experience with the cornell erl injector srf cryomodule ...liepe/webpage/docs/erl11...icm length 5 m...

35
Experience with the Cornell ERL Injector SRF Cryomodule during High Beam Current Operation Matthias Liepe Assistant Professor of Physics Cornell University Matthias Liepe, ERL 2011 Slide 1 Experience with the Cornell ERL Injector SRF Cryomodule

Upload: others

Post on 20-Nov-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Experience with the Cornell ERL Injector SRF Cryomodule ...liepe/webpage/docs/ERL11...ICM length 5 m Matthias Liepe, ERL 2011 1. Limit emittance growth of the very low emittance beam

Experience with the Cornell ERL Injector SRF Cryomodule during High Beam Current

Operation Matthias Liepe

Assistant Professor of Physics

Cornell University

Matthias Liepe, ERL 2011 Slide 1

Experience with the Cornell ERL Injector SRF Cryom

odule

Page 2: Experience with the Cornell ERL Injector SRF Cryomodule ...liepe/webpage/docs/ERL11...ICM length 5 m Matthias Liepe, ERL 2011 1. Limit emittance growth of the very low emittance beam

The Cornell Energy Recovery Linac

CESR

Beam Stop

• Cornell is developing the technology for an Energy Recover Linac (ERL) based x-ray light source.

• An ERL injector prototype has been developed, fabricated, and is currently under commissioning.

• Design work on the main linac cryomodule has started.

5 GeV, 100 mA, hard X-ray light source

Slide 2

The Cornell ERL

Matthias Liepe, ERL 2011

ERL main linac: 5 GeV, 100 mA with energy recovery, 5 kW RF power per 7-cell cavity

ERL injector: 10 MeV, 100 mA without energy recovery, >100 kW RF power per cavity

Page 3: Experience with the Cornell ERL Injector SRF Cryomodule ...liepe/webpage/docs/ERL11...ICM length 5 m Matthias Liepe, ERL 2011 1. Limit emittance growth of the very low emittance beam

High Current SRF Injector Prototype DC Gun

SRF Cryomodule Diagnostics beam line

0.5 MW RF

The Cornell ERL Injector

Matthias Liepe, ERL 2011 Slide 3

Page 4: Experience with the Cornell ERL Injector SRF Cryomodule ...liepe/webpage/docs/ERL11...ICM length 5 m Matthias Liepe, ERL 2011 1. Limit emittance growth of the very low emittance beam

Slide 4

ERL Injector: Technical Components The Cornell ERL Injector

DC Gun

Beam Diagnostics

SRF Injector Cryomodule 135 kW cw

Klystrons (e2v)

Gun Laser Cold Box

Matthias Liepe, ERL 2011

Page 5: Experience with the Cornell ERL Injector SRF Cryomodule ...liepe/webpage/docs/ERL11...ICM length 5 m Matthias Liepe, ERL 2011 1. Limit emittance growth of the very low emittance beam

Slide 5

The High Current Cornell ERL Injector The Cornell ERL Injector

photocathode DC gun

buncher

cryomodule

beam dump

experimental beam lines

deflector

design parameters Nominal bunch charge 77 pC Bunch repetition rate 1.3 GHz Beam power up to 550 kW Nominal gun voltage 500 kV SC linac beam energy gain 5 to 15 MeV Beam current 100 mA at 5 MeV 33 mA at 15 MeV Bunch length 0.6 mm (rms) Transverse emittance < 1 mm-mrad

Achieved so far 77 pC 50 MHz and 1.3 GHz 125 kW 425 kV 5 to 15 MeV 25 mA

World record for CW injector!

Matthias Liepe, ERL 2011

Page 6: Experience with the Cornell ERL Injector SRF Cryomodule ...liepe/webpage/docs/ERL11...ICM length 5 m Matthias Liepe, ERL 2011 1. Limit emittance growth of the very low emittance beam

• SRF Cryomodule for the ERL injector – Beamline components, module design and assembly

• Operational Highlights: Pushing the Envelope

– SRF cavity and coupler performance – High current operation

• Summary and outlook

Slide 6

Outline O

utline

Matthias Liepe, ERL 2011

Page 7: Experience with the Cornell ERL Injector SRF Cryomodule ...liepe/webpage/docs/ERL11...ICM length 5 m Matthias Liepe, ERL 2011 1. Limit emittance growth of the very low emittance beam

Slide 7

SRF Cryomodule for the ERL injector

Beamline components, module design and assembly

SRF Cryomodule for the ERL injector

Matthias Liepe, ERL 2011

Page 8: Experience with the Cornell ERL Injector SRF Cryomodule ...liepe/webpage/docs/ERL11...ICM length 5 m Matthias Liepe, ERL 2011 1. Limit emittance growth of the very low emittance beam

Slide 8

The Cornell ERL Cryomodule SRF Cryom

odule for the ERL injector

1.3 GHz RF cavity

HOM beamline absorber at 80K between cavities

Frequency tuner

Twin Input Coupler

HGRP system with 3 sections

Number of 2-cell cavities 5 Acceleration per cavity 1 – 3 MeV Accelerating gradient 4.3 – 13.0 MV/m R/Q (linac definition) 222 Ohm Qext 4.6104 – 4.1105

Total 2K / 5K / 80K loads: 30W / 60W / 700W

Number of HOM loads 6 HOM power per cavity 40 W Couplers per cavity 2 RF power per cavity 120 kW Amplitude/phase stability 10-4 / 0.1 (rms) ICM length 5 m

Matthias Liepe, ERL 2011

Page 9: Experience with the Cornell ERL Injector SRF Cryomodule ...liepe/webpage/docs/ERL11...ICM length 5 m Matthias Liepe, ERL 2011 1. Limit emittance growth of the very low emittance beam

1. Limit emittance growth of the very low emittance beam in the injector module (essential for ERL x-ray performance)

2. Support high beam current operation up to 100 mA with short (2 ps) bunches

3. Transfer up to 100 kW of CW RF power per cavity to the beam

4. Provide excellent RF field / energy stability

Slide 9

ERL Injector SRF: Key Challenges

Matthias Liepe, ERL 2011

SRF Cryomodule for the ERL injector

Page 10: Experience with the Cornell ERL Injector SRF Cryomodule ...liepe/webpage/docs/ERL11...ICM length 5 m Matthias Liepe, ERL 2011 1. Limit emittance growth of the very low emittance beam

Beam Line Components (I)

Vacuum vessel flange

Waveguide transition window

Interface to cold coupler

Beamline antenna

Interface to warm coupler

Cavity flange

Vacuum vessel flange

Waveguide transition window

Interface to cold coupler

Beamline antenna

Interface to warm coupler

Cavity flange

RF input couplers: • Design by Cornell for high

cw power > 50 kW • 2 prototypes tested up to

60 kW cw, 80 kW pulsed

SRF cavities: • Designed, fabricated,

and tested at Cornell • All cavities met 15

MV/m spec in vert. test (BCP only)

ERL Injector 2-Cell Cavity Vertical Tests

1.E+09

1.E+10

1.E+11

0 5 10 15 20 25 Eacc [MV/m]

Q

cavity 1 @ 2K cavity 2 @ 1.8K

cavity 3 @ 1.8K Inj Operating Point

SRF Cryomodule for the ERL injector

SRF cavities

Warm coupler part Cold coupler part Slide 10 Matthias Liepe, ERL 2011

Page 11: Experience with the Cornell ERL Injector SRF Cryomodule ...liepe/webpage/docs/ERL11...ICM length 5 m Matthias Liepe, ERL 2011 1. Limit emittance growth of the very low emittance beam

Beam Line Components (II) HOM absorbers: • Design by Cornell for

strong, broadband HOM damping (1.5 GHz -> 100 GHz)

• >200 W power handling

piezo

Frequency tuners: • Modification of the

DESY/INFN blade tuner • Added piezos for

microphonics compensation (R&D)

Flange to Cavity

Flange to Cavity

RF Absorbing

Tiles

Cooling Channel

(GHe) Shielded Bellow

SRF Cryomodule for the ERL injector

Slide 11 Matthias Liepe, ERL 2011

Page 12: Experience with the Cornell ERL Injector SRF Cryomodule ...liepe/webpage/docs/ERL11...ICM length 5 m Matthias Liepe, ERL 2011 1. Limit emittance growth of the very low emittance beam

ERL Injector Module Innovations (I)

• Tuner stepper replaceable while string is in cryomodule

• Rail system for cold mass insertion into Vacuum Vessel

• Gatevalve inside of module with outside drive

SRF Cryomodule for the ERL injector

Slide 12 Matthias Liepe, ERL 2011

Page 13: Experience with the Cornell ERL Injector SRF Cryomodule ...liepe/webpage/docs/ERL11...ICM length 5 m Matthias Liepe, ERL 2011 1. Limit emittance growth of the very low emittance beam

ERL Injector Module Innovations (II) • Precision fixed cavity support surfaces

between the beamline components and the HGRP easy  “self”  alignment

• Cavity-subunits can be fine-aligned while cavities are at 2K (if required)

SRF Cryomodule for the ERL injector

Slide 13 Matthias Liepe, ERL 2011

Page 14: Experience with the Cornell ERL Injector SRF Cryomodule ...liepe/webpage/docs/ERL11...ICM length 5 m Matthias Liepe, ERL 2011 1. Limit emittance growth of the very low emittance beam

Slide 14

ERL Injector Module Assembly at Cornell

Matthias Liepe, TTC Meeting, February 28-March 3 2011, Milano, Italy

SRF Cryomodule for the ERL injector

Superconducting RF Workshop 2009, September 21–25, 2009 Berlin, Germany

Slide 14 Cleanroom assembly fixturing

Gate valve internal to cryomodule

Vacuum vessel interface flange Cleanroom assembly fixturing

Gate valve internal to cryomodule

Vacuum vessel interface flange

Superconducting RF Workshop 2009, September 21–25, 2009 Berlin, Germany

Slide 14

Cold mass assembly 1100 aluminum 80K shield

2K 2 - phase pipe

Magnetic shield II

5K manifold

Cold mass assembly 1100 aluminum 80K shield

2K 2 - phase pipe

Magnetic shield II

5K manifold

1100 aluminum 80K shield

Beam entrance gate valve

RF coupler ports

Instrumentation ports

80K shield 1100 aluminum 80K shield

Beam entrance gate valve

RF coupler ports

Instrumentation ports

80K shield

Beamline in clean room

Page 15: Experience with the Cornell ERL Injector SRF Cryomodule ...liepe/webpage/docs/ERL11...ICM length 5 m Matthias Liepe, ERL 2011 1. Limit emittance growth of the very low emittance beam

Vacuum vessel

Cold massinsertion rails

Cold mass

Cold massinsertion rails

Vacuum vessel

Cold massRF coupler andinstrumentation ports

Cold massinsertion rail

Roller bearings oncomposite post supports

Top of 80K shieldVacuum vesselinterior wall

Vacuum vessel

Coupler andinstrumentation ports

Cryogen supply andreturn plumbing

Support post transitions and alignment screws

ERL Injector Module Assembly at Cornell

Cold mass rolled into vacuum vessel

SRF Cryomodule for the ERL injector

Matthias Liepe, ERL 2011 Slide 15

Page 16: Experience with the Cornell ERL Injector SRF Cryomodule ...liepe/webpage/docs/ERL11...ICM length 5 m Matthias Liepe, ERL 2011 1. Limit emittance growth of the very low emittance beam

Slide 16

Operational Highlights: Pushing the Envelope

SRF cavity and coupler performance

High current operation

Operational Highlights

Matthias Liepe, ERL 2011

Page 17: Experience with the Cornell ERL Injector SRF Cryomodule ...liepe/webpage/docs/ERL11...ICM length 5 m Matthias Liepe, ERL 2011 1. Limit emittance growth of the very low emittance beam

• Avoid transverse kick fields: – Symmetrized beam line in injector module

– Excellent cavity alignment (0.5mm required, 0.2mm achieved)

Slide 17

Emittance Preservation and Cavity Alignment

Matthias Liepe, ERL 2011

Operational Highlights RF

Absorbing Tiles

Cooling Channel

(GHe)

Twin high power input coupler

Axial symmetric HOM beamline absorber

Page 18: Experience with the Cornell ERL Injector SRF Cryomodule ...liepe/webpage/docs/ERL11...ICM length 5 m Matthias Liepe, ERL 2011 1. Limit emittance growth of the very low emittance beam

Slide 18

Fixed High Precision Cavity Support and Alignment

Matthias Liepe, ERL 2011

ERL Injector Cooldown WPM Horizontal

-1.00

-0.50

0.00

0.50

1.00

4/29/08 0:00 4/30/08 0:00 5/1/08 0:00 5/2/08 0:00 Date-Time

X po

sitio

n [m

m]

X1 [mm]

X3 [mm]

X4 [mm]

X5 [mm]

• High precision supports on cavities, HOM loads, and  HGRP  for  “self”  alignment  of  beam  line – Rigid, stable support

– Shift of beamline during cool-down as predicted

• Cavity string is aligned to 0.2 mm after cool-down!

Operational Highlights

Page 19: Experience with the Cornell ERL Injector SRF Cryomodule ...liepe/webpage/docs/ERL11...ICM length 5 m Matthias Liepe, ERL 2011 1. Limit emittance growth of the very low emittance beam

Beam Emittance

• At low bunch charge (at 5 MeV): – Normalized emittance is close to

thermal limit at cathode for given laser size: εN = 0.2 to 0.4 mm mrad

• At higher bunch charge (10 MeV,

77 pC): – εN = 0.8 mm-mrad for 100% beam

(core emittance = 0.3 mm-mrad)

– Increasing the gun voltage to 500 kV is expected to reduce this number further

Slide 19 Matthias Liepe, ERL 2011

Operational Highlights

Page 20: Experience with the Cornell ERL Injector SRF Cryomodule ...liepe/webpage/docs/ERL11...ICM length 5 m Matthias Liepe, ERL 2011 1. Limit emittance growth of the very low emittance beam

• SRF cavities meet gradient spec and have transferred >25 kW cw each to the beam

• Individual input couplers processed up to 25 kW cw

• Prototypes tested up to 60 kW cw, 80 kW pulsed

Slide 20

SRF Cavities and High RF Input Power

Matthias Liepe, ERL 2011

Operational Highlights

Time, hours

Forw

ard

Po

wer

, kW

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80

Cavity #1 Cavity #2 Cavity #3 Cavity #4 Cavity #5

2K 5K 80K 300K Coax - waveguide transition

2K 5K 80K 300K Coax - waveguide transition

RF Input coupler

Page 21: Experience with the Cornell ERL Injector SRF Cryomodule ...liepe/webpage/docs/ERL11...ICM length 5 m Matthias Liepe, ERL 2011 1. Limit emittance growth of the very low emittance beam

• Measurements of cavity dynamic 1.8K head loads shows  intrinsic  Q’s  of 5109 to 11010

• Expected: Q~1.51010

• Source of increased RF losses?

Slide 21

SRF Cavity Intrinsic Quality Factor

Matthias Liepe, ERL 2011

Operational Highlights

Page 22: Experience with the Cornell ERL Injector SRF Cryomodule ...liepe/webpage/docs/ERL11...ICM length 5 m Matthias Liepe, ERL 2011 1. Limit emittance growth of the very low emittance beam

• Measured impact of input coupler coupling on Q0 -> found losses

increase with coupling

• Note: Operate at very low Qext (high beam current) -> large RF

power/field in input coupler

Slide 22

Cavity  “Q0”  vs.  External  Qext

Matthias Liepe, ERL 2011

1.0E+08

1.0E+09

1.0E+10

1.0E+04 1.0E+05 1.0E+06

Cav

ity “Q”

Qext

From This Plot: Q0 > 1x1010 for large Qext

Operational Highlights

Page 23: Experience with the Cornell ERL Injector SRF Cryomodule ...liepe/webpage/docs/ERL11...ICM length 5 m Matthias Liepe, ERL 2011 1. Limit emittance growth of the very low emittance beam

• Exposed stainless steel near knife edge of input coupler Conflat flanges responsible for increased RF losses at strong couplings (confirmed by simulations)

• New zero gap/impedance flange design developed for ERL main linac cavity can be used to eliminate this extra loss

Slide 23

RF Losses at Input Coupler Flange

Matthias Liepe, ERL 2011

Operational Highlights

Cavity Side Coupler Side Niobium Copper Plated

316 Stainless St., exposed

Copper

Page 24: Experience with the Cornell ERL Injector SRF Cryomodule ...liepe/webpage/docs/ERL11...ICM length 5 m Matthias Liepe, ERL 2011 1. Limit emittance growth of the very low emittance beam

Slide 24

LLRF Field Control and Field Stability

Matthias Liepe, ERL 2011

Operational Highlights

*10-5

Excellent field stability achieved: amplitude: A/A< 2·10-5

(in loop measurements) phase: P < 0.01 deg

Cornell digital LLRF control system

Page 25: Experience with the Cornell ERL Injector SRF Cryomodule ...liepe/webpage/docs/ERL11...ICM length 5 m Matthias Liepe, ERL 2011 1. Limit emittance growth of the very low emittance beam

Highlight: Active Microphonics Control Piezo Feedback on Tuning Angle/Cavity Frequency: Reduces rms microphonics by up to 70%! Important for ERL main linac, where QL>5107 and PRFf! O

perational Highlights

Slide 25 Matthias Liepe, ERL 2011

Page 26: Experience with the Cornell ERL Injector SRF Cryomodule ...liepe/webpage/docs/ERL11...ICM length 5 m Matthias Liepe, ERL 2011 1. Limit emittance growth of the very low emittance beam

• Beamline HOM absorber between cavities very effective

• HOM damping and HOM spectra measurements confirm excellent damping with typical Qs of a few 1000

Slide 26

HOMs and High Current Operation

Matthias Liepe, ERL 2011

Frequency [GHz] 1.5 2 2.5 3 3.5 4 -140

-120

-100

-80

-60

S 21 [

dB]

RF Absorbing

Tiles

Operational Highlights

Page 27: Experience with the Cornell ERL Injector SRF Cryomodule ...liepe/webpage/docs/ERL11...ICM length 5 m Matthias Liepe, ERL 2011 1. Limit emittance growth of the very low emittance beam

• Successfully operated injector SRF module with beam currents of 25 mA – No increase in 1.8K dynamic load observed – ΔT of HOM absorbers small (<0.5K). Module should

easily handle operation at >100 mA.

Slide 27

High Current Cryomodule Operation

Matthias Liepe, ERL 2011

Operational Highlights

0

10

20

30

19:00:00 20:00:00 21:00:00 22:00:00Beam

cur

rent

[mA]

time

Page 28: Experience with the Cornell ERL Injector SRF Cryomodule ...liepe/webpage/docs/ERL11...ICM length 5 m Matthias Liepe, ERL 2011 1. Limit emittance growth of the very low emittance beam

• HOM absorbers allow for calorimetric measurement of the total HOM power excited by the beam

• Heaters on the HOM loads used for calibration

• Total HOM power measurement at ~20 mA gives longitudinal loss factor in good agreement with ABCI simulations (~20 V/pC at b=1 mm)

85

90

95

100

105

110

0 10 20 30 40 50

HOM

bas

e te

mpe

ratu

re (K

)

HOM Heater Power (W)

Cryomodule Loss Factor O

perational Highlights

Slide 28 Matthias Liepe, ERL 2011

Page 29: Experience with the Cornell ERL Injector SRF Cryomodule ...liepe/webpage/docs/ERL11...ICM length 5 m Matthias Liepe, ERL 2011 1. Limit emittance growth of the very low emittance beam

•8 HOM antennas per load: • Used as BPMs • Allow studying HOM spectrum

Slide 29

HOM Spectrum Measurements

Matthias Liepe, ERL 2011

Antennas to study HOM spectrum

Operational Highlights

Page 30: Experience with the Cornell ERL Injector SRF Cryomodule ...liepe/webpage/docs/ERL11...ICM length 5 m Matthias Liepe, ERL 2011 1. Limit emittance growth of the very low emittance beam

• Changed bunch charge (and thus beam current), but kept bunch length and repetition rate constant

• Total HOM power: as expected

Slide 30

HOM Spectrum: Scaling with Beam Current

Matthias Liepe, ERL 2011

Operational Highlights

𝑃 ∝ 𝐼𝑄

Page 31: Experience with the Cornell ERL Injector SRF Cryomodule ...liepe/webpage/docs/ERL11...ICM length 5 m Matthias Liepe, ERL 2011 1. Limit emittance growth of the very low emittance beam

• Changed bunch repetition rate • Total HOM power: as expected

Slide 31

HOM Spectrum: Scaling with Bunch Repetition Rate

Matthias Liepe, ERL 2011

Operational Highlights

𝑃 ∝ 𝐼𝑄

Page 32: Experience with the Cornell ERL Injector SRF Cryomodule ...liepe/webpage/docs/ERL11...ICM length 5 m Matthias Liepe, ERL 2011 1. Limit emittance growth of the very low emittance beam

• Spectrum and total loss factor in good agreement with ABCI simulation results for given bunch length

Slide 32

HOM Spectrum: Comparison with ABCI Simulations

Matthias Liepe, ERL 2011

Operational Highlights

Page 33: Experience with the Cornell ERL Injector SRF Cryomodule ...liepe/webpage/docs/ERL11...ICM length 5 m Matthias Liepe, ERL 2011 1. Limit emittance growth of the very low emittance beam

Slide 33

Summary and outlook

Summ

ary and outlook

Matthias Liepe, ERL 2011

Page 34: Experience with the Cornell ERL Injector SRF Cryomodule ...liepe/webpage/docs/ERL11...ICM length 5 m Matthias Liepe, ERL 2011 1. Limit emittance growth of the very low emittance beam

• ERL injector cryomodule: – Designed, constructed, and

successfully tested – Cryogenics, cavity

alignment, cavity voltage, input couplers, LLRF field control, and HOM damping all meet or exceed specs

– 25 mA cw beam accelerated to 5 MeV; should easily support 100 mA operation

Slide 34

Summary Sum

mary and outlook

Matthias Liepe, ERL 2011

Page 35: Experience with the Cornell ERL Injector SRF Cryomodule ...liepe/webpage/docs/ERL11...ICM length 5 m Matthias Liepe, ERL 2011 1. Limit emittance growth of the very low emittance beam

The End Thanks for you attention!

ERL-SRF team: D. Hartill, G. Hoffstaetter, M. Liepe, S. Posen, P. Quigley, V. Shemelin, M. Tigner, N. Valles, V. Veshcherevich

Slide 35 Matthias Liepe, ERL 2011