exploring the space-time limits in next generation x-ray ...idlab/taskandschedule/sturm/...exploring...

63
Exploring the Space-Time limits in Next Generation X-ray Imager Readout Gary S. Varner University of Hawai’i (basis of slides) 1 Voltage [V] 0 0.2 0.4 0.6 0.8 1 1.2 Resistance [Ohms] 0 500 1000 1500 2000 2500 w/h par w par Frequency [Hz] 10 7 10 8 10 9 10 10 Vdc [V] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Upload: others

Post on 16-Sep-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Exploring the Space-Time limits in Next Generation X-ray ...idlab/taskAndSchedule/STURM/...Exploring the Space-Time limits in Next Generation X-ray Imager Readout Gary S. Varner University

Exploring the Space-Time limits in Next Generation X-ray Imager Readout

Gary S. Varner University of Hawai’i

(basis of slides) 1

Voltage [V]

0 0.2 0.4 0.6 0.8 1 1.2

Resi

stance

[O

hm

s]

0

500

1000

1500

2000

2500

w/h par

w par

Frequency [Hz]

10 7 10 8 10 9 10 10

Vdc

[V]

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Page 2: Exploring the Space-Time limits in Next Generation X-ray ...idlab/taskAndSchedule/STURM/...Exploring the Space-Time limits in Next Generation X-ray Imager Readout Gary S. Varner University

Overview • Basis is Switched Capacitor Array acquisition

– Low-cost, commodity CMOS processes

– Excellent timing, frame-rate, dynamic range – 100’s 10’s of kSamples MSamples

• Active research – Technology in its infancy

– Space-Time limits? (micron spatial resolution with fs timing?)

• Key Elements going forward

2

Photograph, drawing, or diagram of concept. Sampling

/Storage A->D

Pedestal subtract,

linearization, image

processing

Analog Digital

Data processing flow Low power Acquisition

Detector Interconn/gain ranging

Pixe

l arr

ay

Hig

h-sp

eed

seria

l out

Page 3: Exploring the Space-Time limits in Next Generation X-ray ...idlab/taskAndSchedule/STURM/...Exploring the Space-Time limits in Next Generation X-ray Imager Readout Gary S. Varner University

Underlying Technology • Track and Hold (T/H)

• Pipelined storage = array of T/H elements, with output buffering

2 v V1=V Q=Cs.V1

N capacitors Write Bus

Return Bus

1

N caps

Vout=A / (1+A) * Q/Cs =V1 * A/(1+A)

3

Bottom Read BUS

4

Top Read Bus

Cs

C Analog Input

Sampled Data

T/H

3

Page 4: Exploring the Space-Time limits in Next Generation X-ray ...idlab/taskAndSchedule/STURM/...Exploring the Space-Time limits in Next Generation X-ray Imager Readout Gary S. Varner University

Switched Capacitor Array Sampling

Input

Channel 1

Channel 2 Few 100ps delay

• Write pointer is ~few switches closed @ once

20fF

Tiny charge: 1mV ~ 100e-

4

Page 5: Exploring the Space-Time limits in Next Generation X-ray ...idlab/taskAndSchedule/STURM/...Exploring the Space-Time limits in Next Generation X-ray Imager Readout Gary S. Varner University

An Initial Selling Point

WFS ASIC Commercial Sampling speed 0.1-6 GSa/s 2 GSa/s

Bits/ENOBs 16/9-13+ 8/7.4

Power/Chan. <= 0.05W Few W

Cost/Ch. < $10 (vol) > 100$

• 2 GSa/s, 1GHz ABW Tektronics Scope • 2.56 GSa/s LAB

“oscilloscope on a chip”

5

Page 6: Exploring the Space-Time limits in Next Generation X-ray ...idlab/taskAndSchedule/STURM/...Exploring the Space-Time limits in Next Generation X-ray Imager Readout Gary S. Varner University

Basic Functional components

Sample timing Control

Single storage Channel

Few mm x Few mm in size

On or off-chip ADC

Readout Control 6

Page 7: Exploring the Space-Time limits in Next Generation X-ray ...idlab/taskAndSchedule/STURM/...Exploring the Space-Time limits in Next Generation X-ray Imager Readout Gary S. Varner University

Design Choices • Input coupling

– Differential versus single-ended input

– Needed analog bandwidth – Gain needed?

• Sampling Options – On-chip PLL/DLL – External DLL – Analog transfer vs. interrogate in situ

• ADC and readout options – Sequential output select vs. random access – On-chip vs. off-chip ADC – Serial, parallel, massively parallel

Many variants have been explored…

7

Page 8: Exploring the Space-Time limits in Next Generation X-ray ...idlab/taskAndSchedule/STURM/...Exploring the Space-Time limits in Next Generation X-ray Imager Readout Gary S. Varner University

ASIC

# chan

Depth/chan

Time Resolution [ps]

Vendor

Size [nm]

Year

LABRADOR 3

8

260 16 TSMC 250 2005

BLAB

1

65536 1-4 TSMC 250 2009

STURM2

8

4x8 <10 (3GHz ABW) TSMC 250 2010

DRS4

8

1024

~1 (short baseline)

IBM 250

2014

PSEC4

6

256

~1 (short baseline)

IBM 130 2014

RITC3

3

Continuous

TBD

IBM

130

---

PSEC5

4

32768

TBD

TSMC

130

---

DRS5

8/16?

128x32

TBD

UMC 110 ---

SamPic 16 64 ~3 [pic 0] AMS 180 [2014]

RFpix 128? TBD <= 100fs (target) TSMC

45 ?

---

Toward increased timing precision

8

Page 9: Exploring the Space-Time limits in Next Generation X-ray ...idlab/taskAndSchedule/STURM/...Exploring the Space-Time limits in Next Generation X-ray Imager Readout Gary S. Varner University

Typical performance

• Excellent linearity, noise • Sampling rates already meet Type I and Type II specifications

3 GSa/s

12-bit ADC

• 10 real bits (1.3V/1.3mV noise)

1.3mV

9

Page 10: Exploring the Space-Time limits in Next Generation X-ray ...idlab/taskAndSchedule/STURM/...Exploring the Space-Time limits in Next Generation X-ray Imager Readout Gary S. Varner University

10

Starting point: Predictions

J-F Genat, G. Varner, F. Tang, H. Frisch NIM A607 (2009) 387-393.

G. Varner and L. Ruckman NIM A602 (2009) 438-445.

1GHz analog bandwidth, 5GSa/s Simulation includes detector response

Page 11: Exploring the Space-Time limits in Next Generation X-ray ...idlab/taskAndSchedule/STURM/...Exploring the Space-Time limits in Next Generation X-ray Imager Readout Gary S. Varner University

And now: high space-time Resolution In a number of communities (future particle/astroparticle detectors, PET medical imaging, etc.) a growing interest in detectors capable of operating at the pico-second resolution and µm spatial resolution limit (for light 1 ps = 300 µm)

Extending to 1ps and lower, with advanced calibration techniques

Signal-to-Noise Ratio

Prediction: circa 2009

Measurement: circa 2014

Front-End Electronics Fast signal collection x-ray detectors

beam in

200 – 300 µm

active edges

signal electrodes with contact pads to

readout

11

Page 12: Exploring the Space-Time limits in Next Generation X-ray ...idlab/taskAndSchedule/STURM/...Exploring the Space-Time limits in Next Generation X-ray Imager Readout Gary S. Varner University

12

40 times higher luminosity 2.1x1034 8x1035 cm-2s-1

KEKB to SuperKEKB Nano-Beam scheme extremely small βy

*

low emittance Beam current X 2

Redesign the lattice to reduce the emittance (replace short dipoles with longer ones, increase wiggler cycles) (all magnets installed 8/2014)

Replace beam pipes with TiN-coated beam pipes with antechambers (installed)

New superconducting final focusing magnets near the IP

New e+ Damping Ring constructed

Upgrade positron capture section

e- 2.6A e+ 3.6A

Injector Linac upgrade

DR tunnel

Improve monitors and control system

Low emittance RF electron gun

Reinforce RF systems for higher beam currents

2016: Base hardware (except final focus) now in place

Page 13: Exploring the Space-Time limits in Next Generation X-ray ...idlab/taskAndSchedule/STURM/...Exploring the Space-Time limits in Next Generation X-ray Imager Readout Gary S. Varner University

Design Idea

13

Page 14: Exploring the Space-Time limits in Next Generation X-ray ...idlab/taskAndSchedule/STURM/...Exploring the Space-Time limits in Next Generation X-ray Imager Readout Gary S. Varner University

Overview

14

Page 15: Exploring the Space-Time limits in Next Generation X-ray ...idlab/taskAndSchedule/STURM/...Exploring the Space-Time limits in Next Generation X-ray Imager Readout Gary S. Varner University

First Light (accelerator started Feb.)

15 Bunches down to RF bucket spacing [508.9MHz]

Page 16: Exploring the Space-Time limits in Next Generation X-ray ...idlab/taskAndSchedule/STURM/...Exploring the Space-Time limits in Next Generation X-ray Imager Readout Gary S. Varner University

First generation readout

Full Fermionics

128

BMG server Linux server SLAC

Full

2x Bi-directional Multi-Gbps Fiber

Master Gating/Timing Module (XTD)

SuperKEKB Timing Signals:

RF clock (508.9MHz) Revolution (100kHz)

64

64

CAT6 Network cable (copper)

Media conv

Tunnel run

16

• 5.8GSa/s • 1 bunch/10us orbit • Full 5k bunch orbit

(@200 Hz)

Page 17: Exploring the Space-Time limits in Next Generation X-ray ...idlab/taskAndSchedule/STURM/...Exploring the Space-Time limits in Next Generation X-ray Imager Readout Gary S. Varner University

TOP Electronics - HW • Front-end modules consist of 5 PCBs,

each with a Zynq (FPGA + Processor):

17

• 8 ch/ASIC • 4 ASICs/carrier • 128 ch/module • 4 modules/bar • 64 total modules

SCROD

Processor

FPGA

Carrier

Processor

FPGA

IRSX ASIC

Processor

FPGA

Processor

FPGA

Processor

FPGA

Processor

FPGA

IRSX ASIC IRSX

ASIC IRSX

Pedestal Sub. + Feature Extraction

Packet Builder

B2Link To DAQ Gigabit Serial ASIC Control

Data Collection

Page 18: Exploring the Space-Time limits in Next Generation X-ray ...idlab/taskAndSchedule/STURM/...Exploring the Space-Time limits in Next Generation X-ray Imager Readout Gary S. Varner University

Firmware (“Production”) – Data Path

18

Carrier ASIC Control • Continuous sampling during digitization. • Global synchronization scheme. • 32-sample readout per trigger. • Multi-hit capable.

SCROD data collection • FPGA monitors ASICs, can mask if trouble. • FPGA builds complete event packets. • 1x DMA x-fer/event w/standard Xilinx blocks. • Processor does pedestal correction, feature

extraction on complete events.

Processor

FPGA

Processor

FPGA

IRSX ASIC

Processor

FPGA

Processor

FPGA

Processor

FPGA

Processor

FPGA

IRSX ASIC IRSX

ASIC IRSX

Pedestal Sub. + Feature Extraction

Packet Builder

B2Link To DAQ Gigabit Serial ASIC Control

Xilinx DMA

Xilinx DMA

ASIC D

ata Monitor

Data Aggregator

Rolled out, w/ feature extraction, early March.

Page 19: Exploring the Space-Time limits in Next Generation X-ray ...idlab/taskAndSchedule/STURM/...Exploring the Space-Time limits in Next Generation X-ray Imager Readout Gary S. Varner University

Key Remaining Items • Complete thero-mechanics • RF signal chain

– Amplifier gain, bandwidth, noise – Stability and dynamic range – EMI Immunity

• Carrier modifications – Wiring modifications – Simplified sampling FW, mini-packets

• SCROD FW modifications – Streamlined mini-packets ped subtraction – Feature extraction – 100kHz * 128 channels * 2 Bytes (~30MBytes/s)

19

Page 20: Exploring the Space-Time limits in Next Generation X-ray ...idlab/taskAndSchedule/STURM/...Exploring the Space-Time limits in Next Generation X-ray Imager Readout Gary S. Varner University

20

Back-up slides

Page 21: Exploring the Space-Time limits in Next Generation X-ray ...idlab/taskAndSchedule/STURM/...Exploring the Space-Time limits in Next Generation X-ray Imager Readout Gary S. Varner University

21

Constraint 1: Analog Bandwidth Difficult to couple in Large BW (C is deadly)

f3dB = 1/2πZC

Page 22: Exploring the Space-Time limits in Next Generation X-ray ...idlab/taskAndSchedule/STURM/...Exploring the Space-Time limits in Next Generation X-ray Imager Readout Gary S. Varner University

22

Constraint 2: kTC Noise Want small storage C, but…

1mV on 16fF is only 100e- !

Page 23: Exploring the Space-Time limits in Next Generation X-ray ...idlab/taskAndSchedule/STURM/...Exploring the Space-Time limits in Next Generation X-ray Imager Readout Gary S. Varner University

23

Constraint 3: Leakage Current Increase C or reduce conversion time << 1mV

Sample channel-channel variation ~ fA nA leakage (250nm 130nm)

Page 24: Exploring the Space-Time limits in Next Generation X-ray ...idlab/taskAndSchedule/STURM/...Exploring the Space-Time limits in Next Generation X-ray Imager Readout Gary S. Varner University

Timing optimization: ABW, SNR, sampling rate

∆t =∆UU

10.34 ∗BW ∗ fs

^ Need to hold sampling frequency to least at 20 GHz to have timing resolution in 100fs range

< For the above sampling freq and BW integrated noise amplitude has to be in the range or less than 0.5mV to 0.6mV corresponding to SNR~58dB (Vpp=1volts) SNR~58dB corresponds to 9.4 bits for 20μm resolution in rφ (Ideal ADC)

24

Page 25: Exploring the Space-Time limits in Next Generation X-ray ...idlab/taskAndSchedule/STURM/...Exploring the Space-Time limits in Next Generation X-ray Imager Readout Gary S. Varner University

Outcome: Target Specifications (separate design study)

Parameter Minimum desired value

Sampling frequency (ASIC) 20 GHz

Bandwidth (Detector and ASIC) 3 GHz

Signal to Noise Ratio (Detector and ASIC) 58dB (Vpp=1 volts)

Velocity of Propagation (Transmission Line/ strip line)

0.35c

Number of Bits of Resolution 9.4 bit

25

This is an ongoing study – evolving quickly

Take the PSEC4 design as a reference

Page 26: Exploring the Space-Time limits in Next Generation X-ray ...idlab/taskAndSchedule/STURM/...Exploring the Space-Time limits in Next Generation X-ray Imager Readout Gary S. Varner University

26

~1.6 GHz

26

PSEC4

Page 27: Exploring the Space-Time limits in Next Generation X-ray ...idlab/taskAndSchedule/STURM/...Exploring the Space-Time limits in Next Generation X-ray Imager Readout Gary S. Varner University

Simplified Schematic • Driver circuit • Switch with n-p FET pair • Sampling capacitor • Comparator as load

Switch & Sampling Capacitor Equivalent Circuit

• Check Csampling capacitance

• Identify Ron and Roff

27

Single Sampling Cell Coupling

Page 28: Exploring the Space-Time limits in Next Generation X-ray ...idlab/taskAndSchedule/STURM/...Exploring the Space-Time limits in Next Generation X-ray Imager Readout Gary S. Varner University

Pass Transistor (Switch) Resistance

Voltage [V]

0 0.2 0.4 0.6 0.8 1 1.2

Re

sist

an

ce [

Oh

ms]

0

500

1000

1500

2000

2500

w/h par

w par

• Ron=2.4k @665mVdc

Voltage [V]

0 0.2 0.4 0.6 0.8 1 1.2R

esi

sta

nce

[G

Oh

ms]

0

2

4

6

8

10

12

14

16

18

20

w/h par

w par

• Roff is in GΩ

• The PFET and NFET are not matched and Ron varies considerably

TRACK state HOLD state

NFET

PFET

28

Page 29: Exploring the Space-Time limits in Next Generation X-ray ...idlab/taskAndSchedule/STURM/...Exploring the Space-Time limits in Next Generation X-ray Imager Readout Gary S. Varner University

Small signal frequency response

Vdc [V]

0 0.2 0.4 0.6 0.8 1 1.2

Ba

nd

wid

th [

GH

z]

0

2

4

6

8

10

12

14

16

18

20

LowZ ideal

LowZ par

LowZ load&par

50Z ideal

50Z par

50Z load&par

X: 0.65

Y: 1.688

Bandwidth

• Isolation is over 60dB over all parameter space

Frequency [Hz]

10 6 10 7 10 8 10 9 10 10

Vd

c [V

]

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Isolation

• BWworst≈1.7GHz @665mVdc @50Ω drive

• BWworst≈2.3GHz @665mVdc @LowZ drive

29

Page 30: Exploring the Space-Time limits in Next Generation X-ray ...idlab/taskAndSchedule/STURM/...Exploring the Space-Time limits in Next Generation X-ray Imager Readout Gary S. Varner University

Snapshot Parameter Measured (worst cases) Requirement

Bandwidth (Single cell) 1.7GHz @665Vdc @50Ω 3GHz

Bandwidth (Multi cell) 1.0GHz @665Vdc @50Ω 3GHz

SNR 61.7 dB 58dB

ENOB 9.8 bits (small region) 9.4 bits

Things to improve:

• Reduce Ron variance over the dynamic range to reduce distortion and increase the ENOB

• Bandwidth dominated by Cin: • Reduce Cin or reshape the channel to increase the bandwidth

(first pole) • Reduce Ron overall value to increase the bandwidth (second

pole) • Use differential configuration to reduce pedestal error and

increase noise coupling and crosstalk immunity 30

Page 31: Exploring the Space-Time limits in Next Generation X-ray ...idlab/taskAndSchedule/STURM/...Exploring the Space-Time limits in Next Generation X-ray Imager Readout Gary S. Varner University

IRS/TARGET family Single Channel

• Storage: 64 x 512 (512 = 8 * 64)

• Sampling: 128 (2x 64) separate transfer lanes

Recording in one set 64, transferring other (“ping-pong”)

• Wilkinson (32x2): 64 conv/channel

31

Page 32: Exploring the Space-Time limits in Next Generation X-ray ...idlab/taskAndSchedule/STURM/...Exploring the Space-Time limits in Next Generation X-ray Imager Readout Gary S. Varner University

First order packing density

32

Compact storage/comparator (Wilkinson ADC) 3µm x 24µm (13.9k Cells/mm)

Sensor

10 samples (30um x 24um) 20 samples (60um x 24um)

γ

Amplifier/q->V/bias

SCA/in-situ A->D

Digital Process/CTRL

HS Data Output

Commensurate with TSV planar packing, OR Knife-edge, thinned die [reticle limited width] stacking/bundling of readout (orthogonal to Detector array)

Page 33: Exploring the Space-Time limits in Next Generation X-ray ...idlab/taskAndSchedule/STURM/...Exploring the Space-Time limits in Next Generation X-ray Imager Readout Gary S. Varner University

Future Plans • R&D Program toward needed readout • PSEC5 ASIC

– 256 32k sample storage – Work to optimize bandwidth, ENOB – Persistence effects

• RFpix ASIC – Push limits of ABW, timing – Below 100-200fs, direct spatial measurement becomes

interesting – Many practical issues, but none fundamental (CF 1ps)

• Dedicated pixellated sampler – Prototype design rather straightforward – how to connect

to detector (& detector), funding limited

33

Page 34: Exploring the Space-Time limits in Next Generation X-ray ...idlab/taskAndSchedule/STURM/...Exploring the Space-Time limits in Next Generation X-ray Imager Readout Gary S. Varner University

Founding WFS ASIC References • PSI activities (DRS)

– IEEE/NSS 2008, TIPP09

– http://midas.psi.ch/drs

• DAPNIA activities – MATDAQ: IEEE TNS 52-6:2853-2860,2005 / Patent WO022315 – SAM; NIM A567 (2006) 21-26.

• Hawaii activities – STRAW: Proc. SPIE 4858-31, 2003. – PRO: JINST, Vol. 3, P12003 (2008). – LABRADOR: NIM A583 (2007) 447-460. – BLAB: NIM A591 (2008) 534-545; NIM A602 (2009) 438-445. – STURM: EPAC08-TUOCM02, June, 2008.

34

Page 35: Exploring the Space-Time limits in Next Generation X-ray ...idlab/taskAndSchedule/STURM/...Exploring the Space-Time limits in Next Generation X-ray Imager Readout Gary S. Varner University

35

[being developed – next slides]

Page 36: Exploring the Space-Time limits in Next Generation X-ray ...idlab/taskAndSchedule/STURM/...Exploring the Space-Time limits in Next Generation X-ray Imager Readout Gary S. Varner University

Exploration of the space-time limit

Pixel detector (PDX) at SuperKEKB

-Sampling at high sampling rate and high bandwidth -Resolve small distances Current Goals: Spatial resolution of 10μm in z and 20μm in rφ In Silicon 10μm in z corresponds to timing resolution of about 100fs 20μm in rφ will depend on the SNR

36

Page 37: Exploring the Space-Time limits in Next Generation X-ray ...idlab/taskAndSchedule/STURM/...Exploring the Space-Time limits in Next Generation X-ray Imager Readout Gary S. Varner University

G. V

arne

r -- D

eepe

r Fas

t Wav

efor

m S

ampl

ing

-- pi

coSe

cond

WS

in K

rako

w

37

Time Difference Dependence on Signal-Noise Ratio (SNR)

0

2

4

6

8

10

12

14

16

18

20

10 100 1000

Signal Noise Ratio

Tim

e Di

ffere

nce

Reso

lutio

n [p

s]Simulated Performance vs. SNR

ν∆kTZ

300MHz ABW, 5.9GSa/s

Page 38: Exploring the Space-Time limits in Next Generation X-ray ...idlab/taskAndSchedule/STURM/...Exploring the Space-Time limits in Next Generation X-ray Imager Readout Gary S. Varner University

IRS Input Coupling

• Input bandwidth depends on 2x terms – f3dB[input] = [2*π*Z*Ctot]-1

– f3dB[storage] = [2*π*Ron*Cstore]-1

Input Coupling versus total input Capacitance

0

0.5

1

1.5

2

2.5

3

3.5

0 500 1000 1500 2000 2500 3000

Total input Capacitance [fF]

Anal

og B

andw

idth

[-3d

B fre

quen

cy]

R_S = 50Ohm

Input coupling versus frequency

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

0.1 1 10 100

Frequency [GHz]Re

lativ

e am

plitu

de [d

B]

C=15fF,Ron=1kC=15fF,Ron=5kC=25fF,Ron=1kC=25fF,Ron=5k

38

Page 39: Exploring the Space-Time limits in Next Generation X-ray ...idlab/taskAndSchedule/STURM/...Exploring the Space-Time limits in Next Generation X-ray Imager Readout Gary S. Varner University

Calibration and Sources of Timing Error

39

voltage noise ∆u

timing uncertainty ∆t signal height U

rise time tr

dBss

r

sr

rrr ffU

uft

Uu

ftt

Uut

nUut

Uut

331⋅

⋅∆

=⋅∆

=⋅

⋅∆

=⋅∆

=⋅∆

=∆

dBr f

t331

*Diagram, formulas from Stefan Ritt

∆u∆t

=Utr

Contributions to timing resolution: • Voltage uncertainties • Timing uncertainties

Page 40: Exploring the Space-Time limits in Next Generation X-ray ...idlab/taskAndSchedule/STURM/...Exploring the Space-Time limits in Next Generation X-ray Imager Readout Gary S. Varner University

Calibration and Sources of Timing Error

40

∆u = 2mV U = 1V

fs = 26 GSPS f3dB = 1.2GHz

∼ 200 fs dBs ffU

u

331⋅

⋅∆

Aperture stability is key

Page 41: Exploring the Space-Time limits in Next Generation X-ray ...idlab/taskAndSchedule/STURM/...Exploring the Space-Time limits in Next Generation X-ray Imager Readout Gary S. Varner University

Space-Time relations

41

1ps = 300um (200um in stripline)

Below 10um resolution, competetive & Prompt!

0

50

100

150

200

250

0 200 400 600 800 1000 1200

Spat

ial r

esol

utio

n [u

m]

Time Resolution [fs]

Space-Time correlation

ideal

Page 42: Exploring the Space-Time limits in Next Generation X-ray ...idlab/taskAndSchedule/STURM/...Exploring the Space-Time limits in Next Generation X-ray Imager Readout Gary S. Varner University

PSEC4: Sampling Analysis

x256

Utilizing PSEC4’s SCA as starting place -Adjustable Sampling rate between 4-15 GSPS -1.6 GHz bandwidth also -0.13μm CMOS (IBM-8RF) -10.5 bit DC dynamics

42

Page 43: Exploring the Space-Time limits in Next Generation X-ray ...idlab/taskAndSchedule/STURM/...Exploring the Space-Time limits in Next Generation X-ray Imager Readout Gary S. Varner University

Equivalent Circuit Multichannel sampling array

43 43

Page 44: Exploring the Space-Time limits in Next Generation X-ray ...idlab/taskAndSchedule/STURM/...Exploring the Space-Time limits in Next Generation X-ray Imager Readout Gary S. Varner University

Simulation Results: Bandwidth for worst case operating bias point

Whether the 1st switch is on or the last, Gain is the same

f3dB w/ Par w/ 50 Ω 1.0 GHz

w/o Par w/ 50 Ω 1.4 GHz

w/ Par w/o 50 Ω 1.9 GHz

w/o Par w/o 50 Ω 2.2 GHz

44

Page 45: Exploring the Space-Time limits in Next Generation X-ray ...idlab/taskAndSchedule/STURM/...Exploring the Space-Time limits in Next Generation X-ray Imager Readout Gary S. Varner University

Simulation Results: Group Delay Group Delay does vary depending which switch is on by ~25ps

which puts a constraint on sampling time window

45

Page 46: Exploring the Space-Time limits in Next Generation X-ray ...idlab/taskAndSchedule/STURM/...Exploring the Space-Time limits in Next Generation X-ray Imager Readout Gary S. Varner University

Simulation Results: Phase • At higher frequencies Phase vs freq behavior is also different

and depends on which switch is on

46 Frequency (Hz)

Page 47: Exploring the Space-Time limits in Next Generation X-ray ...idlab/taskAndSchedule/STURM/...Exploring the Space-Time limits in Next Generation X-ray Imager Readout Gary S. Varner University

Simulation Results: Capacitance

Capacitance is 2.2 pF and does not dependent on which switch is on

47

Page 48: Exploring the Space-Time limits in Next Generation X-ray ...idlab/taskAndSchedule/STURM/...Exploring the Space-Time limits in Next Generation X-ray Imager Readout Gary S. Varner University

PSEC4 Analysis: Single Sampling Cell

48

Page 49: Exploring the Space-Time limits in Next Generation X-ray ...idlab/taskAndSchedule/STURM/...Exploring the Space-Time limits in Next Generation X-ray Imager Readout Gary S. Varner University

PSEC4 Analysis: Single Sampling Cell Structure & Layout

Top view Side view

49

Page 50: Exploring the Space-Time limits in Next Generation X-ray ...idlab/taskAndSchedule/STURM/...Exploring the Space-Time limits in Next Generation X-ray Imager Readout Gary S. Varner University

Sampling Capacitor Spread

Capacitance [fF]

14 16 18 20 22 24 26 28

Nu

m o

f S

am

ple

s

0

50

100

150

200

250

Monte Carlo with process variation and mismatches shows a discrepancy between Csampling Schematic (13.5 fF) and Measured mean (20.27 fF). The Spread is about 1.9fF which makes the Capacitor tolerance at about 9.3%

Num. of Samp.

MEAN STD MIN MAX

1000 20.27 fF 1.89 fF 14.86 fF 26.24 fF

50

Page 51: Exploring the Space-Time limits in Next Generation X-ray ...idlab/taskAndSchedule/STURM/...Exploring the Space-Time limits in Next Generation X-ray Imager Readout Gary S. Varner University

Frequency Analysis Performance: S(Z)-parameter

0.2

0.5

1.0

2.0

5.0

+j0.2

-j0.2

+j0.5

-j0.5

+j1.0

-j1.0

+j2.0

-j2.0

+j5.0

-j5.0

0.0

Z11 TRACK 200mVdc

Z11 TRACK 600mVdc

Z11 TRACK 900mVdc

Z11 HOLD 200mVdc

Z11 HOLD 600mVdc

Z11 HOLD 900mVdc

The input impedance is high and it is capacitive.

51

Page 52: Exploring the Space-Time limits in Next Generation X-ray ...idlab/taskAndSchedule/STURM/...Exploring the Space-Time limits in Next Generation X-ray Imager Readout Gary S. Varner University

Input coupling analysis

𝒁𝟏𝟏 =𝟏 + 𝒔𝑪𝑶𝑶𝑶𝑹

𝒔𝟐𝑪𝑰𝑰𝑪𝑶𝑶𝑶𝑹+ 𝒔 𝑪𝑰𝑰 + 𝑪𝑶𝑶𝑶

The transfer function parts: • input parasitic capacitance of the transistor

plus capacitance of the transmission line section.

• Series resistance of the transistor channel (Rds)

• Output capacitance which is formed of the parasitic capacitance of the transistor, sampling capacitor and load capacitance

Frequency [Hz]

10 4 10 6 10 8 10 10 10 12

Capaci

tance

[fF

]

5

10

15

20

25

30

35

40

45

50

55

Con-nopar

Con-par

Con-par&loadCoff

Capacitance Value [fF]

Cin_open 8fF

Csw_out 10fF

Csamp 20.3fF

Cload 13fF

Capacitance values

Cin + Cout

Cin

52

Page 53: Exploring the Space-Time limits in Next Generation X-ray ...idlab/taskAndSchedule/STURM/...Exploring the Space-Time limits in Next Generation X-ray Imager Readout Gary S. Varner University

Small signal phase analysis

Frequency [Hz]

10 7 10 8 10 9 10 10

Vdc

[V]

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Group Delay without the load

Frequency [Hz]

10 7 10 8 10 9 10 10

Vdc

[V]

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Group Delay with the load

Large group delay variation points to large distortion

53

Page 54: Exploring the Space-Time limits in Next Generation X-ray ...idlab/taskAndSchedule/STURM/...Exploring the Space-Time limits in Next Generation X-ray Imager Readout Gary S. Varner University

Large signal response (I)

Vp [V]

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Vdc

[V]

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Low frequency gain compression

Vp [V]

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2V

dc [V

]0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

High frequency gain compression

• Full dynamic range at low frequency, compression appears when reaching the voltage threshold of the PN junctions at the drain/substrate barrier.

• Gain compression at lower and higher amplitudes

54

Page 55: Exploring the Space-Time limits in Next Generation X-ray ...idlab/taskAndSchedule/STURM/...Exploring the Space-Time limits in Next Generation X-ray Imager Readout Gary S. Varner University

Large signal analysis (II) High frequency gain compression & distortion

Three region of operation: • Low distortion & High

compression • Moderate distortion & Moderate

compression • High distortion & High

compression

Vp [V]

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Fre

quency

[G

Hz]

0.5

1

1.5

2

2.5

55

Page 56: Exploring the Space-Time limits in Next Generation X-ray ...idlab/taskAndSchedule/STURM/...Exploring the Space-Time limits in Next Generation X-ray Imager Readout Gary S. Varner University

Understanding signal response

Low distortion & High compression

Time [ns]

5 5.2 5.4 5.6 5.8 6 6.2 6.4 6.6 6.8 7

Volta

ge [V

]

0.64

0.642

0.644

0.646

0.648

0.65

0.652

0.654

0.656

0.658

0.66

IN

OUT

• Resistance of the channel does not vary much -> Low distortion

• At high resistance the bandwidth is limited -> lowering of the gain (compression)

Voltage [V]

0 0.2 0.4 0.6 0.8 1 1.2

Resi

stance

[O

hm

s]

0

500

1000

1500

2000

2500

w/h par

w par

TRACK state

56

Page 57: Exploring the Space-Time limits in Next Generation X-ray ...idlab/taskAndSchedule/STURM/...Exploring the Space-Time limits in Next Generation X-ray Imager Readout Gary S. Varner University

Understanding signal response

Moderate distortion & Moderate compression

• Resistance of the channel is varying -> The bandwidth at instantaneous values of the incident voltage waveform is different

-> In frequency domain this gives rise to higher harmonics, which interfere constructively hence increasing the overall signal amplitude but also increases distortion

Time [ns]

5 5.2 5.4 5.6 5.8 6 6.2 6.4 6.6 6.8 7

Vo

ltag

e [

V]

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

IN

OUT

Voltage [V]

0 0.2 0.4 0.6 0.8 1 1.2

Resi

stance

[O

hm

s]

0

500

1000

1500

2000

2500

w/h par

w par

TRACK state

57

Page 58: Exploring the Space-Time limits in Next Generation X-ray ...idlab/taskAndSchedule/STURM/...Exploring the Space-Time limits in Next Generation X-ray Imager Readout Gary S. Varner University

Harmonic decomposition

Time [ns]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Vo

ltag

e [

mV

]

300

400

500

600

700

800

900

1000

Fund

H2

H3

H4

H5

Frequency [GHz]

0 5 10 15 20 25 30

Volta

ge p

eak

[mV]

10 -3

10 -2

10 -1

10 0

10 1

10 2

10 3

Frequency [GHz]

0 5 10 15 20 25 30

Phas

e de

lay

[deg

]

10 1

10 2

10 3

10 4

Time domain decomposition Frequency domain decomposition

• Constructive interference of odd harmonics and destructive interference of even harmonics at the peaks

• Constructive interference of second and third harmonics at zero crossing

58

Page 59: Exploring the Space-Time limits in Next Generation X-ray ...idlab/taskAndSchedule/STURM/...Exploring the Space-Time limits in Next Generation X-ray Imager Readout Gary S. Varner University

Noise and Distortion

Vdc [V]

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Input R

efe

rred N

ois

e [nV

/sqrt

(Hz)

]

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

Input referred noise

• Noise dominated by the ON resistance of the channel

Integrated referred noise

Vdc [V]

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Inte

gra

ted n

ois

e [m

V]

0.28

0.285

0.29

0.295

0.3

0.305

• Total noise is around 0.29mV ± 0.01 mV

59

Page 60: Exploring the Space-Time limits in Next Generation X-ray ...idlab/taskAndSchedule/STURM/...Exploring the Space-Time limits in Next Generation X-ray Imager Readout Gary S. Varner University

Noise, distortion and dynamic range Signal to Noise Ratio at full scale input (1Vpp)

Vdc [V]

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

SN

R [d

B]

61.3

61.4

61.5

61.6

61.7

61.8

61.9

62

• SNR is around 61.7dB ± 0.3 dB 60

Page 61: Exploring the Space-Time limits in Next Generation X-ray ...idlab/taskAndSchedule/STURM/...Exploring the Space-Time limits in Next Generation X-ray Imager Readout Gary S. Varner University

Distortion analysis

Vp [V]

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Fre

qu

en

cy [

GH

z]

0.5

1

1.5

2

2.5

Vp [V]

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Vd

c [V

]

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Distortion at fixed Vdc Distortion at fixed Frequency

• Most of the distortion comes from the Ron variation over the input voltage range

61

Page 62: Exploring the Space-Time limits in Next Generation X-ray ...idlab/taskAndSchedule/STURM/...Exploring the Space-Time limits in Next Generation X-ray Imager Readout Gary S. Varner University

SINAD & ENOB assessment

ENOB at low frequency

𝑺𝑰𝑰𝑺𝑺 = −𝟏𝟏 𝐥𝐥𝐥𝟏𝟏 𝟏𝟏−𝑺𝑰𝑹𝟏𝟏 + 𝟏𝟏−

𝑶𝑻𝑺𝟏𝟏

𝑬𝑰𝑶𝑬 =𝑺𝑰𝑰𝑺𝑺 − 𝟏.𝟕𝟕 + 𝟐𝟏 𝐥𝐥𝐥𝟏𝟏

𝑭𝑭𝑭𝑭𝒔𝑭𝑭𝑭𝑭𝑰𝑰𝑰𝑭𝑰

𝟕.𝟏𝟐

Vp [V]

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Vdc

[V]

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Vp [V]

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Fre

quency

[M

Hz]

10 0

10 1

10 2

10 3

ENOB versus frequency

• ENOB DOMINATED BY DISTORTION

62

Page 63: Exploring the Space-Time limits in Next Generation X-ray ...idlab/taskAndSchedule/STURM/...Exploring the Space-Time limits in Next Generation X-ray Imager Readout Gary S. Varner University

Transient Response

Time [ns]

17 17.2 17.4 17.6 17.8 18 18.2 18.4 18.6 18.8 19

Vo

ltag

e [

V]

0.545

0.55

0.555

0.56

0.565

0.57

0.575

0.58

IN

OUT at 1ns opening

Time [ns]

17 17.2 17.4 17.6 17.8 18 18.2 18.4 18.6 18.8 19V

olta

ge

[V

]0.23

0.235

0.24

0.245

0.25

0.255

0.26

0.265

0.27

0.275

IN

OUT at 1ns opening

Transient response at 600 mVdc Transient response at 300 mVdc

HOLD

HOLD TRACK

Backlash

Forward Transient

Pedestal Error

Acquisition time Settling time

Input Vdc voltage Acquisition time Settling time

300mV 0.14ns 0.11ns 600mV 0.68ns 0.11ns 900mV 0.52ns 0.11ns

• 15% backlash at 30mV forward transient

• Pedestal error due to charge injection and transistor mismatch dominate • Worst case window time is 0.8ns or

1.25GHz -> due to low bandwidth • Best case is 0.25ns or 4GHz

63