experimental access of microbial processes in constructed

18
Uwe Kappelmeyer Department of Environmental Biotechnology - UBT EWaTT Group Experimental Access of Microbial Processes in Constructed Wetlands Plant-Rhizosphere- Reactors

Upload: others

Post on 29-Dec-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

Uwe KappelmeyerDepartment of Environmental Biotechnology - UBTEWaTT Group

Experimental Access of Microbial Processes in Constructed Wetlands Plant-Rhizosphere-Reactors

Scaling Issue in Wetland Research

Page 2

Microscale Macroscale

Scaling Issue in Wetland Research

Page 3

Microscale Macroscale

Aerobic conditionsrhizospheric effects

Anaerobic conditionsS2- + metals (e.g. FeS)

black precipitation

EWaTT - Wetland Infrastructure

Page 4

Planted fixed bed reactor (PFR) –a constructed wetland model

Page 5

Constructed wetlandon lab-scale (10 L)

Continous monitoring ofprocess parameters

- pH- Oxygen- Redox potential

Continous inflow anddegradationof toluene for 6 years

Toluene concentration measured in the in-and outflow

Page 6

0

5

10

15

20

25

30

35

40

45

27/4 7/5 17/5 27/5 6/6 16/6 26/6 6/7 16/7 26/7 5/8

cTolulene [mg/L]

PFR-1 inflow

PFR-1 outflow

PFR-2 inflow

PFR-2 outflow

2011

c Tol

ulen

e[m

g/L]

date

date

09/01/16 10/01/16 11/01/16 12/01/16 01/01/17

c Tolu

lene

[mg/

L]

0

10

20

30

40

50

60PFR-1 outflowPFR-1 inflow

Toluene Concentration during Peak Experiment

Page 7

• 8 hours gas samples collection on Tenax TA

• Thermo-desorption GC/MS system

• Toluene emission rate fluctuated between 0.1-0.6 mg/h

• 5.1 mg/h Toluene inflow rate

Bacterial community composition of PFRToluene Experiment

Page 8

0 20 40 60 80 100

Acidobacteria ActinobacteriaBacteroidetes ChlamydiaeFirmicutes ProteobacteriaTM7 VerrucomicrobiaOther Phyla Unclassified Bacteria

0 20 40 60 80 100

PFR-1

PFR-2

Bradyrhizobiaceae Burkholderiaceae ChitinophagaceaeClostridiaceae 1 Comamonadaceae HolophagaceaeRhodocyclaceae Rhodospirillaceae SphingobacteriaceaeSporichthyaceae Xanthomonadaceae Other FamiliesUnclassified Bacteria

Martínez-Lavanchy et al. 2015. Appl. Environ. Microbiol. 81:6241-6252.

Degradation pathways for toluene

Page 9

Functional Gens in PFRBSSA

RHDO

RHMO

CYP153

ALKB

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

ALKB_YP_691842.1 Alcanivorax borkumensis SK2

ALKB_AAB70825.1 xylene monooxygenase Pseudomonas putida

ALKB_YP_790621.1 Pseudomonas aeruginosa UCBPP-PA14

ALKB_CAH56098.1 putative alkane hydroxylase uncultured bacterium

ALKB_ABB96072.1 putative alkane monooxygenase uncultured bacterium

ALKB_ABB96087.1 putative alkane monooxygenase uncultured bacterium

ALKB_ABB96096.1 putative alkane monooxygenase uncultured bacterium

ALKB_NP_771234.1 delta 9 acyl-lipid fatty acid desaturase B. japonicum USDA 110

ALKB_YP_552229.1 alkane 1-monooxygenase Polaromonas sp. JS666

ALKB_YP_921354.1 alkane 1-monooxygenase Nocardioides sp. JS614

ALKB_NP_251264.1 alkane-1-monooxygenase Pseudomonas aeruginosa PAO1

CYP153_BAE47487.1 cytochrome P450 alkane hydroxylase uncultured bacterium

RHMO_YP_001110001.1 methane/phenol/toluene hydroxylase Burkholderia vietnamiensis G4

RHMO_AF349675_4 TomA3 Burkholderia cepacia

RHDO_NP_251202.1 anthranilate dioxygenase Pseudomonas aeruginosa PAO1

RHDO_BAB21463.1 chlorobenzoate 1,2-dioxygenase Burkholderia sp. NK8

RHDO_YP_587013.1 benzoate 1,2-dioxygenase Ralstonia metallidurans CH34

RHDO_NP_887278.1 dioxygenase system Bordetella bronchiseptica RB50

BSSA_BAD42366.1 putative benzylsuccinate synthase Magnetospirillum sp. TS-6

Normilzed IntensityPage 10

Catabolic activity according to oxygen and redox fluctuations ?

Page 11

Activity of different microbes or different metabolism?

https://femkedegrijs.com/wintertijd-problemen-oplossen/

Isotope Fractionation ∆δ13C

Page 12

Isotope fractionation

Page 13

Time [h]0 10 20 30 40 50 60 70 80 90

Toluene [mg/L]

0

10

20

30

40

50

6013C-toluene

Time [h]0 10 20 30 40 50

Tolu

ene

[mg/

L]

0

10

20

30

40

50

60

Num

ber o

f lab

elle

d pe

ptid

es

0

20

40

60

80

100

120

13C-toluene Labelled peptides

Lünsmann V et al., Environ Microbiol. 2016;18(4):1176-86

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60 70Time (h)

PFR-1

PFR-2

PFR-1 model

PFR-2 model

Period 1 Period 2

13C - Labeling Isotope Fractionation

Workflow Protein-SIP

Page 14

tryptic in-gel digest

Desalting

LC-MS

Time [h]

0 10 20 30 40 50 60

0

10

20

30

40

50

60

SIP Analysis

Protein extraction

Pathways and keyplayers

Method

Illumina EFTU Clone Library Metaproteomics

Relative abundance

0

20

40

60

80

100

Betaproteobacteria Alphaproteobacteria Unclassified Acidobacteria Gammaproteobacteria Sphingobacteria Actinobacteria Acidobacteria Deltaproteobacteria Others Unclassified 

Community structure

Metaproteomics

Herbst et al. 2016. Proteomics. 16:783-798. Jehmlich et al. 2016. Curr Opin Biotechnol. 41:26-33.

The toluene degrading bacteria in the PFR show a diurnal regulation of PHA metabolic activity

Page 15

Lünsmann V et al., Environ Microbiol. 2016;18(4):1176-86

Day/Night Cycle

Page 16

day night

o Within the PFR, the oxygen concentration varied between 0 and 1 mg/l,but never reached saturation (8 mg/l).

o Toluene was exclusively degraded via one aerobic pathway.

o Diurnal redox shifts enable separated carbon storage and energymetabolism

o Thus, a general principle for rhizospheres could be described thatoffers process management and bioaugmentation options for all kindsof organic compounds treated in rhizosphere processes.

General Observation

Martínez-Lavanchy et al. 2015. Appl. Environ. Microbiol. 81:6241-6252.Lünsmann et al. 2016. Environ. Microbiol. 18:1176-1186.Lünsmann et al. 2016. Appl Environ Microbiol. 82:4126-4132.Meyer-Cifuentes et al. 2017. PLoS One12:e0174750.

Page 17

Page 18

Acknowledgment

Paula Martínez-Lavanchy, Vanessa LünsmannIngrid Meyer-CifuentesHermann Heipieper, Jochen A. Müller, Nico Jehmlich