exploring the links between van hiele levels and 3 ...the van hiele levels have been descnied in...

18
Angel Guti6rrez Departamento de Diddctica de la Matemdtica Universidad de Valencia Apartado 22045 46071 Valencia, Spain French translation: Traduction franpise: Harout Kodjian - Exploringthe links between Van Hiele Levels and 3-dimensional geometry his paper presents some hypotheses about the use of the Van Hiele Model of thinking as a framework for !r understanding the processes of learning in 3dimen- sional Geometry. In this area it is specially important to differentiate the processes concerning spatial visualization from those which relate to solids (polyhedrons, etc.) and their properties. They are two inter-related but different topics, having each one its own characteristics. Therefore, two different fields of re- search can be considered (although both are strongly related): The use of the Van Hiele Model to understand and organize the acquisition of abilities of spatial visualization and the use of the Van Hiele Model to understand and organize the learning of 3-dimensional Geometry. This paper deals with the first field, presenting results of an exploratory experiment aimed at improving the abilities of spatial visualization in sixth-grade students. Possible Topologie structuraie ~ 18 - Structural Topology 1992 I 31 - Explorationdes liens entre les niveawcde Van Hiele et la geomwe tridimensionnelle Rbum6 ette communication presente quelques hypotheses a propos de l’utilisation du modele de pensee de C Van Hiele comme cadre structural pour la compre- hension des processus d’apprentissage en geometrie a trois dimensions. Dans ce domaine, il est specialement important de bien faire la difference entre les processus concernant la visuali- sation spatiale et ceux qui sont relies aux solides et a leurs proprietes. Ce sont deux themes en interaction, mais diffe- rents, chacun ayant ses propres caracteristiques. Par conse- quent, deux champs differents de recherche peuvent 6tre pris en consideration (quoique les deux soient etroitement relies): 1) l’utilisationdu modele de Van Hiele pour compren- dre et organiser l’acquisition des habiletes de visualisation spatiale et 2) l’utilisation du modele de Van Hiele pour com- prendre et organiser l’apprentissage de la geometric a trois dimensions. Cette communication traite du premier de ces deux

Upload: others

Post on 03-Oct-2020

17 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Exploring the links between Van Hiele Levels and 3 ...The Van Hiele levels have been descnied in detail several times’ (see [4], [7], [ll], or [18]). From the Van Hiele levels, some

Angel Guti6rrez Departamento de Diddctica de la Matemdtica Universidad de Valencia Apartado 22045 46071 Valencia, Spain

French translation: Traduction franpise: Harout Kodjian

- Exploring the links between Van Hiele Levels and 3-dimensional geometry

his paper presents some hypotheses about the use of the Van Hiele Model of thinking as a framework for !r understanding the processes of learning in 3dimen-

sional Geometry. In this area it is specially important to differentiate the

processes concerning spatial visualization from those which relate to solids (polyhedrons, etc.) and their properties. They are two inter-related but different topics, having each one its own characteristics. Therefore, two different fields of re- search can be considered (although both are strongly related): The use of the Van Hiele Model to understand and organize the acquisition of abilities of spatial visualization and the use of the Van Hiele Model to understand and organize the learning of 3-dimensional Geometry.

This paper deals with the first field, presenting results of an exploratory experiment aimed at improving the abilities of spatial visualization in sixth-grade students. Possible

Topologie structuraie ~ 1 8 - Structural Topology 1992

I 31

- Exploration des liens entre les niveawc de Van Hiele et la geomwe tridimensionnelle

Rbum6 ette communication presente quelques hypotheses a propos de l’utilisation du modele de pensee de C Van Hiele comme cadre structural pour la compre-

hension des processus d’apprentissage en geometrie a trois dimensions.

Dans ce domaine, il est specialement important de bien faire la difference entre les processus concernant la visuali- sation spatiale et ceux qui sont relies aux solides et a leurs proprietes. Ce sont deux themes en interaction, mais diffe- rents, chacun ayant ses propres caracteristiques. Par conse- quent, deux champs differents de recherche peuvent 6tre pris en consideration (quoique les deux soient etroitement relies): 1) l’utilisation du modele de Van Hiele pour compren- dre et organiser l’acquisition des habiletes de visualisation spatiale et 2) l’utilisation du modele de Van Hiele pour com- prendre et organiser l’apprentissage de la geometric a trois dimensions.

Cette communication traite du premier de ces deux

Page 2: Exploring the links between Van Hiele Levels and 3 ...The Van Hiele levels have been descnied in detail several times’ (see [4], [7], [ll], or [18]). From the Van Hiele levels, some

3i

Eaplodng the lhka Exploration dea liens entn les behvaan Van Hlde Lavala and nivsaux da Van Hiela a la 3-dlmenslonal geomaty gComCbia tridimansionnelk

descriptors of the Van Hiele levels in this context are stated on the basis of the students’ behaviour and answers.

Some authors number the Van Hiele levels from level 0; in this paper they are numbered as follow: Level1 (Recognition), Level ’2 (Analysis), Level 3 (Informal deduction), Level 4 (Formal deduction). ’ Quelques auteurs numetutent les niveaux de Van Hiele B partir de 0; dans cette communication ils sont numBrot6s mmme ceci: niveau 1 (Reconnais- sance), niveau 2 (Analyse). niveau 3 (DMuction informelle], nivea u 4 (DBduction formelle).

1. lntrodud-on Since I. Wirszup reported about the Soviet Curriculum in Geometry in the 60’s [28], the Van Hiele Model of Geometri- cal Thinlung has become a continuous focus of attention among researchers in Mathematical Education. The Van Hiele Model consists of two parts:

the ways of thinking that can be found in the student’s Ge- ometry. The Van Hiele Model states that a student can progress through several levels of reasoning during hidher learning process. The main educational concern for the Van Hiele Model is the progress from a level to the following one; this progress cannot be taught, but it is highly dependent on the lund of teaching.

The second part of the Van Hiele Model, the “phases of learning”, is a suggestion to the teachers on how to organize the teaching of Geometry in order to facilitate and promote the students to pass from their current level of thinlung to the following one.

The Van Hiele levels have been descnied in detail several times’ (see [4], [7], [ll], or [18]).

From the Van Hiele levels, some properties may be appar- ent:

Levels are ordered and sequential: Each level means an improvement over the reasoning abilities of the previous one. Then a student can reach level n (n 22) only if he/she has previously reached level n-1.

Each level has its own language: There is a close rela- tionship between levels and language; for example, we have shown three different meanings of the word “proof”: Verifica- tion (in level Z), informal deduction (in level 3), and formal deduction (in level 4). Then, two persons spealung (therefore reasoning) at different levels cannot understand each other

Levels are continuous: Although the original Van Hiele‘s statement was in favour of the discreteness of the levels, results from further research has currently led to most of the researchers to consider that the movement from a level to the following one is a continuous process, since the acquisition of a thinking level by a student is gradual and it can be observed along the time.

The first one, the “levels of thinking”, is a description of

( [ q , P. 246).

domaines, en presentant des resultats dune experimentation exploratoire ayant pour objectif dameliorer les habiletes de visualisation spatiale chez des eleves de sixieme annee. Les descripteurs des niveaux de Van Hiele, dans ce contexte, sont bases sur les comportements et les reponses des eleves.

1. Introduction Depuis le rapport de I. Wirszup sur le programme sovietique en geometrie dans les annees 60 [28], le modele de Van Hiele de la pensee geometrique est devenu un centre permanent dattention parmi les chercheurs en didactique des mathe- matiques. Le modele de Van Hiele comprend deux parties :

La premiere, les miveaux de pensee)), est une descrip tion des faGons de penser qui peuvent se trouver dans la geo- metrie des eleves. Selon le modele de Van Hiele, un eleve peut avancer en passant a travers plusieurs niveaux de rai- sonnement pendant son processus dapprentissage. L‘interCt principal sur le plan educationnel du modele de Van Hiele est le passage dun niveau au suivant; ce passage ne peut pas Ctre enseigne, mais il depend beaucoup du genre densei- gnement .

dapprentissage)), est une suggestion aux enseignants sur la maniere d’organiser l’enseignement de la geometrie pour faciliter et faire passer les eleves dun niveau de pensee a l’autre.

Les niveaux de Van Hiele ont ete plusieurs fois decrits en detail’ (voir [4], [7], [ll], ou [18]).

Des niveaux de Van Hiele, quelques proprietes peuvent Ctre apparentes :

Les niveaux sont ordonnes et skquentiels : chaque niveau correspond a une amelioration des habiletes de rai- sonner par rapport au niveau precedent. Un eleve peut ainsi atteindre le niveau n (n 22) seulement s’il a deja atteint le niveau n-1.

Chaque niveau a son pmpre langage : il existe une relation etroite entre niveau et langage ; par exemple, on peut donner trois sens differents au mot (( preuve )) : verification (au niveau 2), deduction informelle (au niveau 3), et deduc- tion formelle (au niveau 4). Ainsi, deux personnes parlant (donc raisonnant) a des niveaux differents ne pourront pas se comprendre ([lo], p. 246).

tion de Van Hiele etait en faveur dune certaine discretion

0 La deuxieme partie du modele de Van Hiele, les ((phases

Les niveaux sont continus : quoiqu’a l’origine l’affirma-

Page 3: Exploring the links between Van Hiele Levels and 3 ...The Van Hiele levels have been descnied in detail several times’ (see [4], [7], [ll], or [18]). From the Van Hiele levels, some

2. The problematical For the last 14 years much research has focused on the Van Hiele Model as an aim of research by itself, to determine or analyse the characteristics of the levels of thinking ([8], [9], [13]), as a tool, to evaluate the students’ achievement in a particular environment (141, [14], [15], [22], [27]), or as a framework to design experimental teaching units ([5], [ll], [18]). Nevertheless, most relevant results obtained from these investigations refer to plane Geometry and, almost always, to

des niveaux, des resultats de recherches posterieures ont mene la plupart des chercheurs a considerer que le passage dun niveau au suivant se fait dune faqon continue, etant donne que l’acquisition dun niveau de pensee par un eleve se fait graduellement et peut &tre observee a travers le temps.

I relationships of descriptors for every Van Hiele level, as those in [4] and [ll].

tified for some geometrical topics, but we know very little about them in other geometrical areas, such as 3dimensional Geometry. This lack of research, shown in [6] and [16], seems more paradoxical if we recall that there have been several National Primary and Secondary curricula where geometrical contents and methodology were based on the Van Hiele Model: The Soviet curriculum in the 60’s [25], the Dutch curriculum in the 70’s [26], and the new North- American Standards [23].

There has been several isolated approaches to 3dimen- sional Geometry based on the Van Hiele Model. The first attempt to characterize explicitly the Van Hiele levels in 3- dimensional Geometry appeared in [17], where several geo- metrical skills (visual, verbal, drawing, logical and applied

1 skills) were described and short general theoretical descrip

At present, the Van Hiele levels are quite accurately iden-

2. Roblfhatique Pendant les 14 dernieres annees plusieurs recherches ont ete centrees sur le modele de Van Hiele, soit comme un but de recherche en hi-meme, pour determiner ou analyser les caracteristiques des niveaux de pensee (181, [9], [131), soit comme un outil pour evaluer la performance des eleves dans un environnement particulier ([4], [14], [15], [22], [27]), ou soit comme un cadre structural pour concevoir des sequences denseignement experimentales ([5], [ll], [181). Neanmoins, la plupart des resultats importants de ces recherches se re- ferent a la geometrie plane et, presque toujours, a des polygo- nes et des concepts relies a ceux-ci, ou nous pouvons trouver des rapports precis de descripteurs pour chaque niveau de Van Hiele, comme ceux dans [4] et [ll].

De nos jours, les niveaux de Van Hiele sont identifies avec une bonne precision pour certains themes geometriques, mais nous en Savons tres peu dans dautres domaines geome- triques, comme dans la geometrie tridimensionnelle. Cette lacune dans la recherche, mise en evidence dans [6] et [16], semble &tre plus paradoxale si nous rappelons qu’il y a eu plu- sieurs programmes nationaux du prima& et du secondaire ou le contenu geometrique et la methodologie etaient fondes sur le modele de Van Hiele : le programme sovietique dans les annees 60 [25], le programme neerlandais dans les annees 70 [26], et les nouveaux standards nord-americains [23].

I1 y a eu plusieurs tentatives isolees en geometrie tridimen- sionnelle basees sur le modele de Van Hiele. La premiere ten- tative pour caracteriser explicitement les niveaux de Van Hiele en geometrie tridimensionnelle a p p b t dans [17]; plusieurs habiletes geometriques (des habiletes visuelles, verbales, gra- phques, logiques et appliquees) y etaient decrites, et ou des descriptions theoriques, courtes et generales pour chaque habilete et niveau de Van Hiele etaient faites. Quelques exem- ples dhabiletes visuelles et graphiques se referant aux solides etaient prises en consideration; mais m h e la, il n’etait pas possible den deduire une conception specifique a m formes de pensee en geometrie tridimensionnelle basee sur les niveaux de Van Hiele.

tions for every skill and Van Hiele levels 1 to 5 were stated; some examples for visual and drawing skills which referred to solids were considered, but even then, it is not possible to derive from this paper a specific conception of ways of thinking in 3dimensional Geometry based on the Van Hiele

Other research relating the learning of 3dimensional Geometry and the Van Hiele levels was carried out by D. Lunkenbein, who descnied the different ways in which his pupils worked with polyhedrons, matching totally the charaG teristics of Van Hiele levels 1 and 2 [19]. On the other hand, taking the Piagetian concept of “grouping” as the starting point, [20] defined three types of groupings (infralogical, logi-

I levels.

I 33

Page 4: Exploring the links between Van Hiele Levels and 3 ...The Van Hiele levels have been descnied in detail several times’ (see [4], [7], [ll], or [18]). From the Van Hiele levels, some

13 34

Exploring the links Exploration des lkns en& les between Van Hlele Levels and nhreaux de Van Hlele at la 3-dlmenslonal geometly gbombtrie trldlmensionnelle

when solving activities with polyhedrons. This is an interest- ing proposal, although it only allows to partially characterize the lower Van Hiele levels, as logical classification is not the only thinking activity involved in these levels.

When the teaching or learning of 3dimensional Georn- etry is mentioned, spatial visualization arises immediately as an element to bear in mind. It is evident that the spatial abili- ties, especially visualization, are a basic component in this field, as it has been proved that the students' degree of devel- opment in such abilities influences their achievement in attending a course in 3-dimensional Geometry. For instance, a bad visualizer will likely be in trouble to properly under- stand the graphical contexts of the textbook and to clearly express hidher own ideas. Nevertheless, both aspects are not to be identified, as the capability of visualizing and any other spatial ability are only some of the various factors influenc- ing the way the students build their networks of geometrical concepts, properties, and relationships (in 1, 2, or 3 dimen- sions). Therefore, when a process of learning 3dimensional Geometry is to be analysed, it is necessary to distinguish between:

Acquiring and using what is usually known as 3dimen- sional Geometry: knowledge and classification of the various types of solids, in particular polyhedrons, their structures, elements, geometrical and metric properties, etc., in order to solve problems.

Acquiring and developing the spatial abilities which are present in the activities used for the learning and use of 3- mmensional Geometry. According to Ben-Chaim et al. [l], by spatial abilities one has to understand the set of skills of rep resenting, transforming, generating and using non-linguistic information, from which the abilities which conform the spatial visualization, as described by Bishop [2], stand out.

From what has been written above, it can be said that re- search on the learning processes in 3dimensional Geometry from the point of view of the Van Hiele Model is needed, and also that it is necessary to divide the problem by considering, on one hand, the acquisition of the spatial abilities and, on the other hand, the understanding of the networks of geo- metrical concepts. Although it is quite easy to work in spatial visualization avoiding the use of any aspect of 3dimensional Geometry, it is probably not possible to work in 3dimen- sional Geometry without considering some aspects of visuali- zation, so the results of these two investigations could be

Une autre recherche reliant l'apprentissage de la geome- trie tridimensionnelle aux niveaux de Van Hiele a ete reali- see par D. Lunkenbein, qui a decrit les differentes faqons de travailler de ses eleves avec les polyedres, ce qui correspon- dait totalement aux caracteristiques des niveaux 1 et 2 de Van Hiele [19]. D'autre part, en prenant le concept piagetien de (( groupement )) comme point de depart, [20] definissait trois types de groupements (infra-logique, partition logique et inclusion logique) qui correspondraient respectivement aux niveaux 1 ,2 et 3 de Van Hiele. Plus tard, des groupements ont ete utilises dans [21] pour analyser les differents chemi- nements suivis par les etudiants dans la resolution de pro- blemes sur les polyedres. Cette proposition est interessante, quoiqu'elle ne permette que de caracteriser partiellement les niveaux les plus bas de Van Hiele, etant donne que la classifi- cation logique n'est pas la seule activite de pensee impliquee dans ces niveaux.

Des qu'on parle denseignement ou d'apprentissage de la geometrie tridimensionnelle, la visualisation spatiale surgit immediatement comme sujet de reflexion dans notre pen- see. I1 est evident que les habiletes spatiales, specialement la visualisation, sont une composante fondamentale dans ce domaine, puisqu'il a ete prouve que le degre de developpe- ment des etudiants dans ces habiletes a une influence sur leur performance dans un cours de geometrie tridimension- nelle. Par exemple, un eleve faible en visualisation va proba- blement avoir des difficultes pour comprendre correctement les contextes graphiques du manuel scolaire et pour expri- mer clairement ses idees. Cependant, ces deux aspects ne doivent pas &re interpretes comme si la capacite de visuali- sation et toute autre habilete spatiale sont uniquement quel- ques-uns des divers facteurs ayant leur influence sur la faqon des eleves de construire les reseaux de concepts, de proprie- tes et de relations geometriques (en une, deux ou trois di- mensions). Ainsi, quand un processus dapprentissage de geometrie tridimensionnelle doit &re analyse, il est neces- saire de distinguer en& :

0 Acquerir et utiliser ce qui est habituellement connu comme geometrie tridimensionnelle : connaissance et classi- fication des divers types de solides, en particulier des po- lyedres, leurs structures, leurs elements, leurs proprietes geometriques et metriques.. ., pour resoudre des problemes.

AcquCrir et developper les habiletes spatiales qui sont presentes dans les activites utilisees pour l'apprentissage et

Page 5: Exploring the links between Van Hiele Levels and 3 ...The Van Hiele levels have been descnied in detail several times’ (see [4], [7], [ll], or [18]). From the Van Hiele levels, some

* The results presented in this section are part of a research project funded by the lnstitucidn Valenciana de Estudios e lnvestigacidn ‘Alfonso el Magnhnimo” de Valencia (Spain).

Les resultats phsentes dans cette Section font partie d’un projet de recherche subventionne par la Institucidn de Estudios e lnvestigacidn cAlfonso el Magnhnimo)) de Valence (Espagne).

different. Consequently, it seems that a complete analysis of the learning processes in 3-dimensional Geometry should be subordinated to an analysis of the acquisition of the abilities of spatial visualization.

In this paper we give some ideas about some possible characteristics of the Van Hiele levels in the topic of spatial visualization. This proposals is based on a researches in which we have been involved, consisting of the design, and experimentation with sixth-grade students, of activities of manipulating solids, aimed at developing the abilities of spa- tial visualization. The final aim of this experiment was to obtain, in a future, operative and detailed characterizations of every Van Hiele level in terms of the student’s behaviour in the topic of spatial visualization.

3. The \ian Hiele levels and the spatial visualization The literature presenting results of research in visualization not always refers to the same concept “visualization”, since some researchers include in the field of visualization abilities or types of problems which are not taken under considera- tion by other researchers working in different investigative paradigms. PI define the context of our research, I will point out the distinction made by Bishop [3] between objects of visualization and processes of visualization. The objects of visualization identified by Presmeg [24] are concrete imagery, pattern imagery, memory images of formulae, ki- netic imagery, and dynamic imagery. The relevant processes of visualization are inteqreting figural infomution (IFI) and the visual processing (VP) of abstract information identified by Bishop [2].

Some of the objects and processes of visualization stated above were present in the research that we carried out; a p plied to the use of 3dimensional figures: The dynamic im- agery was present in the students’ activity, as they had to move objects physically and mentally. The students also used the kinetic imagery, for instance, when moving their hand to help themselves to determine the rotation which should be applied to a solid on the computer screen. Some IF1 abilities, in particular understanding of visual representa- tions used in geometric work, and VP abilities, such as ma- nipulation and transformation of visual representations and imagery, were also used by the students.

kinds of plane representations of 3dimensional objects. Gaulin [12] presents a complete description of the usual

l’utilisation de la geometrie tridimensionnelle. D’apres Ben- Chaim et al. [l], on comprend par habiletes spatiales l’ensemble des habiletes de representation, de transforma- tion, de generation et d’utilisation dinformation non linguis- tique, d o u ressortent les habiletes conformes a l a visualisa- tion spatiale, comme decrites par Bishop [2].

De ce qui a ete dit jusqu’ici, on peut deduire qu’il y a un besoin de faire de la recherche dans le processus dapprentis- sage de la geometrie tridimensionnelle du point de vue du modele de Van Hiele, et qu’il est aussi necessaire de separer le probleme en deux en considerant dune part, l’acquisition des habiletes spatiales, et dautre part, la comprehension des reseaux de concepts geometriques. Quoiqu’il soit facile de travailler en visualisation spatiale en evitant l’utilisation de quelque aspect de la geometrie tridimensionnelle, ce ne sera probablement pas possible de travailler en geornetrie tridi- mensionnelle sans prendre en consideration quelques as- pects de la visualisation. En ce sens, les resultats de ces deux recherches pourraient Ctre differents et par consequent, il semble qu’une analyse complete des processus dapprentis- sage en geometrie tridimensionnelle devra &re subordonnee a une analyse de l’acquisition des habiletes de visualisation spatiale.

Dans cette article, nous donnons quelques idees a propos de quelques caracteristiques possibles des niveaux de Van Hiele sur les themes de la visualisation spatiale. Cette propo- sition est basee sur une recherche dans laquelle nous avons ete implique. Elle consistait a concevoir et a experimenter, chez des eleves de sixieme annee, des activites d e manipula- tion de solides ayant pour but de developper des habiletes de visualisation spatiale. Le but final de cette experimentation etait d’obtenir, dans le futur, des caracterisations operation- nelles et detaillees de chaque niveau de Van Hiele en termes de comportement des etudiants.

3. Les niveaux de Van Hiele et la visualisation spatiale Les textes presentant des resultats de recherche en visuali- sation ne se referent pas toujours au mCme concept de (( visualisation D. Certains chercheurs introduisent dans le domaine de la visualisation, des habiletes ou des types de problemes qui ne sont pas pris en consideration par d’autres travaillant dans differents paradigmes investigatifs. Pour definir le contexte de cette recherche, nous utilisons la dis- tinction faite par Bishop [3] entre les objets de visualisation

Page 6: Exploring the links between Van Hiele Levels and 3 ...The Van Hiele levels have been descnied in detail several times’ (see [4], [7], [ll], or [18]). From the Van Hiele levels, some

between Van Hlele Levels and niveaux de Van Hlele et la d-dlmenclional geometry g6om6tria trldlmencllonneile

From this experimentation we chose perspective drawings, orthogonal drawings on isometric dot paper, side views, and side views with numeric information (we named them “nu- merical views”). They were chosen because they fit well the materials used by our students.

Students usually work in three contexts when they han- dle 3-dimensional objects or they study space Geometry: Manipulation of real physical objects, manipulation of 3- dimensional representations on a computer screen and read- ing or drawing plane representations on paper. Each one of these contexts, being important for the learning process and the everyday life, has advantages and disadvantages. The physical objects are the most versatile and easiest to manipu- late. Although this easiness hides many of the manipulations involved in working with solids. The students lacks aware- ness of the links between these physical movements and the mental movements required in other contexts. Plane repre- sentations are the most frequent in our world, the ones which can give the most complete information about the characteristics of the represented solids, but the most diffi- cult to be mentally manipulated. Previous learning of some reading codes is required. Computers are a very valuable aid for teachers, although research about their advantage with respect to other classical contexts shows contradictory re- sults; according to their advantages and disadvantages, com- puters can be located in between real solids and plane repre- sentations, closer to one or the other according to the specific software used.

texts (physical objects, plane and computer dynamic repre- sentations), related to each other through the use of the same geometric solids, so that the students’ activity always took place in two of the contexts simultaneously (Figurn 1).

An analysis of the students’ behaviour when solving a o tivities of comparing or moving solids is the ground for the following proposal of characteristics of the Van Hiele levels in the field of spatial visualization. It must be noted that the descriptors are closely related to the microworld used and, in particular, to the software.

Level 1 (Recognition). The comparison of solids is based on a global perception of the shapes of the solids or some particular elements (faces, edges, vertices) without paying attention to properties such as angle sizes, edge lengths, parallelism, etc. When some one of these math-

The microworld that we created integrated the three con-

et les processus de visualisation. Les objets de visualisation identifies par Presmeg [24] sont les images concretes, les images de modelisation, les images de memoire des formules, les images cinetiques et les images dynamiques. Les proces- sus importants de visualisation sont I’interpvitation d’informa- tion figwale (IF) et le traitement visuel (TV) de l’information abstraite identifies par Bishop [2].

Quelques-uns de ces objets et processus de visualisation etaient presents dans la recherche que nous avons realisee, appliques a l’utilisation de figures tridimensionnelles : les images dynamiques ont toujours ete presentes dans l’activite des etudiants, lorsqu’ils deplacaient physiquement ou menta- lement des objets. Les eleves ont aussi utilise les images cine- tiques, par exemple, lorsque avec la main ils determinaient la rotation qui devait s’appliquer a un solide a l’ecran de l’ordi- nateur. Quelques habiletes de IIF, en particulier la compre- hension de representations visuelles utilisees dans une Gche geometrique, et des habiletes de Tv, comme la manipulation et la transformation des representations et des images visuelles, ont aussi ete utilisees par les eleves.

Gaulin [12] donne une description complete des types de representations planes d’objets tridimensionnels. Selon cette experience, nous avons choisi des dessins en perspective, des dessins orthogonaux sur papier a point isometrique, des vues de c8te dont certaines avec des informations numeriques (que j’appellerai des (( vues numeriques D). Ce choix s’est fait selon une concordance avec le materiel utilise par nos eleves.

Les eleves travaillent habituellement dans tmis contextes quand ils traitent des objets tridimensionnels ou etudient la geometrie dans l’espace : manipulation dobjets physiques reels, manipulation de representations tridimensionnelles sur l’ecran dun ordinateur, lecture et dessin de representa- tions planes sur papier. Chacun de ces contextes, tout en etant important pour le processus d’apprentissage et dans la vie de tous les jours, a ses avantages et ses desavantages. Les objets physiques sont les plus versatiles et les plus faciles a manipuler. Par contre cette facilite cache plusieurs manipula- tions impliquees dans des t2ches effectives sur des solides. L’eleve ne realise pas certains liens entre ces mouvements physiques et les mouvements mentaux exiges dans dautres contextes. Les representations planes sont les plus frequentes dans notre monde, celles qui peuvent donner l’information la plus complete a propos des caracteristiques des solides repre- sentes mais aussi les plus dif€iciles a manipuler mentalement.

Page 7: Exploring the links between Van Hiele Levels and 3 ...The Van Hiele levels have been descnied in detail several times’ (see [4], [7], [ll], or [18]). From the Van Hiele levels, some

Topologle stlllctumle 18 StlllaUml Topology 1092

- Comuarisons

ematical characteristics appears in a student’s answer, it has just a visual role.

solids that they cannot see, neither their movements. Then, students move (physically, or on a computer screen) a solid by guess, in spite of the fact that they may have a specific objective. First a movement (a rotation in our experiment) is selected. If it does not produce any suitable result, another movement is selected. If a movement does produce an aG ceptable result, then a more accurate sequence of move- ments may follow.

/-\

Students are unable to visualize both solids or positions of

At the first level there is also a lack of coordination be-

Objects in a computer Oblets u I’ordinateur

tween the desired movement (usually figured out by moving

the hands) and the one actually selected on the computer screen. It

is probably a consequence of the students’ lack of ability for visualizing

the effect of movements on the screen.

Movements

Mouuements

For example, the action of moving a hand from left to right, may be inter-

preted as a positive turn around axis y or a

Level 2 (Analysis). The comparison of negative turn around z (Figurn 2).

solids is based on a global perception of the solids or their elements leading to the examina-

tion of differences in isolated mathematical prop erties [such as angles sizes, edges lengths, parallel-

Paper representation

Figure 1

Y

L -

Figure 2

ism, etc.), apparent from the observation of the solids or known from the solid’s name. Observation is the main basis for the students’ explanations.

Students are able to visualize simple movements of solids between two concrete positions. Then the movements are not made by guess but determined depending on its current and final positions. There is not a pre-planned strategy, but a “direct mode” activity (in the same way as it happens in Logo): A movement is made; after observing the result, the next movement is selected and made; and so on.

Level 3 (Informal deduction). In order to decide whether two solids may be congruent or not, there is a math- ematical analysis of the solids and their elements prior to any (physical or mental) movement. Students’ answers in- clude informal justifications based on isolated mathematical

L’apprentissage a priori de certains codes de lecture y est exige. Les ordinateurs apportent une aide importante aux enseignants, bien que la recherche de leur avantage dans dautres contextes classiques montre des resultats contradiG toires; selon leurs avantages et leurs desavantages, les ordina- teurs se situent entre les solides reels et les representations planes, plus proche des uns ou des autres selon le logiciel specifique utilise.

Le micromonde que nous avons Cree, integrait les trois contextes (des objets physiques, des representations planes et des images dynamiques a l’ecran), relies entre eux a tra- vers l’utilisation des mCmes solides geometriques, l’activite des eleves ayant toujours lieu simultanement dans deux des trois contextes (figure 1).

Une analyse du comportement des eleves faisant des activites de comparaison et de mouvement de solides, est la mise en situation pour proposer les caracteristiques suivantes des niveaux de Van Hiele dans le domaine de la visualisation spatiale. I1 est a noter que les descripteurs sont etroitement relies au micro-monde utilise, en particulier au logiciel.

est basee sur une perception globale des formes des solides ou sur quelques elements particuliers (des faces, des arCtes, des sommets), sans faire attention a des propriktes comme la grandeur des angles, la longueur des arCtes, le parallelisme, etc. Quand quelques-unes de ces caracteristiques mathema- tiques apparaissent dans la reponse dun eleve, elles n’ont qu’un r61e visuel.

positions de solides qu’ils ne peuvent voir, et il e n est ainsi des mouvements. Alors, ils bougent les solides par essais et erreurs physiquement ou a l’ecran, malgre qu’ils puissent avoir un objectif specifique. Ils effectuent d’abord un mouve- ment (une rotation dans notre experience). S’il ne produit pas un resultat convenable, un autre mouvement est choisi. Si un mouvement produit un resultat acceptable, alors une sequence plus precise de mouvements peut en decoder.

Au premier niveau, il existe aussi un manque de coordina- tion entre le mouvement desire (dhabitude imagine en bou- geant les mains) et celui qui est effectivement choisi sur l’ecran de l’ordinateur. C’est probablement une consequence du manque de capacite des eleves a visualiser l’effet des mouvements sur l’ecran. Par exemple, l’action de bouger la main de gauche a droite,.peut Ctre interpretee comme un

Niveau 1 (Reconnaissance). La comparaison des solides

Les eleves sont incapables de visualiser des solides ou des

Page 8: Exploring the links between Van Hiele Levels and 3 ...The Van Hiele levels have been descnied in detail several times’ (see [4], [7], [ll], or [18]). From the Van Hiele levels, some

Exploring the links Exploration des liens enbe les between Van Hlele Lsvels end nhreaux de Van Hlele et la 3-dlmenshmal geometty g6omCtrle tridlmensionnelle

I 38 properties of the solids; these properties may be observed in

the solids’ representations or known from their mathemati- cal structure.

The better students’ ability of visualization allows them to visualize movements from or to non-visible positions. Then, when a solid has to be moved, students do previously an analysis of the initial and final positions, and a plan is done about which sequence of movements should be made. Justi- fications for such a decision are usually based on evident mathematical properties of or relationships between one or more parts (faces, edges, vertices) of the solids original posi- tion and the matching parts of the final position.

Level 4 (Formal deduction). Also in this level students analyse the solids prior to any manipulation. Students’ rea- soning is based on the mathematical structure of the solids or their elements, including properties not seen but formally deduced from definitions or other properties.

Students in this level have a high ability of visualization. They can pre-plan the movement of solids, and the selection of movements is done on the basis of the solids mathemati- cal structure and properties. This ability allows students to make an economic and accurate use of movements; for ex- ample, rotation angles depend on the angles between par- ticular faces or edges. Students can also transform a non- available movement in a sequence of available ones.

3.1 The teaching unit The aim of the activities in this teaching unit was to promote the acquisition or the development of the students’ visual abilities. The basic material used by the students in the ac- tivities are the following :

A) Several solid cubes, the faces of which were decorated with drawings (Figurn 3). They were used in problems (about changes of position) where only 90’ rotations around the axes x , y, and z could be applied (Figurn 7a).

B) A set of usual polyhedrons (cube, tetrahedron, octahe- dron, square pyramid and right prism) and a module made of small cubes. They were available as solid polyhedrons, made of cardboard with faces shaded using the same pat- terns as in the computer or paper representations (Figure 4), and as transparent polyhedrons, except the module, made of straws and pipe cleaners (Figurn 5). These solids were used in problems about matching solids and about changes of position.

tour positif autour de l’axe des y ou comme un tour negatif autour de l’axe des z (figurn 2).

Niveau 2 (Analyse). La comparaison des solides est basee sur une perception globale des solides ou de leurs ele- ments, conduisant a un examen des dserences dans les p re prietes mathematiques isolees (comme les grandeurs des angles, les longueurs des arCtes, le parallelisme, etc.), appa- rentes par observation des solides ou connues a partir du nom du solide. Les explications des eleves sont principale- ment basees sur l’observation.

Les eleves sont capables de visualiser des mouvements simples de solide entre deux positions concretes. Alors, les mouvements ne sont pas faits par des estimations mais de- termines selon les positions courantes et finales des solides. I1 n’y a pas une strategie planifiee davance, mais une activite en ((mode direct v (tout comme il amve en langage Logo) : un mouvement est fait, et apres avoir observe le resultat, le pro- chain mouvement est decide et execute, et ainsi de suite.

Niveau 3 piduction informelle). Pour decider si deux solides sont congruents ou pas, il existe une analyse mathe- matique des solides et de leurs elements avant n’importe quel mouvement (physique ou mental). Les reponses des eleves contiennent des justifications informelles basees sur des proprietes mathematiques isolees des solides; ces pro- prietes peuvent Ctre observees dans les representations des solides ou connues a partir de leur structure mathematique.

Une meilleure capacite de visualisation des eleves leur permet de visualiser des mouvements a partir ou vers des positions non visibles. Alors, quand un solide doit &re deplace, les eleves font dabord une analyse des positions initiale et finale, puis, un plan est fait pour le choix de la se- quence des mouvements qu’ils doivent realiser. Les justifica- tions dune telle decision sont generalement basees sur des proprietes mathematiques evidentes ou des relations entre une ou plusieurs parties (faces, argtes, sommets) de la posi- tion originale du solide et la ou les parties correspondantes de la position finale.

Niveau 4 @duction formelle). De mCme dans ce niveau, les eleves analysent les solides avant toute manipula- tion. Le raisonnement des eleves est base sur la structure mathematique des solides ou de leurs elements, incluant les proprietes non wes, mais deduites d’une faGon formelle des definitions ou autres proprietes.

Les eleves, a ce niveau, ont une grande capacite de visua-

Page 9: Exploring the links between Van Hiele Levels and 3 ...The Van Hiele levels have been descnied in detail several times’ (see [4], [7], [ll], or [18]). From the Van Hiele levels, some

C) A set of Multilink cubes and several modules made of such cubes, used to study the three plane representations: Isometric, side views, and numerical views (Figure 6).

different programs running on Macintosh SE.

move the cubes in A) and the modules in C). Another stack

The software used in the teaching unit consisted of three

D) Several Hypercard stacks (Figum 7), used mainly to

Finure 3

Fiaure m 4

Fiaure 5

Fiaure 6

1 Front Right Top I r - -

Topologie structurale 18 * Structural Topology. 1892 ~

lisation. 11s peuvent planifier davance le mouvement des solides et choisir les mouvements en se basant sur la struc- ture mathematique du solide et sur ses proprietes. Cette capacite permet aux eleves de realiser une econornie et une plus grande precision des mouvements; par exemple, les angles de rotation dependent des angles entre des faces ou des arktes particulieres. Les eleves peuvent aussi construire un mouvement non disponible a partir dune sene de mou- vements deja disponibles.

3 1 La sdquence dknseignement L’objectif des activites dans cette sequence denseignement etait de promouvoir l’acquisition ou le developpement des habiletes visuelles des eleves. Le materiel de base utilise par les eleves dans ces activites etaient le suivant :

A) Plusieurs cubes solides, dont les faces etaient decorees de dessins (figum 3). 11s etaient utilises dans des problemes (sur les changements de position) ou seulement des rota- tions de 90’ autour des axes x, y et z, pouvaient s’appliquer (figure 7a).

taedre, pyramide a base carree et prisme droit) e t un module fait de petits cubes. 11s etaient faits soit en carton avec des faces hachurees utilisant les mkmes configurations que dans l’ordinateur ou dans les representations sur papier (figure 4), soit en transparence, sauf le module, qui etait faits de tiges et de cure-pipes (figure 5). Ces solides etaient utilises dans des problemes d’assortiment de solides et de changements de position.

C) Un ensemble de cubes Multilink et plusieurs modules faits de ces cubes, utilises pour etudier les trois representa- tions planes : isometrique, vues de cbte, et vues numeriques

Le logiciel utilise dans la sequence denseignement com- prenait trois programmes differents fonctionnant sur un ordi- nateur Macintosh SE.

D) Plusieurs piles Hypercard (figure 7 , utilisees principa- lement pour deplacer les cubes en (A) et les modules en (C). Une autre pile Hypercard contrblait les deplacements d’un endroit a l’autre a l’interieur du logiciel.

E) Une version non editee du programme (( 3 D Images D, conGu par A. Hoffer et R Koch, qui permet de representer et de tourner des solides tridimensionnels a faces transparentes (figure 8). Dans ce programme, les rotations sont faites auto-

B) Un ensemble de polyedres usuels (cube, tetraedre, oc-

(figure 6).

1

Page 10: Exploring the links between Van Hiele Levels and 3 ...The Van Hiele levels have been descnied in detail several times’ (see [4], [7], [ll], or [18]). From the Van Hiele levels, some

I

d Explorlng the llnks Exploration daa liens entre lea between Van Hlele Levels end nhreaux de Van Hlele et Ie 3-dimensional geometry gBomBtrle (rldlmenslonnelle

7a

7b 7c

Figure 7

Figure 8

I

Figure 9

was the controller for moving from any part of the software to the others.

E) A pre-release version of the program 3D Images, de- signed by A. Hoffer and R Koch, which allows to represent and to rotate 3dimensional solids with transparent faces (Figure 8). In this program, rotations are performed auto- matically so that, while the user keeps on pressing the button for a specific rotation, the figure keeps on rotating continu- ously.

F) The program Phcenix 3D allows to represent and rotate Mimensional solids with either transparent or opaque faces (Figure 9). In this program rotations do not take place auto- matically, but the user has to select previously the size of the rotation. However, the size of the rotation can be graded intui- tively by a small pyramid, visualized in the centre of the screen, which moves continuously in the direction of the selected rotation and shows the rotation’s size.

As can be seen in the previous figures, the solids appear- ing on the computer screen were similar to the correspond- ing real ones. It is worth pointing out that 3D Images and Phaenix 3D are very different programs since the automatic movement of solids in the first one supports the search by guess by the less able students, while the second program supports an analysis prior to the selection of a movement.

G) A booklet with the statement of the activities, some of which, dealing with plane representations, including hard copies of solids as seen on the computer screen (Figure lo).

The teaching unit consisted of three main types of activities. A) Activities asking to compare a certain polyhedron to a

given perspective representation of the same or a similar solid p b l e 1). Usually, students did these comparisons by trying to move the polyhedron up to the position shown by the paper representation, and deciding whether they were alike or not.

computer) a certain polyhedron from its current position to another given one (Bble 2).

C) Activities asking to build modules made of Multilink cubes from given plane representations (isometric, side views, or numerical views), to draw the plane representa- tions of given modules, or to check whether a certain repre- sentation corresponded to a given module.

This teaching unit was experimented with three sixth- grade children, two girls and one boy, with different ability

B) Activities asking to move (mentally, physically, or on a

matiquement de telle sorte que tant que l’utilisateur conti- nue a appuyer sur la touche, pour une rotation donnee, la figure continue a tourner.

F) Le programme (( Phcenix 3D )) permet de representer et de toumer des solides tridimensionnels a faces transparentes ou opaques (figure 9). Dans ce programme les rotations n’ont pas lieu dune faCon automatique car l’utilisateur doit determiner auparavant l’amplitude de la rotation. Cepen- dant, cette amplitude peut &re graduee intuitivement par une petite pyramide visuelle au centre de l’ecran, tournant continuellement dans le sens de rotation choisi et montrant l’amplitude de la rotation.

Comme on peut voir dans les figures precedentes, les solides apparaissant sur l’ecran de l’ordinateur etaient sem- blables aux solides reels correspondants. Signalons que (( 3D Images)) et ((Phcenix 3D)) sont des programmes tres diffe- rents, puisque le deplacement automatique des solides dans le premier cas permet la recherche par estimation de la part des eleves moins habiles, tandis que le deuxieme programme suppose une analyse avant la selection du mouvement.

G) Un livret decrivant les activites, dont quelques-unes traitant des representations planes, et contenant des copies reelles des solides comme on voyait sur l’ecran (figure lo).

La sequence denseignement etait composee de trois ty- pes principaux dactivites.

A) Des activites demandant de comparer un certain po- lyedre a une representation en perspective du mCme solide ou d‘un solide semblable (tableau 1). D’habitude, les eleves faisaient ces comparaisons en deplaCant le polyedre jusqu’a la position montree par la representation sur papier, et en decidant s’ils sont pareils ou non.

B) Des activites demandant de deplacer (mentalement, physiquement ou sur ordinateur) un certain polyedre de sa position initiale a une autre position donnee (tableau 2).

C) Des activites demandant la construction de solides avec des cubes Multilink a partir de representations planes (isometriques, vues de cBte ou vues numeriques), le dessin de representations planes de modules donnes, ou la verifica- tion de la correspondance entre une certaine representation et un module donne.

Cette sequence denseignement fbt experimentee avec trois enfants de sixieme annee, deux filles et un garqon, ayant des niveaux dhabilete differents. Une des filles (Maria) etait dune habilete audessous de la moyenne, le garCon

Page 11: Exploring the links between Van Hiele Levels and 3 ...The Van Hiele levels have been descnied in detail several times’ (see [4], [7], [ll], or [18]). From the Van Hiele levels, some

iopoiogie strucruraie * i n * xructurai iopoiogy * ~ Y Y Z

Figure 10 v ,. .~

4 jb 4

a

Figure 12 v -

b

3 4

f

Figure 14 v -~

3 M i

4

~~

Figure 15 v 7- vn

a b

I 41

- Figure 16 v ~ ___

I'

a b

b d

Page 12: Exploring the links between Van Hiele Levels and 3 ...The Van Hiele levels have been descnied in detail several times’ (see [4], [7], [ll], or [18]). From the Van Hiele levels, some

L *2

L"p'" ' I I I~ L l l G llllnD

between Van Hiele Levels and 3-dimensional geometry geomdtrie tridimensionnelle

Up'v'aL'U" "-3 l lGllD rllllr nca niveaux de Van Hiele et la

* . . . . .

Table 1

Opaque Transparent

Oncomputer ~ ~ ~

Sur ordinateur

j/j Real On computer On paper e%+, ObJet r&/ Sur ordmateur Sur papier

Table 2

levels. A girl (Maria) had a low-average ability, the boy (Enriyue) had an average ability, and the other girl (Carmen) had a high ability. The experiment took 9 weeks, with 2 to 3 classes per week, approximately an hour long each.

This was the third part of a longer experiment (20 weeks in total) in which the children had previously worked on problems of definition and classification of different kinds of polyhedrons and solids with curved surface. All the work the students did in the two first parts was done using real solids. So the first formal contact of the children with the computer or paper representations of solids was in the part of the ex- periment we are presenting.

3.2 Analysis of responses In the next paragraphs we present some examples of the students' behaviour when answering different activities of types (A) and (B). We interpret them in terms of the Van Hiele levels. Although three students were engaged in the experiment, we restrict our comments to the two girls since they show the greatest behaviour contrast.

A typical activity of kind (A) was: "Open the file "Stl-au) Tetrahedvon." Write YES or NO in the following views of solids FigLcve lo), depending on uhetiier they coi~espond to the tetrahe. d ~ ~ i i O J ~ the scizen or not You can move the tetva7iedvon ifyou like "The mentioned file belongs to the 3D Images program. In other activities like this one, students were provided with the corresponding files or with real straw polyhedrons, and other activities dealt with opaque polyhedrons (real ones or files of Phmnix 3D).

When working on the first view (Figure l O . l ) , Maria moved the tetrahedron to the position in Figure lla. Then Maria said: MARIA: Ok' TEACHER: Ok? Are they nou' equal? MARIA: Yes. TEACHER: I see diferent things. MARIA: 7% is thicker than that, isn't it? [she pointed at the tri-

TEACHER: Ah! I see them quite different [she moved the tetrahe-

MARIA: Ok!

MARIA: Yes, I do .

TEACHER: W u t is diferent.?

angle on the right in FiguE 10.11.

dron and put it in the position of Figure Ilb].

TEACHER: DO yOLi ?WU' see them e @ d ? No, quite ulcrong.

(Enrique) Ctait d'une habileti: moyenne, et l'autre fille (Carmen) etait d'une habileti: au-dessus de la moyenne. L'experience a dure 9 semaines, a raison de 2 ou 3 seances par semaine approximativement d'une heure chacune.

longue (20 semaines au total) dans layuelle les enfants avaient deja travaille sur des problemes de definition et de classification de diffirentes sortes de polyedres et de solides a faces courbes. Tout le travail realise par les enfants dans les deux premieres parties se faisait en utilisant des solides reels. En ce sens, le premier contact formel des enfants avec l'ordi- nateur ou les representations de solides sur papier, se trou- vait dans la partie de l'experimentation que nous presentons.

Ceci etait la troisieme partie d'une experimentation plus

3.2 Analyse des n2ponses Dans les paragraphes suivants, nous presentons quelques exemples de comportements des eleves lorsqu'ils faisaient des activites de type (A) et (B). Nous les interpretons en ter- mes des niveaux de Van Hiele. Quoique trois eleves etaient engages dans l'experimentation, nous allons limiter nos com- mentaires aux comportements des deux filles, le contraste y etant plus significatif.

Une activite-type du genre (A) etait: Ouvvez le fichiev (( StYG(u1 Tetrahedvon I,, Eoivez OUI ou NON duizs les vues suivan- tes des solides $@re lo), selon qu'ils corresponhzt ou non au tetvaedve de l'eccran. Votls pouvez deplcev le tetvaedve si V O L ~

voulez. 1) Le fichier mentionne appartient au programme (( 3D Images 1 ) . Dans d'autres activites comme celle-ci, les dkves avaient a leur disposition les fichiers correspondants ou les polyedres reels en paille, alors yue d'autres activites utilisaient des polyedres opaques (des polyedres reels ou des fichiers de (( Phoenix 3D ))).

En travaillant sur la premiere vue (figure l O . l ) , Maria a deplace le tetraedre a la position de la figure lla. Alors elle dit: MARIA: Ok! PROFESSEUR: O k ? Sont-ils egaw nzaintenant? MARIA: Oui. PROFESSEUR: Je vois des choses difeventes. MARIA: Ceci estplus gros que cela, n'est-cepa.? [elle montre le

PROFESSEUR: Ah! Je les vois hen difevents [elle bouge le tetra-

MARIA: Ok!

triangle de droite dans la figure 10.11.

edre et le met dans la position de la figure llb].

Page 13: Exploring the links between Van Hiele Levels and 3 ...The Van Hiele levels have been descnied in detail several times’ (see [4], [7], [ll], or [18]). From the Van Hiele levels, some

M: This line [she pointed to the segment highlighted in Figure llc]. Tnat one over there shouldn't be there [she con- tinued moving the tetrahedron by guess].

In this excerpt, a Van Hiele level 1 of thinking could be noted. The girl just globally watched the whole shape, and she did not pay attention to the elements of the solid (the edges in this case). When she was asked to compare the tetra- hedrons carefully, first (paragraph 5 of the dialogue) she only appreciated a global difference, and later (last paragraph) she noted that the tetrahedron on the screen had one segment more than the one on the sheet, but she did not mention the different directions of the edges, nor any mathematical prop e m .

If children decided that a picture did not match the given polyhedron, and they were asked for a reason, the following two answers, clearly associated with Van Hiele level 1, were given several times:

CARMEN: It cannot be so because I look at it and I wonder "is it a tetrahedron? and I scly "no, this is an oblique pyramd!" M: It cannot be so because I have tried it many more times

[and I have been unable to match the solids].

The following excerpt corresponded to an activity, similar to the previous one, where the children had to decide whether Figure 12a matched a real straw cube. Before mak- ing any movement, Carmen said:

CARMEN: This cannot be at all. TEACHER: How fast you are! CARMEN: Well, these two edges are slanted [pointing the edges

highlighted in Figure 12b] and they should bepevpendzcu- lar to this face [pointing the face on the top of the solid in Figure 12a]. They should bepepmdicular [in order to rein- force her statement, she pointed at the same edges on the real cube].

TEACHER: But, could not it be that when you see it in perspective, they won't be perpendicular any longer? [the fact that per- spective some times modifies parallelism was discussed in a previous class].

equal to this one [pointing the faces on the top and the bot- tom, respectively, of the solid in Figure 12aI. It s e m as if this cube [the real one] was like this [she put it approximately in the same position as in Figure 12a], but

CARMEN: But it cannot be, because this face does not seem to be

PROFESSEUR: Les vois-tu egaux maintenant? MA&: Oui, je les vois.. Non, c'est faux. PROFESSEUR: Qu'est-ce qui est diferent? MAR(A: Cette ligne [elle montre le segment surligne dans la

figure l lc 1. Celui-& &-bas, ne devraitpas &re k? [elle conti- nue a dkplacer le tetraedre en faisant des essais].

Dans cet extrait, le niveau 1 de pensee de Van Hiele peut Ctre remarque. La jeune fille a observe de faGon globale la forme entiere, et elle n'a pas fait attention aux elements du solide (les arCtes dans ce cas). Quand on lui a demande de comparer attentivement les tetraedres, d'abord (paragraphe 5 du dialogue) elle apprecia une difference globale, puis, (der- nier paragraphe) elle a remarque que le tetraedre sur l'ecran avait un segment de plus que celui sur le papier, mais elle n'a pas parle des differentes directions des aretes, n i d'une pro- priete mathematique quelconque.

Quand les enfants decidaient qu'une image n'etait pas assortie avec le polyedre donne, et qu'on leur e n demandait la raison, les deux reponses suivantes, clairement associees au niveau 1 de Van Hiele, etaient donnees :

CARMEN: ca ne peut pas &re ainsi parce que je le regarde et je me demande : (( Est-ce un tetrakdre ?>) et je dis : (( Non, c'est une pyramlde oblique!,.

MA-: ca ne peut pas Ctre ainsi parce que je lbi essayeplusieurs fois [et jjai ete incapable de faire en sorte que les solides soient assortis].

L'extrait suivant est dune activite semblable a la prece-

,

dente, ou les enfants devaient decider si la figure 12a etait assortie avec un cube reel en paille. Avant de realiser un mouvement quelconque, Carmen dit:

CARMEN: Ce n'estpas du toutpo&ble! PROFESSEUR: Comme tu es rapde! CARMEN: Bon, ces deux arCtes sont inclinees [en montrant les

arCtes surlignees dans la figure 12b 3 et elles devraient &we perpendzculaires a cette face [en montrant la face en haut du solide dans la figure 12a 1. Elles devraient Ctre perpendim- laires [et pour renforcer son affirmation, elle montre les m&mes argtes sur le cube reel].

PROFESSEUR: Mais, est-ce que Ga ne seraitpasparce q u e quand tu regardes en perspective, elles ne sont plus perpediculaires ? [Le fait que la perspective modifie parfois le parallelisme avait ete discute dans une seance passee.]

Page 14: Exploring the links between Van Hiele Levels and 3 ...The Van Hiele levels have been descnied in detail several times’ (see [4], [7], [ll], or [18]). From the Van Hiele levels, some

uplonng me iinm uploratmn aea i m s en- ies batween Van Hiale Lavah and nhaaux da Van Hiele et la 3-dimenrional geometry ghm6trk, mdimanrionndle

this edge [Figure 12c] like this, pushed towards the i& [while pushing the upper end of the edge].

This answer showed a Van Hiele level 2 of thinking, since it was based on the visual perception of the picture and the use of mathematical properties: The girl observed some non parallel edges in the picture and she knew that all the oppo- site edges in a cube are parallel; then she associated both facts and concluded that the picture could not match a cube. A more elaborated argument (although not completely cor- rect) was provided by Carmen some time later when she and Enrique had to decide whether Figure 13a matched a cube on the computer screen. They moved the cube on the screen to the position in Figure 13b; the teacher asked whether it was right, and they said that it had to be put upside down. When they began to select the rotation that should be done, the teacher asked them:

TEACHER: Wait a moment. Why is it up& down? Why do you

ENRIQUE: Because if Iput it this way [turning the sheet round],

CARMEN: No. It is because these two edges are the out& ones

[Enrique] say that it is ups&? down?

they Zook the same [a level 1 answer].

[really she pointed to the four edges highlighted in Figure 13c; likely she wanted to point at the faces].

TEACHER: I see it different too. I also think it is up& down. CARMEN: CouZd not these, these, and these [Figure 13d] be the

out& &es? TEACHER: Yes.

Then Carmen and Enrique moved the cube to the right position. We can notice that, when comparing the cubes, Carmen used the codes of perspective representation for differentiating which edges were in the front or back of the cube.

The random selection of movements typical of students at Van Hiele level 1 came out once again when Enrique told Carmen: ntm it that way to see what hamens. Comments like this one appeared often during this experiment.

A typical activity of lund (B) was: “Open the file “Sold mra- md” Move the pyramd on the ween to the first view you see below Fguve 14). Then, move it to the second vim, and so on.“ The mentioned file belongs to the Phcenix 3D program. In other activities like this one, students were provided with files of 3D Images (straw polyhedrons) or Hypercard (cubes;

CARMEN: Mais, p ne peut pas itre ainsi, parce que cette face ne semblepas &re egale a ceZle-ZZI [en montrant les faces den haut et den bas, de la figune 12al. Il semble comme si ce cube pe reel] etait comme ceci [elle le met a peu pres dans la m&me position que dans la figure 12a], mais cette arkte [figure 12c] comme p, poussk veys Z’inthieur [en poussant l’extremite superieure de l’arCte].

Cette reponse montrait un niveau 2 de pensee de Van Hiele, puisqu’elle etait basee sur la perception visuelle de l’image et sur l’utilisation de proprietes mathematiques. La jeune fille a observe quelques ar&tes non paralleles dans l’image et elle savait que toutes les arCtes opposees dans un cube sont paralleles ; alors, en associant les deux faits, elle a conch que l’image ne pouvait pas correspondre a un cube. Un argument plus elabore (quoique pas tout a fait correct) a ete donne par Carmen quelque temps plus tard, quand elle et Enrique devaient decider si la figure 13a correspondait ou non a un cube sur l‘ecran de l’ordinateur. 11s ont mis le cube de l’ecran dans la position de la figure 13b; le professeur leur demanda s’il etait droit, et ils ont repondu qu’il fallait le mettre a l’envers. Quand ils ont commence a choisir la rota- tion a realiser, le professeur leur demanda :

PROFESSEUR: Attendez un instant. Pourquoi est-il a z‘enveys ? Pour- quai tu & [Enrique] que c‘est a z’envers?

ENRIQUE: Parce que si je Ze mets comme p [en tournant la feuille de papier] ils sontpareik [une reponse de niveau 11.

CARMEN: Non. C‘estparce que ces daur arktes sont les arktes scter- nes [elle a montre en realite les quatre arCtes surlignees dans la figure 13c; elle a probablement voulu montrer les faces].

a z‘envers.

[figure 13d] &re Zes ar&es atemes?

PROFESSEUR: Je le vois aussi dijfZrmt. Moi aussi je pense gue c‘est

CARMEN: Ne pouwaient-elles pas ceZZes-ci, celZes-ci et ce72es-ZZI

PROFESSEUR: OUi.

Apres, Carmen et Enrique ont mis le cube dans la bonne position. On peut remarquer que, en comparant les cubes, Carmen a utilise les codes de la representation en perspec- tive pour faire la difference entre les ar6tes qui etaient en avant et celles qui etaient en arriere du cube.

Le choix au hasard des mouvements, propre aux eleves du niveau 1 de Van Hiele, est apparu encore une fois quand

Page 15: Exploring the links between Van Hiele Levels and 3 ...The Van Hiele levels have been descnied in detail several times’ (see [4], [7], [ll], or [18]). From the Van Hiele levels, some

Figure 7a). Maria was trying to move the pyramid to the last view

(Figure 14.6). She had been making some movements. The following excerpt reflects the kind of work that Maria did for several classes: She moved the solids randomly until she found some suitable position; then she tried to fit it to the view given in the activity.

MAR(A:Imovebyguess. TEACHER: You move by guess. But, cannot you think a little which

MAR(A: No. TEACHER: Why? . . . [she did not answer] . . . Let us see, what are

you Zooking for? MAR(A: The white face. TEACHER: It is there [during the talk Maria had been moving the

pyramid, and now it was like in Figum lSa]. What do you want to do?

movement is useful to you?

MAR(A: ? b p t it right.

MAR(A: The base must lie downwards. TEACHER: Which movement makes it?

TEACHER: But, What is "to p t it right"?

Maria selected the rotation around axis y, and the teacher guided her (with the help of the real pyramid) to select the right movement. The pyramid was now like in Figure 15b.

MAR(A: Now it is ok. TEACHER: Es, but it is not in the rightposition. Let us see, which

MAR(A: 7b turn it that way [she moved her hand from left to

TEACHER: With which one?

[movement] shalZ we do now?

right in front of the screen].

Maria selected the rotation around axis z. Then, the teacher showed her, with the real pyramid, the two turns from left to right (around axes y and 2). Now Maria selected the right movement and finished the activity.

In another activity, Maria had to move a cube on the screen from the position in Figum 16a to the one in Figure 16b. She showed her strategy:

TEACHER: You are looking for the candle, aren't you? You Zook for one [face], I mean, you make rotations until you find one, don't you?

MARIA: Of course.

Enrique a dit a Carmen: ?bume-k comme p pour voir ce qui se passe. Des commentaires comme celui-ci apparurent souvent pendant l'experimentation.

Une activite de type (B) etait (( Ouwez le fichier ((Sold Pyramub. P k e z la pyramlde sur 7 'han comme dam la pre- mi&e vue que vous myez en bas cfigure 14). Aprk, p7acez-la comme &ns la dew& vue, et ainsi de suites. Le fichier men- tionne appartient au programme (( Phcenix 3D )>. Dans dautres activites comme celle-ci, les eleves avaient a leur disposition des fichers de (( 3D Images )) (des polyedres en paille) ou de Hypercard (des cubes; figum 7a).

Maria tentait de placer la pyramide comme dans la der- niere position (figure 14.6). Elle avait realise quelques mou- vements. L'extrait suivant reflete la maniere de travailler de Maria durant plusieurs seances : elle deplaqait les solides au hasard jusqu'a ce qu'elle trouve une position convenable ; puis elle essayait de l'assortir a la w e donnee dans l'activite.

M&A: Je bouge par essai. PROFESSEUR: ?k bouges par Wl. Mais, nepeUX-tUpS penSer un

peu quel mouvement te serait utile? MAMA: Non. PROFESSEUR: Pourquoi? . . . [elle n'a pas repondu] . , - Voyons,

&:La face blanche. PROFESSEUR: ElZe est M [pendant la conversation Maria avait

qu'est-ce que tu cherches ?

bouge la pyramide, et elle etait maintenant cornme dans la figule lSa]. West-ce que tu veux faire?

MAR(A: La mettre droit. PROFESSEUR: Mais, qu'est-ce que c'est ((la mettre droitv ? M&A: La base doit &re couch& en bas. PROFESSEUR: @el mouvement le p m e t ?

Maria a choisi la rotation autour de l'axe des y, et le profes- seur l'a aide (a l'aide de la pyramide reelle) pour choisir le bon mouvement. La pyramide Btait maintenant comme dans la figum 15b.

MAMA: Maintenant c'est bon. PROFESSEUR: Oui, mais elle n'estpas dans la bonneposition.

MAMA: La tourner comme p [elle bougea la main de gauche a Voyons, quel [mouvement] dmons-nous faire mintenant ?

droite en face de l'ecran].

Maria choisit la rotation autour de l'axe des z. Puis, le p m

PROFESSEUR: Avec h u e & ?

Page 16: Exploring the links between Van Hiele Levels and 3 ...The Van Hiele levels have been descnied in detail several times’ (see [4], [7], [ll], or [18]). From the Van Hiele levels, some

Explorlng the links Exploration des Ilens entre les between Van Hiele Levels and nlveeux de Van Hide et la 3-dimensional geometry gBom6trie tridirnensionnelle

Figure 17

TEACHER: And what do you do when you get it? MAHA: W n g to put it in thatposition [the one in the sheet]. As

soon as this face is in its position, eve y one fits.

However, the cube was rotated 9 times for moving from Figure 16a to Figure 16b; Figure 16c shows the sequence (the movements refer to the front face, like in Figure 7a: Up, Down, Left, Right, + 90, -90). In the following exercise, Maria did as many as 21 rotations for reaching the final posi- tion, although she also tried to apply her strategy.

Now, let us analyse an example ofbehaviour correspond- ing to Van Hiele level 2. Carmen and Enrique had to move the module from the position in Figure 17a to the one in Figure 17c. Here Carmen showed a level 2 of thinking, since she identified some intermediate objectives (positions of the solid), one after reaching the previous, and can choose the rotations for directly moving the solid to these positions. However, she was not able to think at level 3 since she could not plan a complete sequence of movements from the cur- rent position to the final one:

TEACHER: Let me, how many movements will you need [to reach

CARMEN: I don’t know. the position in Figure 17c]?

The students use a negative rotation around axis z, trying to slope the solid on the screen like the one in Figure 17a.

CARMEN: I know it is not this way. It is another face, this is not the face. It is another face which is also white.

TEACHER: Why do you know this is not the face? CARMEN: Because it does not matter how many turns I make, it

cannot be that way. This will be here and that just there [pointing at two couples of cubes on the screen].

TEACHER: And if you want to put the other face, what shall you do?

fesseur lui montra, a l’aide de la pyramide reelle, les deux tours de gauche a droite (autour des axes y et z). Alors, Maria choisit le bon mouvement et finit l’activite.

Dans une autre activite, Maria devait deplacer un cube sur l’ecran de la position de la figum 16a a la position de la figure 16b. Elle montra sa strategie :

PROFESSEUR: cherches la bougie n’est-cepas? Z& en cherches une [face], je veux dire, tu fais des rotations jusqu’h ce que tu en trouves une, n’est-ce pas ?

W: Bien scr.

W: Essayer de la mettre dans cetteposition [celle qui est sur la feuille]. Des que cette face est dam saposition, chacune sera a sa place.

Cependant, le cube avait ete toume 9 fois pour le deplacer de sa position de la figure 16a a celle de la figure 16b. La figure 16c montre la sequence (les mouvements se referent a la face frontale, comme dans la figure 7a : Haut, Bas, Gau- che, Droite, + 90, -90). Dans l’exercice suivant, Maria a fait 21 rotations pour atteindre la position finale, toutefois, elle es- saya aussi dappliquer sa strategie.

Maintenant, analysons un exemple de comportement correspondant au niveau 2 de Van Hiele. Carmen et Enrique devaient deplacer le module, de la position de la figure 17a a la position de la figure 17c. Ici, Carmen montra un niveau 2 de pensee, puisqu’elle identifia quelques objectifi interme- diaires (des positions du solide), l’une apres l’autre, et choisit les rotations pour placer directement le solide dans ces posi- tions. Cependant, elle n’etait pas capable de penser au ni- veau 3 puisqu’elle ne pouvait pas planifier une sequence complete de mouvements pour aller de la position initiale a la position finale :

PROFESSEUR: Dis-rnoi, de comlnen de rnouvements tu auras besoin

PROFESSEUR: Et qU’eSt-Ce qUe tu falk qUand tu 1’aS ?

[pour atteindre la position de la figure 17c] ?

Les eleves utilisent une rotation negative autour de l’axe CARMEN: Je ne Sais pas.

des z, essayant de pencher le solide sur l’ecran comme dans la figure 17a. CARMEN: Je sais, ce n’est pas cornme Fa. C‘est une autre face, cek-

ci n’est pas la face. Cest une autre face qui est aussi blanche. PROFESSEUR: Comment tu sais que ce n’est pas la face ? CARMEN: Parce quSl n‘importe pas combien de tours j’ai fait, Fa ne

Page 17: Exploring the links between Van Hiele Levels and 3 ...The Van Hiele levels have been descnied in detail several times’ (see [4], [7], [ll], or [18]). From the Van Hiele levels, some

Topologie sbucturale * 18 * Structural Topology lUUZ

Figure 18

CARMEN: We have to move with these [pointing at the 4 arrows of rotations around axes x and y. She chose the negative turn around y and gave directions to Enrique].

CARMEN: Move 180 , , , or 90; 90, move go! CARMEN: [after the first rotation of -90’1 This face is black. It is

CARMEN: [after the second rotation of -90’1 Look, wegot the still wrong. Look for a white face. Rtm it 90 more.

right face [the white one]. Don’t you see that this face can be the right one? Because we tum it round and we put this ups& [pointing at the two little cubes corresponding to the ones on the top of the module in Figure 17~1.

Now Carmen and Enrique made some rotations around the axis z , and they put the solid like in Figure 1%. After that, they chose the negative turn around axis y.

ENRIQUE: It is just to see [a little piece of level 1 of thinking]. CARMEN: If it isn’t [correct], then undo it.

they reached the final position.

an example of Van Hiele level 3 of thinking. Carmen really was not at level 3, but during the last part of the experiment, some short episodes of level 3 could be recognized. Now she had to move the prism from the position in Figure 18a to the one in Figure 18c; she was trying to understand Figure 18c, and she said:

CARMEN: This one is v e y d i m l t . . , No! I can see what it is. [to the teacher] Look, a lateral side, another lateral side [point- ing at the rhombuses on the left and the right of Figure 18~1. Now I see it. I see how it is.

Now Carmen moved the prism from the position in

Finally, after some more rotations like the previous one,

Lastly, I present an excerpt, from one of the last classes, as

Figure 18a to the one in Figure 18b, and she explained her objective:

peut pas &tre comme Fa. Celuici doit dtre ici et celui-& juste &- bas [en montrant deux couples de cubes sur l’ecran].

PROFESSEUR: Et si vous voulez mettre l’autre face, qu’anez-vow faire ?

CARMEN: Nous devons bouger avec celles-ci [en montrant les 4 fleches de rotation autour des axes x et y. ELle choisit la rotation negative autour de l’axe y et donna des directives

Enrique]. CARMEN: lbume de 180 . . . ou de 90; 90, toume de 90 ! CARMEN: [apres la premiere rotation de -90’1 Ceffe face est

noire. Cest encore incorrect. Cherche une face blanche. lbume de 90 encore.

CARMEN: [apres la deuxieme rotation de -90’1 Regarde, nous avons eu la bonne face pa face blanche]. Ne vois-tu pas que cette fme peut itre la bonne ? Parce que nous la toumons en rond et la mettons en haut [en montrant les deux petits cu- bes correspondants a ceux qui sont en haut du module dans la figure 17~1.

Maintenant, Carmen et Enrique ont fait quelques rota- tions autour de l’axe z et ils ont mis le solide cornme dans la figure 17b. Apres cela, ils ont choisi un tour negatif autour de l’axe y.

ENRIQUE: Cest juste pour voir [un indice de niveau 11. CARMEN: Si ce n’estpas [correct], alors on revient a Zaposition

initiale.

Finalement, apres quelques rotations de plus comme celle-la, ils ont atteint la position finale.

En dernier lieu, je presente un extrait dune des dernieres seances, comme un exemple de niveau 3 de pensee de Van Hiele. Carmen, en realite, n’etait pas au niveau 3, mais dans la derniere partie de l’experimentation, quelques brefs episo- des de niveau 3 peuvent &tre identifies. A ce moment, Carmen devait bouger le prisme de la position de la figure 18a a la position de la figure 18c; elle essayait de comprendre la figure 18c, quand elle a dit :

CARMEN: Celui-& est trks diffinle . . . Non! Je vois ce p e c’est. [au professeur] Regardez, une face laterale, une autre face laterale [en montrant les losanges a gauche et a droite de la figure 18~1. Maintenant je le vois. Je vois comment il est. Maintenant, Carmen ayant bouge le prisme de la position

de la figure 18a a la position de la figure 18b, expliqua son objectif de la faCon suivante :

Page 18: Exploring the links between Van Hiele Levels and 3 ...The Van Hiele levels have been descnied in detail several times’ (see [4], [7], [ll], or [18]). From the Van Hiele levels, some

Erpladng the Unks Lrplontion d e m liens de la between Van Hide Invela end gComCbie & trois dlmenalons 3-dlmensionsl Georneby Bvec krs nlveaux de Van Hlele

CARMEN: I have made a rhombus hem so that these [the two edges highlighted in Figum 18b] join when it i s raised [the prism].

In this Carmen’s work, a pre-planned strategy for moving the prism from the initial position to the final one could be noted. It was not a simple strategy since two intermediate steps were planned (making a rhombus, and putting two edges vertically) and different kinds of rotations had to be used. Therefore it is quite different from the work at Van Hiele level 2, in which students always tried to move the solids from the current to another position, usually the final one, without considering the possibility of a multi-step se- quence, but deciding at each moment what to make.

Bibliography / BiMiographie

Ben-Chaim, David; Lappan, Glenda 8 Hershkowitz, Rina, 1988. Spatial abdity and visual factors-the many slded coin, 12 l?M.E. Geometry Working Group. Bishop, Alan, 1983. “Space and geometry,” in Acquisition of mathematics concepts and processes, Richard Lesh 8 Marcia Landau (Ed.), Academic Press, New York, USA, 176-203. Bishop, Alan, 1989. “Review of research on visualization in mathematics education.’’ Focus on Learning Problems in Mathematics,

SURGE8 William F. & Shaughnessy, J. Mike, 1986. “Characterizing the van Hiele levels of development in geometry!’ Journal for Research in Mathematics Education, vol. 17.1, 31-48. Clements, Douglas H. b Battista, M.T., 1989. A logo-based elementary school geometry curriculum. Reprint. Clements, Douglas H. 8 Battista, M.T., 1989. “Geometry and spatial reasoning.” D.A. Grouws (Ed.): Handbook of research on mathemutics teaching, N.C.T.M., Reston, USA, preprint. Crowley, Mary Lindquist, 1987. “The van Hiele model of the development of geometric thought _” N , C .T. M. : Learning and teaching geometry, K-12 (1 987 Yearbook), N.C.T.M., Reston, USA, 1-16. Crowley, Mary Lindquist, 1989. The destgn and evaluution of an instrument for assessing mastery Van Hiele levels of thinking about quadrilaterals. Univ. Microfilms, Ann Ar- bor, USA.

~01.11.1, 7-16.

[9] De Villiers, Michael D., 1987. Research evidence on hierarchical thinking, teaching strategm and the van Hiele theory: Some critical comments. Internal RUMEUS report no.10, Research Unit for Mathematics Education, Univ. of Stellenbosch, Stellenbosch, R. SouthAfiica.

Rosemund, 1984. English translations of selected writings of Dina van Hiele-Geldof and Pierre M. van Hiele, School of Education, Brooklyn College, C.U.N.Y., Brooklyn, New York, USA.

[ll] Fuys, David; Geddes, Dorothy 8 Tischler, Rosemund, 1988. ”The van Hiele model of thinking in geometry among adolescents.” Journal for Research in Mathematics Education Monographs no. 3, N.C.T.M., Reston, USA.

emphasizing various graphical representa- tions of 3dimensional shapes and rela- tions.” Proceehngs of the gth International Conference of the PM.E., State Univ. of Utrecht, Utrecht, Holland, vol. 2, 53-71.

[13] Gutierrez, Angel b Jaime, Adela, 1987. “Estudio de las caracteristicas de 10s niveles de van Hiele.” Proceedings of the I l l h International Conference of the PM.E., Montreal, Canada, vol. 3, 131-137.

[14] Gutierrez, Angel; Jaime, Adela 8 Fortuny, Jose M., 1991. “An alternative paradigm to evaluate the acquisition of the Van Hiele levels.” Journal for Research in Mathematics Education, vol. 22.3, 237-251.

[lo] Fuys, David; Geddes, Dorothy 8 Tischler,

[12] Gaulin, Claude, 1985. “The need for

CARMEN: J’ai fait un losange ici pour que ceux-M [les deux ar6tes surlignees dans la figum 18b] se joipent q u a d iZ sera monte [le prisme].

Dans ce travail de Carmen, une strategie planifiee davance, pour bouger le prisme de sa position initiale a sa position finale, peut &re remarquee. Ce n’etait pas une stra- tegie simple puisque deux etapes intermediaires etaient pla- nifiees (faire un losange et mettre les deux arCtes dans la position verticale) et differentes sortes de rotation devaient Ctre utilisees. C’est pourquoi il est bien different du travail au niveau 2 de Van Hiele, ou les eleves ont toujours essaye de bouger les solides de leur position initiale a une autre posi- tion, en general la derniere, sans considerer la possibilite dune sequence a plusieurs etapes, mais en decidant plutdt a chaque moment donne ce qu’il faut faire.

(151 Gutierrez, Angel; Jaime, Adela; Shaughnessy, J. Mike 8 Burger, William F., 1991. “A comparative analysis of two ways of assessing the van Hiele levels of thinking.” Proceedings of the 1 Sh l?M.E. Conference, Univ. di Genova, Genova, Italy, V O ~ . 2, 109-116.

[16] Hershkowitz, Rina, 1990. “Psychological aspects of learning geometry.“ Pearla Nesher b Jeremy Kilpatrick (Ed.): Mathematics and cognition: A research synthesis by the International Group for the Psychology of Mathematics Education, Cambridge U.F., Cambridge, G. Britain,

[ 171 Hoffer, Alan, 1981. “Geometry is more 70-95.

than proof.” The Mathematics Zacher, V O ~ . 74.1, 11-18.

[18] Jaime, Adela b Gutierrez, Angel, 1990. “Una propuesta de fundamentacion para la enseiianza de la geometria: El modelo de Van Hiele.” Salvador Llinares b Maria V. Sanchez (Ed.): Zorin y Prktica en Educacion Matemdtica, Afar, Sevilla, Spain, 295-384.

[19] Lunkenbein, Dieter, 1983a. “Observations concerning the child’s concept of space and its consequences for the teaching of geometry to younger children.” Proceedings of the 4” I.C.M.E., Birkhauser, Boston, USA, 172-174.

structural images characterizing van Hiele levels of thinking.” Proceemngs of the Yh annual meeting of the PM.E.-N.A., Montreal, Canada, 1983, 255-262

[20] Lunkenbein, Dieter, 198313. “Mental

[21] Lunkenbein, Dieter, 1984. “Interior structuring of geometric objects: An example of infralogical groupings.’’ Proceedings of the 6“ PM.E.-N.A., Univ. of Wisconsin, Madison, USA, 1984, 107-112.

[22] Mayberry, Joan, 1983. “The van Hiele levels of geometric thought in under- graduate pre-service teachers.” Journal for Research in Mathematics Education, vol. 14, 1983, 58-69.

[23] NCTM, 1989. (National Council of‘kach- ers of Mathematics) Curriculum and evalu- ation standards for school mathematics. N.C.T.M., Reston, USA.

[24] Presmeg, Norma C., 1986. “Visualization in high school mathematics.” For the Learning ofMathematics, vol. 6.3, 42-46.

1-4 (problems in the formation ofgeometric conceptions in pupls in the prima ry grades). panslation by A. Hoffer) Prosveshchenie Publishing House, Moscu, USSR.

[26] Tkeffers, Adrian, 1987. Three dimensions. D. Reidel, Dordrecht, Holland.

[27] Usiskin, Zalman, 1982. Van Hieb levels and achievement in secondary school geometry. ERIC, Columbus, USA.

[28] Wirszup, Izaak, 1976. ”Breakthroughs in the psychology of learning and teaching geometry,’’ in J.L. Martin (Ed.): Space and geometry, ERIC, Columbus, USA, 75-97.

[25] Pyskalo, A.M., 1968. Geomehy in grades