1,k2, . . . ,km, l ∈N, let Hl(x1, x2, · · · , xl) > 0 with

n∑i=1

Hl(ci1, ci2, · · · , cil) = 1

and let Fk1(x1, x2, · · · , xk1), Fk2(x1, x2, · · · , xk2), . . ., Fkm(x1, x2, · · · , xkm) be m arbitrary functions of k1, k2, . . . ,km variables, respectively. If 1 < λ1, λ2, · · · , λm <∞ with

∑mi=1

1λi< 1, then

n∑i=1

Hl(ci1, ci2, · · · , cil)∣∣∣∣ m∏j=1

Fkj(aji1,aji2, · · · ,ajikj)

∣∣∣∣6

m∏j=1

( n∑i=1

Hl(ci1, ci2, · · · , cil)∣∣Fkj(aji1,aji2, · · · ,ajikj)

∣∣λj) 1λj

.

By the same method as in Theorem 3.5, Theorem 3.8, Theorem 3.11 and Theorem 3.14, respectively,we can obtain the following results.

Theorem 3.17. Let 1p + 1

q = 1r with p,q, r ∈ R − {0}, let T be a time scale, a,b ∈ T with a < b, let

h(x), f(x),g(x) : [a,b]T → R be �α-integrable functions.

(I) If p > 0 and q > 0 or p > 0, q < 0 and r < 0, then( ∫ba

|h(x)||fr(x)gr(x)| �α x) 1r

6

( ∫ba

|h(x)||fp(x)| �α x) 1p( ∫b

a

|h(x)||gq(x)| �α x) 1q

.

(II) If p > 0, q < 0 and r > 0 or p < 0 and q < 0, then( ∫ba

|h(x)||fr(x)gr(x)| �α x) 1r

>

( ∫ba

|h(x)||fp(x)| �α x) 1p( ∫b

a

|h(x)||gq(x)| �α x) 1q

.

Page 13: Extensions of Holder¨ -type inequalities on time scales and their … · 2017. 7. 12. · analysis, qualitative theory of differential equations and their applications. Various refinements,

J.-F. Tian, M.-H. Ha, J. Nonlinear Sci. Appl., 10 (2017), 937–953 949

Theorem 3.18. Let T be a time scale, a,b ∈ T with a < b, let h(x), f(x),g(x) : [a,b]T → R be �α-integrablefunctions. If p > 0, q > 0 with 1

p + 1q < 1, then∫b

a

|h(x)||f(x)g(x)| �α x 6( ∫b

a

|h(x)||fp(x)| �α x) 1p( ∫b

a

|h(x)||gq(x)| �α x) 1q

.

Theorem 3.19. Let T be a time scale, a,b ∈ T with a < b and let fi(x) (i = 1, 2, · · · ,m), h(x) : [a,b]T → R be�α-integrable functions.

(I) If 1 < λ1, λ2, · · · , λm <∞,∑mi=1

1λi

= 1, then∫ba

∣∣∣∣h(x)( m∏i=1

fi(x))∣∣∣∣ �α x 6 m∏

i=1

( ∫ba

|h(x)||fi(x)|λi �α x

) 1λi

. (3.9)

(II) If λ1 > 0, λ2, · · · , λm < 0 with∑mi=1

1λi

= 1, then inequality (3.9) is reversed.

Theorem 3.20. Let T be a time scale, a,b ∈ T with a < b and let fi(x) (i = 1, 2, · · · ,m), h(x) : [a,b]T →[0,+∞) be �α-integrable functions with

∫ba h(x) �α x = 1. If 1 < λ1, λ2, · · · , λm <∞ with 1

λ1+ 1λ2

+ · · ·+ 1λm

<

1, then ∫ba

h(x)( m∏i=1

fi(x))�α x 6

m∏i=1

( ∫ba

h(x)fλii (x) �α x) 1λi

.

4. Applications

In this section, we firstly present two time scales versions of Minkowski’s inequality by using theobtained results.

Theorem 4.1. Let T be a time scale, a,b ∈ T with a < b, let Hl(x1, x2, · · · , xl) > 0, Fk1(x1, x2, · · · , xk1),Fk2(x1, x2, · · · , xk2), . . ., Fkm(x1, x2, · · · , xkm) be m+ 1 arbitrary nonnegative real-valued functions of l, k1, k2,. . . , km variables, respectively and let {f1j(x)}

k1j=1, {f2j(x)}

k2j=1, . . ., {fmj(x)}kmj=1 and {hj(x)}

lj=1 be continuous real-

valued functions on [a,b]T.

(I) If p > 1, then [ ∫ba

Hl(h1,h2, · · · ,hl)( m∑i=1

|Fki(fi1, fi2, · · · , fiki)|)p�α x

] 1p

6m∑i=1

( ∫ba

Hl(h1,h2, · · · ,hl)|Fki(fi1, fi2, · · · , fiki)|p �α x

) 1p

.

(4.1)

(II) If 0 < p < 1, then [ ∫ba

Hl(h1,h2, · · · ,hl)( m∑i=1

|Fki(fi1, fi2, · · · , fiki)|)p�α x

] 1p

>m∑i=1

( ∫ba

Hl(h1,h2, · · · ,hl)|Fki(fi1, fi2, · · · , fiki)|p �α x

) 1p

.

(4.2)

Proof. We only consider the case (I). For p > 1, from Jenson’s inequality, we have( m∑i=1

Fki(fi1(x), fi2(x), · · · , fiki(x)))p

>m∑i=1

Fpki(fi1(x), fi2(x), · · · , fiki(x)).

Denote Φ(x) =∑mi=1 Fki(fi1(x), fi2(x), · · · , fiki(x)). Without loss of generality, we may assume that∫b

a h(x)Φp(x) �α x > 0. From Theorem 3.5, for r = 1, p > 0, q > 0 and 1

p + 1q = 1, we obtain that

Page 14: Extensions of Holder¨ -type inequalities on time scales and their … · 2017. 7. 12. · analysis, qualitative theory of differential equations and their applications. Various refinements,

J.-F. Tian, M.-H. Ha, J. Nonlinear Sci. Appl., 10 (2017), 937–953 950

∫ba

|Fki(fi1, fi2, · · · , fiki)Hl(h1,h2, · · · ,hl)Φp−1(x)| �α x

6

( ∫ba

|Hl(h1,h2, · · · ,hl)||Fki(fi1, fi2, · · · , fiki)|p �α x

) 1p

×( ∫b

a

|Hl(h1,h2, · · · ,hl)||Φ(x)|(p−1)q �α x) 1q

=

( ∫ba

|Hl(h1,h2, · · · ,hl)||Fki(fi1, fi2, · · · , fiki)|p �α x

) 1p

×( ∫b

a

|Hl(h1,h2, · · · ,hl)||Φ(x)|p �α x) 1q

.

(4.3)

Hence, from inequality (4.3), we get∫ba

|Hl(h1,h2, · · · ,hl)Φp(x)| �α x

=

∫ba

|Hl(h1,h2, · · · ,hl)Φ(x)Φp−1(x)| �α x

=

∫ba

|Hl(h1,h2, · · · ,hl)Fk1(f11, f12, · · · , f1k1)Φp−1(x)| �α x

+ . . . +∫ba

|Hl(h1,h2, · · · ,hl)Fkm(fm1, fm2, · · · , fmkm)Φp−1(x)| �α x

6

( ∫ba

|Hl(h1,h2, · · · ,hl)||Φ(x)|p �α x) 1q

×[ m∑i=1

( ∫ba

|Hl(h1,h2, · · · ,hl)||Fki(fi1, fi2, · · · , fiki)|p �α x

) 1p

].

Thus, we obtain the desired inequality (4.1).

Remark 4.2. If p > 1, m = 2, then inequality (4.1) reduces to inequality (2.5) obtained by Yang [26]. If0 < p < 1, m = 2, then inequality (4.2) reduces to inequality (2.4) obtained by Chen and Chen [6].

Theorem 4.3. Let T be a time scale, a,b ∈ T with a < b and let fi(x) (i = 1, 2, · · · ,m), h(x) : [a,b]T → R be�α-integrable functions.

(I) If p > 1, then [ ∫ba

∣∣∣∣h(x)( m∑i=1

fi(x))p∣∣∣∣ �α x

] 1p

6m∑i=1

( ∫ba

|h(x)||fi(x)|p �α x

) 1p

. (4.4)

(II) If 0 < p < 1, then [ ∫ba

∣∣∣∣h(x)( m∑i=1

fi(x))p∣∣∣∣ �α x

] 1p

>m∑i=1

( ∫ba

|h(x)||fi(x)|p �α x

) 1p

. (4.5)

Remark 4.4. If p > 1, m = 2, then inequality (4.4) reduces to inequality (3.7) obtained by Ozkan et al. [15].If 0 < p < 1, m = 2, then inequality (4.5) is the reversed version of inequality (3.7) obtained by Ozkan etal. [15].

Page 15: Extensions of Holder¨ -type inequalities on time scales and their … · 2017. 7. 12. · analysis, qualitative theory of differential equations and their applications. Various refinements,

J.-F. Tian, M.-H. Ha, J. Nonlinear Sci. Appl., 10 (2017), 937–953 951

Secondly, we shall establish two time scales versions of Beckenbach-Dresher’s inequality [7] viadiamond-α integral.

Theorem 4.5. Let T be a time scale, a,b ∈ T with a < b, let {f1j(x)}k1j=1, {f2j(x)}

k2j=1, . . ., {fmj(x)}

kmj=1

and {hj(x)}lj=1 be continuous real-valued functions on [a,b]T, let Fk1(x1, x2, · · · , xk1), Fk2(x1, x2, · · · , xk2), . . .,

Fkm(x1, x2, · · · , xkm) be m arbitrary nonnegative real-valued functions of k1, k2, . . . , km variables, respectively,and let Hl(x1, x2, · · · , xl) > 0 with

∫baH

rl(h1,h2, · · · ,hl) �α x > 0.

(I) If p > 1 > r > 0, then(∫baHl(h1,h2, · · · ,hl)

(∑mi=1 Fki(fi1, fi2, · · · , fiki)

)p �α x∫baHl(h1,h2, · · · ,hl)

(∑mi=1 Fki(fi1, fi2, · · · , fiki)

)r �α x) 1p−r

6m∑i=1

(∫baHl(h1,h2, · · · ,hl)F

pki(fi1, fi2, · · · , fiki) �α x∫b

aHl(h1,h2, · · · ,hl)Frki(fi1, fi2, · · · , fiki) �α x

) 1p−r

. (4.6)

(II) If 0 < p < r or r < p < 0, then inequality (4.6) is reversed.

Proof. Case (I). Let p > 1 > r > 0. Write γ = rp−r > 0,

ζi =

( ∫ba

Hl(h1,h2, · · · ,hl)Fpki(fi1, fi2, · · · , fiki) �α x

) 1p

,

and

ξi =

( ∫ba

Hl(h1,h2, · · · ,hl)Frki(fi1, fi2, · · · , fiki) �α x) 1r

.

Then γ+ 1 = pp−r . By Lemma 3.2, we have

(∑mi=1 ζi

)γ+1(∑mi=1 ξi

)γ =

[∑mi=1( ∫baHl(h1,h2, · · · ,hl)F

pki(fi1, fi2, · · · , fiki) �α x

) 1p

] pp−r[∑m

i=1( ∫baHl(h1,h2, · · · ,hl)Frki(fi1, fi2, · · · , fiki) �α x

) 1r

] rp−r

6m∑i=1

([( ∫baHl(h1,h2, · · · ,hl)F

pki(fi1, fi2, · · · , fiki) �α x

) 1p] pp−r

[( ∫baHl(h1,h2, · · · ,hl)Frki(fi1, fi2, · · · , fiki) �α x

) 1r] rp−r

)

=

m∑i=1

(∫baHl(h1,h2, · · · ,hl)F

pki(fi1, fi2, · · · , fiki) �α x∫b

aHl(h1,h2, · · · ,hl)Frki(fi1, fi2, · · · , fiki) �α x

) 1p−r

. (4.7)

On the other hand, from p > 1 > r > 0 and Theorem 4.1, we have[ m∑i=1

( ∫ba

Hl(h1,h2, · · · ,hl)Fpki(fi1, fi2, · · · , fiki) �α x

) 1p]p

>∫ba

Hl(h1,h2, · · · ,hl)( m∑i=1

Fki(fi1, fi2, · · · , fiki))p�α x, (4.8)

and [ m∑i=1

( ∫ba

Hl(h1,h2, · · · ,hl)Frki(fi1, fi2, · · · , fiki) �α x) 1r]r

6∫ba

Hl(h1,h2, · · · ,hl)( m∑i=1

Fki(fi1, fi2, · · · , fiki))r�α x.

(4.9)

Page 16: Extensions of Holder¨ -type inequalities on time scales and their … · 2017. 7. 12. · analysis, qualitative theory of differential equations and their applications. Various refinements,

J.-F. Tian, M.-H. Ha, J. Nonlinear Sci. Appl., 10 (2017), 937–953 952

Combining inequalities (4.7), (4.8) and (4.9) yields inequality (4.6) immediately. Clearly, the desired in-equality (4.6) also holds for p = r or r = 0. This completes the proof of Case (I).

Similarly, we can prove the Case (II). The proof of Theorem 4.5 is completed.

Similar to the proof of Theorem 4.5 but using Theorem 4.3 in place of Theorem 4.1, we immediatelyobtain the following result.

Theorem 4.6. Let T be a time scale, a,b ∈ T with a < b, let fi(x) (i = 1, 2, · · · ,m), h(x) : [a,b]T → [0,∞) be�α-integrable functions and let

∫ba h(x)f

ri(x) �α x > 0 (i = 1, 2, . . . ,m).

(I) If p > 1 > r > 0, then(∫ba h(x)

(∑mi=1 fi(x)

)p �α x∫ba h(x)

(∑mi=1 fi(x)

)r �α x) 1p−r

6m∑i=1

(∫ba h(x)

(fi(x)

)p �α x∫ba h(x)

(fi(x)

)r �α x) 1p−r

. (4.10)

(II) If 0 < p < r or r < p < 0, then inequality (4.10) is reversed.

Acknowledgment

The authors would like to express their sincere thanks to the anonymous referees for their great effortsto improve this paper.

This work was supported by the NNSF of China (No. 61073121), the Application Basic ResearchPlan Key Basic Research Project of Hebei Province of China (No. 16964213D), the Fundamental ResearchFunds for the Central Universities (No. 2015ZD29) and the Higher School Science Research Funds ofHebei Province of China (No. Z2015137).

References

[1] S. Abramovich, J. Pecaric, S. Varosanec, Sharpening Holder’s and Popoviciu’s inequalities via functionals, Rocky Moun-tain J. Math., 34 (2004), 793–810. 1

[2] S. Abramovich, J. Pecaric, S. Varosanec, Continuous sharpening of Holder’s and Minkowski’s inequalities, Math. In-equal. Appl., 8 (2005), 179–190. 1

[3] R. Agarwal, M. Bohner, A. Peterson, Inequalities on time scales: a survey, Math. Inequal. Appl., 4 (2001), 535–557. 2[4] M. Bohner, A. Peterson, Dynamic equations on time scales, An introduction with applications. Birkhauser Boston,

Inc., Boston, MA, (2001). 2.6, 2.7[5] M. Bohner, A. Peterson, Eds., Advances in dynamic equations on time scales, Birkhauser, Boston, Mass, USA, (2003).

2.1, 2.2[6] G.-S. Chen, Z. Chen, A functional generalization of the reverse Holder integral inequality on time scales, Math. Comput.

Modelling, 54 (2011), 2939–2942. 1, 4.2[7] G. H. Hardy, J. E. Littlewood, G. Polya, Inequalities, 2d ed, Cambridge, at the University Press, (1952). 3.2, 3, 3, 4[8] S. Hilger, Ein maßkettenkalkul mit anwendung auf zentrumsmannigfaltigkeiten, Ph.D. thesis, Universitat Wurzburg,

Wurzburg, Germany, (1988). 2[9] S. Hilger, Analysis on measure chains—a unified approach to continuous and discrete calculus, Results Math., 18 (1990),

18–56. 2.3, 2.4, 2.5, 2[10] S. Hilger, Differential and difference calculus—unified, Proceedings of the Second World Congress of Nonlinear

Analysts, Part 5, Athens, (1996), Nonlinear Anal., 30 (1997), 2683–2694. 2[11] J. Kuang, Applied inequalities, Shandong Science Press, Jinan, (2003). 1[12] B.-D. Liu, Random fuzzy dependent-chance programming and its hybrid intelligent algorithm, Inform. Sci., 141 (2002),

259–271. 1[13] J. Matkowski, A converse of the Holder inequality theorem, Math. Inequal. Appl., 12 (2009), 21–32. 1[14] D. S. Mitrinovic, Analytic inequalities, In cooperation with P. M. Vasic, Die Grundlehren der mathematischen

Wissenschaften, Band 165 Springer-Verlag, New York-Berlin, (1970). 1[15] U. M. Ozkan, M. Z. Sarikaya, H. Yildirim, Extensions of certain integral inequalities on time scales, Appl. Math. Lett.,

21 (2008), 993–1000. 1, 4.4[16] J. W. Rogers Jr., Q. Sheng, Notes on the diamond-α dynamic derivative on time scales, J. Math. Anal. Appl., 326 (2007),

228–241. 2

Page 17: Extensions of Holder¨ -type inequalities on time scales and their … · 2017. 7. 12. · analysis, qualitative theory of differential equations and their applications. Various refinements,

J.-F. Tian, M.-H. Ha, J. Nonlinear Sci. Appl., 10 (2017), 937–953 953

[17] Q. Sheng, M. Fadag, J. Henderson, J. M. Davis, An exploration of combined dynamic derivatives on time scales and theirapplications, Nonlinear Anal. Real World Appl., 7 (2006), 395–413. 2.8, 2.9, 2.10, 2.11, 2.12, 2.13, 3.1

[18] J.-F. Tian, New property of a generalized Holder’s inequality and its applications, Inform. Sci., 288 (2014), 45–54. 1[19] J.-F. Tian, Properties of generalized Holder’s inequalities, J. Math. Inequal., 9 (2015), 473–480. 1[20] J.-F. Tian, M.-H. Ha, Some new properties of generalized Holder’s inequalities, J. Nonlinear Sci. Appl., 10 (2016), 3638–

3646. 1[21] J.-F. Tian, M.-H. Ha, Properties of generalized sharp Holder’s inequalities, J. Math. Inequal., 11 (2017), 511–525. 1[22] F.-H. Wong, C.-C. Yeh, W.-C. Lian, An extension of Jensen’s inequality on time scales, Adv. Dyn. Syst. Appl., 1 (2006),

113–120. 2[23] F.-H. Wong, C.-C. Yeh, S.-L. Yu, C.-H. Hong, Young’s inequality and related results on time scales, Appl. Math. Lett.,

18 (2005), 983–988. 1[24] S.-H. Wu, Generalization of a sharp Holder’s inequality and its application, J. Math. Anal. Appl., 332 (2007), 741–750. 1[25] S.-H. Wu, A new sharpened and generalized version of Holder’s inequality and its applications, Appl. Math. Comput.,

197 (2008), 708–714. 1[26] W.-G. Yang, A functional generalization of diamond-α integral Holder’s inequality on time scales, Appl. Math. Lett., 23

(2010), 1208–1212. 1, 4.2