expansion joint replacement constructability study report combined 2-23-2015 (2).pdf

Upload: cipele12

Post on 13-Jan-2016

4 views

Category:

Documents


0 download

TRANSCRIPT

  • Report on Constructability of Expansion Joint Replacement Santa Ana River Crossing, Riverside, CA

    Prepared for

    THE METROPOLITAN WATER DISTRICT

    700 NORTH ALAMEDA STREET LOS ANGELES, CA 90012

    1 Peters Canyon Rd., Suite 130

    Irvine, CA 92606

    IDS Group Project Number 13.113.01

    February, 2015

    Location of Expansion Joint. The

    existing joint will be replaced

    with a new joint to mitigate the

    joint leaking problem

  • INTEGRATED DESIGN SERVICES

    1 Peters Canyon Rd., Ste.130, Irvine, CA 92606 | tel. 949.387.8500 | fax. 949.387.0800 | www.idsgi.com

    TABLE OF CONTENTS

    Page 1. INTRODUCTION ..................................................................................................................... 1

    2. TEMPORARY LATERAL LOADING CRITERIA ..................................................................... 2

    2.1 Wind Load .................................................................................................................. 2

    2.2 Seismic Load .............................................................................................................. 2

    3. CONVAYANCE OF EXPANSION JOINT ASSEMBLIES ...................................................... 3

    3.1 Option 1: Cranes ........................................................................................................ 3

    3.2 Option 2: Rail Rigging and Lift on Bridge Trusses ...................................................... 3

    4. TEMPORARY STRUCTURE STABILITY ............................................................................... 4

    4.1 Analysis Approach ...................................................................................................... 4

    4.2 Recommendations ...................................................................................................... 4

    5. TEMPORARY AND PERMANENT PIPE LATERAL RESTRAINT .......................................... 4

    5.1 Option 1: Lattice Cage ............................................................................................... 5

    5.2 Option 2: Tying Pipe to Bridge Trusses ...................................................................... 5

    6. CONCLUSION ........................................................................................................................ 6

    APPENDIX A:

    TEMPORARY SEISMIC AND WIND LOADS

    APPENDIX B:

    FEASIBILITY STUDY OF CRANE OPTION FOR EXPANSION JOINT REPLACEMENT CONSTRUCTION

    APPENDIX C:

    TEMPORARY STRUCTURE STABILITY FOR RAIL RIGGING OPTION

    APPENDIX D:

    PIPE LATERTAL RESTRAINT OPTION 1: LATTICE CAGE FOR TEMPORARY AND PERMANENT RESTRAINT

    APPENDIX E:

    PIPE LATERAL RESTRAINT OPTION 2: TYING PIPE TO BRIDGE TRUSSES

  • MWD: Report on Constructability of Expansion Joint Replacement Santa Ana River Crossing Feb, 2015 Page 1

    Report on Constructability of Expansion Joint Replacement MWD Upper Feeder

    Santa Ana River Crossing, Riverside, CA

    The purpose of this constructability study is to demonstrate the feasibility of the construction of the expansion

    joint replacement. The existing expansion joint, which is currently leaking, will be replaced with a new

    bellows joint. The location and massive size of the pipe joint create constructability challenges for this

    project. The construction procedures and sequences provided in this report are considered

    recommendations to the contractor but do not limit the contractor from utilizing other means and methods

    needed to successfully install the system specified in the construction document. All work plan details,

    procedures, shop drawings and calculations of temporary construction in addition to shoring, rigging, etc.

    shall be submitted to Metropolitan Water District (MWD) for review and approval before commencing with the

    work.

    1. INTRODUCTION

    As part Task Order # 6, a design was developed to mitigate the water leakage that occurs at the existing

    expansion joint of the pipe. The proposed repair of the sleeve-coupling joint is expected to substantially

    improve the joint performance although requiring adjustments in the future to maintain the leak mitigation

    performance. The joint repair would not require extensive temporary measures during the construction as

    materials and equipment could be transported to the joint location using the existing walkway.

    During the final design review, a concern was raised by MWD regarding potential liability with quagga-infested

    water leaking from the pipe to the Santa Ana River. MWD concluded that the existing expansion joint should

    be replaced by a different joint type that prevents water leaks and requires minimum operation maintenance.

    A metal bellows expansion joint was identified by MWD for this purpose.

    The installation of the bellows joint requires the removal of the existing joint, which creates a constructability

    challenge since no access is allowed from the riverbed due to the environmental restrictions at the site. This

    necessitates the removal of the top truss diagonal members above the expansion joint to provide access to

    the construction. The removal of the diagonal top truss member above the joint, and the opening up of the

    steel pipe, alters the existing structural system which results in (1) discontinuity in the top diaphragm that

    resists lateral loads, and (2) discontinuity in the steel pipe in both lateral and vertical directions.

    An investigation is needed to review the bridges stability and the pipes structural integrity during the joint

    replacement operation. In addition, given the size of the pipe, the weight of the expansion joint assembly is

    significant (the weight of the new bellows joint assembly is in the order of 5 kips), which also creates another

    challenge to bring the joint in place.

  • MWD: Report on Constructability of Expansion Joint Replacement Santa Ana River Crossing Feb, 2015 Page 2

    It is noted that the steel pipe is currently equipped with an expansion joint that transfers the shear forces

    between the pipe segments at either side of the joint, while the bending and the torsional moments are not

    transferred through the relatively small overlapping length of the joint. Therefore, the existing expansion joint

    provided a "hinge" to the pipe when subjected to vertical and lateral loads. The base isolation of the bridge-

    pipe system has been designed to accommodate this. In addition, the truss members and steel pipe strength

    have been checked (and strengthened where required) based on the bridge-pipe interaction while

    considering the joint hinge.

    During the joint replacement construction the pipe will be sliced into two separate pieces with no moment or

    shear force transfer. Due to the configuration of the new bellows joint (and to avoid over-stressing the

    bellows portion) an external "sleeve" or support is needed to restrain the pipe against the relative lateral

    movements (vertical and horizontal). The new configuration between the pipe segments still allows shear

    transfer, free axial movement, and no bending and/or torsional moment transfer. After the top truss diagonals

    are re-installed, the overall final behavior becomes similar to the current condition in terms of continuity in

    the lateral and vertical directions near the expansion joint.

    This report outlines the loading criteria used to investigate the integrity of temporary structure during the

    proposed joint replacement. Recommended methods of moving of the expansion joint and other construction

    materials are also indicated. The report also presents our view of the structural stability of the temporary

    structures, and several feasible methods of temporary and permanent lateral restraint of the pipe.

    2. TEMPORARY LATERAL LOADING CRITERIA

    2.1 Wind Load

    Wind load is calculated according to ASCE 7-10, Chapter 29. Refer to Appendix A for a detailed wind load

    estimation. It is noted that according to ASCE 37-02, Section 6.2.1, reduction of the design wind speed is

    allowed for a temporary structure with construction period between 6 weeks to 1 year. However, our study

    does not use the reduced wind load since further analysis indicates that the seismic load, rather than the

    wind load governs the lateral loading design of the bridge-pipe system. Wind load stability for crane or trolley

    rail operation is not indicated in our study since it is the contractors responsibility.

    2.2 Seismic Load

    The maximum duration that the temporary condition exists during the construction is estimated to be two (2)

    months. The probability that during this short period of time the structure becomes subjected to a large

    earthquake is low, therefore current codes and standards (i.e. ASCE 41-6) allow the reduction of the seismic

    loads during fast track construction projects. Accordingly, a temporary seismic load of 10% of seismic weight

    is used in this study. Refer to Appendix A for detailed calculations of the temporary seismic load demand

    according to the procedure of ASCE 41-06, Section 1.6.1.3.

  • MWD: Report on Constructability of Expansion Joint Replacement Santa Ana River Crossing Feb, 2015 Page 3

    MWD has allowed a short-duration water shutdown during the expansion joint replacement project. Since

    there will be no water in the pipe during the removal and replacement of the joint a significant amount of

    weight of the system will be reduced leading to less demands of the seismic loads.

    3. CONVAYANCE OF EXPANSION JOINT ASSEMBLIES

    3.1 Option 1: Cranes

    Appendix B includes the feasibility study of the expansion joint assembly conveyance using a crane. This

    method utilizes a heavy crane, stationed at the south end of the bridge, with a jib length and a capacity

    sufficient to lift the removed expansion joint, as well as the proposed new bellows expansion joint. The

    crane lifts the new and existing joints one at a time at the desired location of the feeder pipe. It also lifts them

    to the designated temperory stage/storage areas on the south bank of the Santa Ana River near the south

    entry.

    Our discussion with a crane manufacturer and operator demonstrated that this option is feasible. However,

    permits for a crane assembling area at the site (beyond the easement) are to be acquired by MWD if this

    option is used.

    3.2 Option 2: Rail Rigging and Lift on Bridge Trusses

    This option involves trolley rails (rigging system) built on top of the bridge trusses (over the entire length of

    T1, bridging over the gap between T1 and T2 trusses, and extending two bays on T2). The trolly moves the

    expansion joints (both existing and new, and one at a time) between the south end of the bridge to the joint

    location. At the south end of the bridge, a crane will be set up to lift the rigging system, and the joints from

    the ground to the trolley rails over the top of the trusses, and vice versa. At the joint location, a lifting assembly

    system will be temporary installed to lift and drop the joints into position.

    This option does not require heavy lifting over a long distance. Most likely, the footprint of the lighter crane

    and the rigging equipment will fit within the corrently designated MWD eastments. The drawback of this

    option is the relatively long construction time needed to build and remove the trolley rails and rigging system,

    in addition to the complexity of construction the rails on top of the bridge trusses. It is also noted that a

    moving load is applied on the bridge trusses in addition to the weight of the trolley rails and the rigging system.

    The temporary structure stability and the truss member structural intigrity of this option are discussed in the

    following section.

  • MWD: Report on Constructability of Expansion Joint Replacement Santa Ana River Crossing Feb, 2015 Page 4

    4. TEMPORARY STRUCTURE STABILITY

    4.1 Analysis Approach

    The rail rigging option imposes a more critical loading condition on the temporary structure than the crane

    option. Structure stability and truss integrity are studied for this option only.

    In order to evaluate the truss member adequacy under gravity load a Finite Element model of the full bridge

    is subjected to the estimated moving weight in the vertical direction. A single truss model (Truss T2 only)

    representing the top diaphragm discontinuity and pipe discontinuity is used to evaluate the lateral stability

    and the member adequacy for temporary lateral loads. Refer to Appendix C for details.

    4.2 Recommendations

    Based on the analysis, the following measures are recommended:

    The rails will be supported directly by the bridge truss top chords. The rail members shall be

    designed to span independently between the truss panel points. Under this configuration, the

    existing members of the T1 trusses are found to be adequate to support approximately 9 kips moving

    load transported on the rail rigging system.

    The influence of the moving load on the misalignment of the opened pipe is estimated to be in the

    order of 0.015 inch, which is within tolerances.

    The T2 trusses are structurally stable even when temporary discontinuities of the top diaphragm and

    the pipe are in effect after removing the top diagonal members and the existing expansion joint. The

    truss members are found adequate to resist the estimated moving load and temporary lateral loads.

    The actual construction loads, their locations, and the extent of travel shall be submitted by the

    contractor to the owner for approval before commencing the work.

    It is noted that the dynamic interaction between the moving load and the truss-pipe system was not

    considered in this study. To avoid unanticipated vibrations, the trolley speed shall be less than 5 ft.

    /sec. The rails shall be carefully leveled to avoid perceptible bumping.

    5. TEMPORARY AND PERMANENT PIPE LATERAL RESTRAIN

    The expansion joint is located near Pier 7 which provides simple end support to the bridge trusses T2 and

    T1. The pipe, however, runs continuously over Pier 7 which is one of the supports along its long span, thus,

    the curvature of the deformed profile of the pipe is not similar to that of the trusses at the pier supports.

    Based on our analysis, if no restraint is provided against the relative vertical and horizontal movements

    between the two segments of pipe after it is cut open (as needed to remove the existing expansion joint),

  • MWD: Report on Constructability of Expansion Joint Replacement Santa Ana River Crossing Feb, 2015 Page 5

    there will be a 0.57 relative displacement in the vertical direction. This is caused by the weight of the pipe

    even during water shutdown. This relative displacement could cause misalignment issues when installing the

    bellows expansion joint, i.e. difficulty in fitting the new joint at both ends of the displaced pipe segments.

    Moreover, if the bellows expansion joint is somehow installed with the 0.57 misalignment, once the water

    flow resumes (before pipe restraints are installed between the pipe segments on each side of the new bellows

    expansion joint) the bellows expansion joint will be stressed as the result of further relative displacement

    (an addition 0.85) due to the additional weight of the water. This incremental force in the vertical direction

    is estimated to be 120 kips. Stress in the bellows will significantly reduce its fatigue life which is not

    acceptable.

    Beside the pipes vertical relative movement restraint, temporary and permanent horizontal restraint shall be

    provided as discussed in Section 1 of this report to restore the behavior in the pipe as originally intended to

    perform.

    5.1 Option 1: Lattice Cage

    A lattice-type steel cage is proposed to restrain the pipe relative displacement when the pipe is cut open

    before the expansion joint replacement. During this operation, the top face lattices will be kept open to

    provide access to remove and lift the existing joint and drop the bellows joint assembly from above.

    Once installation of the new joint is completed, new diagonal lattices will be installed on the top face of the

    cage and the cage will be left permanently on the pipe. The cage will be attached to the north side pipe

    through two channel-rings welded to the pipe, and by a single channel ring which will be separated from the

    south side pipe O.D. using Teflon materials (friction coefficient = 0.04, Teflon on Teflon). This cage allows

    free axial movement of the pipe, but restrains the pipes vertical and horizontal relative movement.

    The lattice cage is designed to have sufficient stiffness and strength to resist the temporary and the

    permanent gravity and seismic demands. Refer to Appendix D for detail analysis including the evaluation of

    the steel pipe stress.

    It is suggested that the lattice cage be assembled at the site over the existing pipe. Clearance between the

    lattice cage and the pipe and the bellows joint assembly shall be sufficient for pipe cutting and welding. The

    construction of the lattice cage, the modification of trusses for joint conveyance, and the removal of all

    temporary elements can all be done before and after the shutdown, and thus reducing the duration of the

    shutdown.

    5.2 Option 2: Tying Pipe to Bridge Trusses

    This option utilizes temporary ties between the steel pipe and the existing bridge trusses to restrain the

    relative lateral displacements between the two segments of the opened pipe during the expansion Joint

    replacement. Since the shear forces which are currently transferred by the pipe joint will now be transferred

    to the bridge trusses (vs. the lattice cage in Option 1), the trusses will need to be strengthened to resist the

    pipe reactions.

  • MWD: Report on Constructability of Expansion Joint Replacement Santa Ana River Crossing Feb, 2015 Page 6

    A detail analysis might show that these temporary ties and truss strengthening could be part of the permanent

    restraint. Using this option, the interaction between the pipe and the bridge trusses is altered from the current

    condition, which was used as the base of the seismic upgrade design. A preliminary analysis shows that

    the impact of such alternation on the demands on the base isolators is minimum. However, the truss member

    adequacy requires to be confirmed by further analysis.

    The advantage of Option 2 is providing maximum clearance at the pipe and the bellows joint assembly for

    pipe cutting and welding. Time of pipe shutdown can be minimized since the construction of the ties, truss

    strengthening, the modification of trusses for joint conveyance, and the removal of all temporary elements

    can all be done before and after the shutdown. Please refer to Appendix E for details of Option 2.

    At the writing of this report, we suggest a lattice cage similar to that used in Option 1 be installed for

    permanent purpose and the ties to the bridge trusses be removed. This will simulate the hinge behavior in

    the pipe, and the interaction between the pipe and bridge trusses will be the same as the current condition.

    This eliminates the necessity to re-check the base isolation design, the strength of the bridge truss elements

    and the strength of the pipe. We will need MWD concurrence in selecting Option 1 vs. Option 2.

    6. CONCLUSION

    This report documents several feasible options studied for the expansion joint replacement. During the

    construction, proper lateral restraints will be installed over the pipe. Two options are introduced and found

    feasible. The first option utilizes a lattice cage for both temporary and permanent restraint. The second

    option utilizes ties to existing bridge trusses. Construction methods to move and lift the expansion joints are

    also discussed. At this time, the option that uses a rail rigging system on top of the bridge trusses appears

    to be more practical than the crane option. The rail rigging option uses smaller footprint that is more likely to

    be contained within the current MWD easements.

    The structural integrity during construction are also discussed. The temporary construction loads on the

    bridge (pipe-truss system) depends largely on the construction means and methods to be used by the

    contractor, particularly when a rail rigging option is chosen. In this preliminary study, such construction loads

    are based on engineering judgment and the best information available. The study indicates that minimum

    truss reinforcement should be expected for the expansion joint replacement construction. However, MWD

    review of the contractor submittals of detailed work plans before commencement of construction is critical.

    In summary, we found that the replacement of the existing expansion joint by the proposed bellows type

    joint is feasible and constructible. The actual means and methods of accomplishing the task rests solely on

    the successful general contractor. All contractors proposed work shall be reviewed and approved by MWD

    prior to the commencement of the construction. This step is usually needed to insure the structural integrity

    of the entire bridge, and compliance with the requirements of the project.

  • Temporary Seismic and Wind Loads

    1. Temporary and Permanent Structural Conditions

    The MWD selected Expansion Joint Repair - replacing existing EJ with a new bellow type EJ - requires

    that during the construction,

    Procedure (1): the (E) diagonal braces at the top horizontal truss directly above the EJ shall be

    removed to provide access to the EJ, and

    Procedure (2): the (E) EJ shall be cut and removed before the installation of the new bellow EJ.

    Procedure (1) will result in discontinuity in the top diaphragm for lateral loads. Procedure (2) will

    result in discontinuity in the steel pipe in both lateral and vertical directions.

    Note that before Procedure (2), the steel pipe is equipped with an EJ that transfers shear forces

    between the pipe segments on either side of the EJ. But moments are not transferred due to the

    relatively small overlapping length. Therefore, before procedure (2), the (E) EJ behaves as a "hinge" in

    the pipe when subjected to vertical and lateral loads. Procedure (2) will completely separate the pipe

    into two pieces with no moment or shear force transfer.

    After the EJ replacement, an external "sleeve" will be installed over the bellow to allow shear transfer

    between pipe segments. And the top truss diagonals will be re-installed. The permanent behaviors will

    be similar to the current condition in terms of continuity in the lateral and vertical directions near the EJ.

    The system behaviors of the temporary structure is substantially different than the current condition

    and the permanent condition considered in the design.

    2. Rationale for Reduction of Loads on Temporary Structures

    The maximum length of the time window that the temporary condition exists during the construction is

    estimated to be about 2 months. The likelihood that during this short period of time (2 months) the

    temporary structure subjected to a large earthquake or strong wind storm is low, therefore common

    engineering practice and referenced codes and standards (i.e. ASCE 37-2, ASCE 41-6) allow reduction of

    the seismic and wind loads based on the exposure period.

    Also considered in this constructability study is the fact that when the (E) EJ is removed and the pipe is

    opened up, there is no water in the pipe, which reduce a significant amount of the system weight and

    hence significantly reduce the seismic lateral demands.

    3. Calculation of Temporary Seismic Load

    Per ASCE 41-06, Section 1.6.1.3, "Adjustment of Mapped Response Acceleration Parameters for other

    Probability of Exceedance", the seismic load on the temporary condition described above is estimated

    below.

    Page A-1

    yangbo.chenText BoxAppendix A

  • Design for earthquake event with 2% probability of exceedance during this 2 months period. Noted

    as a (2%|2 months) event, which is an event with probability of exceedance greater than a (10%|50 yrs)

    event (regular permanent structural design earthquake).

    Mapped response paramenters

    Ss = 1.5g

    S1 = 0.6g

    10%|50 yrs:

    SDS = 1g

    SD1 = 0.52g

    Return period of (2%|2months) event

    PR = -Y/ln(1-PEy) = 8.25 yrs

    Y = exposure time = 2 month = 1/6 yrs = 0.167yrs

    PEy = Probability of Exceedance = 0.02

    Eq 1-3, Parameters for (2%|2months) Events

    Si = Si 10%|50 (PR/475)n n = 0.44 (Table 1-3)

    Ss 2%|2m = Ss 10%|50 (PR/475)n = SDS (PR/475)n = 0.168g

    S1 2%|2m = S1 10%|50 (PR/475)n = SD1 (PR/475)n = 0.087g

    The isolated structure (pipe + Truss) has a natural period of

    Tn = 1 sec (Isolators are stiffer due to smaller displacement)

    Use R = 1

    I = 1 (This could be 1.0 since 2% probability of exceedance is used)

    V = (S1/Tn)(I/R)W = 0.087W

    Use minimum V = 0.1 W OK for seismic load

    4. Calculation of Wind Load

    Risk Category: IV (Essential Facility)

    Exposure: C

    Special Wing Region: 120 mph (ASCE 7-10 wind speed)

    (Note this is corresponding approximately to wind with mean return interval of 1700

    yrs.)

    Directionality Factor Kd = 0.95

    Page A-2

  • (Table 26.6-1, Chimneys, Tanks, and Similar Structures, Round)

    Topographic Factor Kzt = 1 (Figure 26.8-1)

    Gust-Effect Factor G = 0.85 (Rigid Structure, Unless otherwise determined in Tables)

    Enclosure classication = open

    Velocity Pressure:

    qz = 0.00256 Kz Kzt Kd V2 Kz = 1.04 (40', Exposure C, Table 29.3-1)

    qz = 36.4 psf

    DESIGN WIND LOAD (ASCE 7-10 Section 29.5)

    F = qz G Cf Af

    Wind load Force Coefficients, Cf (Figure 29.5-1)

    Cf = 0.55 D = 9.83ft

    h = 40ft

    D*(qz) =59.3

    Moderately smooth

    h/D = 4.1

    F = qz G Cf Af

    F = 17.1 Af

    According to ASCE 37-02, Section 6.2.1, a reduciton factor 0.8 is allowed to be applied on the design

    wind speed for construction period between 6 weeks to 1 year, which effectively reduces the design

    wind load to 0.82 = 0.64 time of the calculated force above.

    F = 10.9 Af

    Use wind load 20 psf OK for wind load

    5. Determine the governing lateral load

    For empty pipe condition, seismic weight of Pipe + Truss

    1.10 +1.25 = 2.35klf

    Seismic Load = 0.1W = 235plf

    Wind Load = 20 Af = 200plf (Af = 10x1 = 10 sqft/ft)

    Therefore, Seismic Governs

    Page A-3

  • FEASIBILITY STUDY OF TOWER CRANE OPTION AND CRAWLER

    CRANE OPTION FOR EXPANSION JOINT REPLACEMENT

    CONSTRUCTION

    This is to document a preliminary study of the construction feasibility of the MWD proposed expansion

    joint replacement project at MWD Upper Feeder over Santa River Crossing, Riverside, CA. The

    construction option studied herein envolves a heavy crane stationed at the south end of the bridge (see

    Figure below), with a jib length and lifting capacity sufficient to suspend the existing Expansion Joint (EJ)

    to be removed from the feeder pipe, as well as the proposed new bellow-type EJ, and to transport them

    (one at a time) between the EJ location on the feeder pipe and the designated temperory stage/storage

    area on the south bank of the Santa Ana River near the south entry. Additionaly, the use of a crawler

    crane was studied due to the area of work limitations per currently approved easements.

    1. Crane Capacity Requirements

    Google Earth Screenshot

    Page B-1

    yangbo.chenText BoxAppendix B

  • Required Jib Length (Radius) = 250

    Required Hook Height = 50

    Required Capacity at Max Jib Length = 6 kips

    2. Equipment Availability

    There are several models of tower cranes meeting these criteria available for rental, for example,

    Terex Peiner SK575, Terex Comedil CTT 721-40, Potain MDT 412-L10, etc.

    Further study and research shows that a crawler crane may be suitable for the project given the area

    limitations.

    3. Findings of This Study

    It is feasible from an equipment capacity point of view. A Crawler Crane instead of a tower

    crane may be more suitable given the site conditions and area limitations. A crawler crane can

    have a boom length of more than 300 ft, and is capable of the required lifting power. The

    crawler crane can be stationed on top of an approximately 40x40 wood platform, which would

    not require concrete foundation or soil work.

    The crawler crane will require a big assembling area near the location of the final station. From

    the assembling area to the final station, the path is preferable to be clear of any obstacles such

    as light poles or power lines.

    The required crane assembling area may be larger than currently available at the site, at least

    per current permit. Either new permit is acquired or assembling would have to be done on an

    elevated condition, which would not be cost-effective.

    Because of the heavy equipment itself and significant counter weight, there is a concern about

    the ground bearing capacity particularly adjacent to underground sewer lines. MWD should

    evaluate the existing conditions at all underground utilities.

    The station area of a crawler crane need to be approximately 70 away from the pipe line for

    boom operation to avoid the pipe or trusses.

    Page B-2

  • Temporary Structure Stability for Rail Rigging Option

    Trolley rails, lifts and their construction procedure shall be designed by the Contractor. The

    construction loads on the bridge trusses shall be provided for review, and if required the truss

    members shall be enhanced before the commencement of construction. However, this study

    of the structural adequacy of the as-built trusses elements is based on engineering judgment

    and best information available regarding the construction loads. Purpose of this study is to

    demonstrate the feasibility and identify potential elements most likely requiring strengthening.

    1. Weight of (E) Expansion Joint to Remove

    a. 1st Piece to remove: (2.2 kips total)

    2 long x 7/8 thick 9-10 Diameter Pipe = 2 x 1.1klf = 2.2 kips

    b. 2nd Piece to remove: (7.25 kips total)

    3 long x 1 thick 9-10 Diameter Pipe = 3 x 1.26klf = 3.8 kips

    C15x50 Channel Ring 9-10 Diameter = 50plf x 30.9 = 1.5 kips

    L7x4x3/4 Angle Ring 9-10 Diameter = 26.2plf x 30.9 = 0.8 kips

    Bolts and Nuts = 6lbs x 31 = 0.2 kips

    9 long x 1 thick 9-10 Diameter Pipe = 0.75 x 1.26klf =0.95 kips

    2. Weight of (N) Bellow Expansion Joint

    a. (4 kips total estimated by bellow manufacturer)

    Center-spool (12) + Butt-strap (2)x6 = 2 x 1.1klf = 2.2 kips

    Bellow (2) x 16.75 = 1.7 kips

    Bolts and Nuts = 12 lbs x 10 = 0.12 kips

    Therefore assuming 9 kips moving weight.

    3. Weight of Rails

    a. Rails need to be design to control rail deflection

    Assume (2) W12x26 rails on trusses

    (2) W12x65 bridging the gap over Pier 7

    The weight of rails is automatically considered by program in models. Total

    weight of rails is estimated to be 12.5 kips.

    Note that for T1 Trusses where no temporary discontinuity (top diaphragm and pipe) is

    introduced,

    Seismic Weight of Trusses + Pipe + Full Water = 1278 kips (See 90%CD Calc. pp 21)

    Additional weight during joint replacement construction,

    Moving Weight + Rails = 9 kips + 12.5 kips = 21.5 kips

    The ratio of additional weight to existing weight that the Bridge Trusses designed for:

    Page C-1

    yangbo.chenText BoxAppendix C

  • Additional Weight / Existing Weight = 21.5/1278 = 1.7%
  • Full bridge model with moving loads (Gravity only):

    Moving Load definition: 9 kips downward on one lane. See sketch below for lane definition

    (South 2 bays of T2 + Gap between T2 and T1 + Entire T1); lanes are located close to the planes

    of the vertical bridge trusses each side of the pipe, taking into account of possibly eccentricity

    of loading. The 9 kips is conservatively loaded on one lane rather than distributed over 2 lanes.

    Moving load impact on opened pipe misalignment

    See below tabulated influence lines for vertical displacements of joints on either side of the

    opened pipe. The maximum influence of the 9 kip moving load on the vertical misalignment of

    the open pipe is estimated to be about 0.015 inch. This is very small and negligible.

    Lanes of

    Moving Load

    Page C-3

  • Case Bellow Moving Load Influence forJoint 1550, U3 Case Bellow Moving Load Influence forJoint 874, U3 Differential @

    9 kips

    Lane Station Sta. Dist Ordinate Ord. Dist Global X Global Y Global Z Influence Lane Station Sta. Dist Ordinate Ord. Dist Global X Global Y Global Z Influence Influence

    ft ft ft ft ft ft ft ft ft ft ft ft ft in

    TrackRail1 1 0 1 0 358.0033 -6.75 22.5 -1.29E-05 TrackRail1 1 0 1 0 358.0033 -6.75 22.5 -1.52E-04 1.39E-04 1.50E-02

    TrackRail1 2 8.9967 1 0 367 -6.75 22.5 -1.40E-05 TrackRail1 2 8.9967 1 0 367 -6.75 22.5 -1.52E-04 1.37E-04 1.48E-02

    TrackRail1 3 17.9934 1 0 375.9967 -6.75 22.5 -1.51E-05 TrackRail1 3 17.9934 1 0 375.9967 -6.75 22.5 -1.51E-04 1.36E-04 1.47E-02

    TrackRail1 4 18 1 0 376.0033 -6.75 22.5 -1.51E-05 TrackRail1 4 18 1 0 376.0033 -6.75 22.5 -1.51E-04 1.36E-04 1.47E-02

    TrackRail1 5 26.9967 1 0 385 -6.75 22.5 -1.64E-05 TrackRail1 5 26.9967 1 0 385 -6.75 22.5 -1.19E-04 1.03E-04 1.11E-02

    TrackRail1 6 35.9934 1 0 393.9967 -6.75 22.5 -1.77E-05 TrackRail1 6 35.9934 1 0 393.9967 -6.75 22.5 -8.69E-05 6.92E-05 7.48E-03

    TrackRail1 7 36 1 0 394.0033 -6.75 22.5 -1.77E-05 TrackRail1 7 36 1 0 394.0033 -6.75 22.5 -8.69E-05 6.92E-05 7.47E-03

    TrackRail1 8 45.4967 1 0 403.5 -6.75 22.5 -7.92E-06 TrackRail1 8 45.4967 1 0 403.5 -6.75 22.5 -6.72E-05 5.93E-05 6.41E-03

    TrackRail1 9 54.9934 1 0 412.9967 -6.75 22.5 1.88E-06 TrackRail1 9 54.9934 1 0 412.9967 -6.75 22.5 -4.75E-05 4.94E-05 5.34E-03

    TrackRail1 10 55 1 0 413.0033 -6.75 22.5 1.89E-06 TrackRail1 10 55 1 0 413.0033 -6.75 22.5 -4.75E-05 4.94E-05 5.34E-03

    TrackRail1 11 64.4967 1 0 422.5 -6.75 22.5 1.17E-05 TrackRail1 11 64.4967 1 0 422.5 -6.75 22.5 -2.78E-05 3.95E-05 4.27E-03

    TrackRail1 12 73.9934 1 0 431.9967 -6.75 22.5 2.15E-05 TrackRail1 12 73.9934 1 0 431.9967 -6.75 22.5 -8.15E-06 2.96E-05 3.20E-03

    TrackRail1 13 74 1 0 432.0033 -6.75 22.5 2.15E-05 TrackRail1 13 74 1 0 432.0033 -6.75 22.5 -8.15E-06 2.96E-05 3.20E-03

    TrackRail1 14 82.9934 1 0 440.9967 -6.75 22.5 4.02E-05 TrackRail1 14 82.9934 1 0 440.9967 -6.75 22.5 -7.78E-06 4.79E-05 5.18E-03

    TrackRail1 15 83 1 0 441.0033 -6.75 22.5 4.02E-05 TrackRail1 15 83 1 0 441.0033 -6.75 22.5 -7.77E-06 4.79E-05 5.18E-03

    TrackRail1 16 91.9934 1 0 449.9967 -6.75 22.5 5.88E-05 TrackRail1 16 91.9934 1 0 449.9967 -6.75 22.5 -7.41E-06 6.62E-05 7.15E-03

    TrackRail1 17 92 1 0 450.0033 -6.75 22.5 5.88E-05 TrackRail1 17 92 1 0 450.0033 -6.75 22.5 -7.40E-06 6.62E-05 7.15E-03

    TrackRail1 18 100.9967 1 0 459 -6.75 22.5 6.60E-05 TrackRail1 18 100.9967 1 0 459 -6.75 22.5 -6.88E-06 7.29E-05 7.88E-03

    TrackRail1 19 109.9934 1 0 467.9967 -6.75 22.5 7.33E-05 TrackRail1 19 109.9934 1 0 467.9967 -6.75 22.5 -6.36E-06 7.96E-05 8.60E-03

    TrackRail1 20 110 1 0 468.0033 -6.75 22.5 7.33E-05 TrackRail1 20 110 1 0 468.0033 -6.75 22.5 -6.36E-06 7.96E-05 8.60E-03

    TrackRail1 21 118.9967 1 0 477 -6.75 22.5 7.60E-05 TrackRail1 21 118.9967 1 0 477 -6.75 22.5 -5.89E-06 8.19E-05 8.84E-03

    TrackRail1 22 127.9934 1 0 485.9967 -6.75 22.5 7.88E-05 TrackRail1 22 127.9934 1 0 485.9967 -6.75 22.5 -5.41E-06 8.42E-05 9.09E-03

    TrackRail1 23 128 1 0 486.0033 -6.75 22.5 7.88E-05 TrackRail1 23 128 1 0 486.0033 -6.75 22.5 -5.41E-06 8.42E-05 9.09E-03

    TrackRail1 24 136.9967 1 0 495 -6.75 22.5 7.70E-05 TrackRail1 24 136.9967 1 0 495 -6.75 22.5 -5.03E-06 8.21E-05 8.86E-03

    TrackRail1 25 145.9934 1 0 503.9967 -6.75 22.5 7.53E-05 TrackRail1 25 145.9934 1 0 503.9967 -6.75 22.5 -4.64E-06 7.99E-05 8.63E-03

    TrackRail1 26 146 1 0 504.0033 -6.75 22.5 7.53E-05 TrackRail1 26 146 1 0 504.0033 -6.75 22.5 -4.64E-06 7.99E-05 8.63E-03

    TrackRail1 27 154.9967 1 0 513 -6.75 22.5 7.11E-05 TrackRail1 27 154.9967 1 0 513 -6.75 22.5 -4.26E-06 7.54E-05 8.14E-03

    TrackRail1 28 163.9934 1 0 521.9967 -6.75 22.5 6.69E-05 TrackRail1 28 163.9934 1 0 521.9967 -6.75 22.5 -3.89E-06 7.08E-05 7.65E-03

    TrackRail1 29 164 1 0 522.0033 -6.75 22.5 6.69E-05 TrackRail1 29 164 1 0 522.0033 -6.75 22.5 -3.89E-06 7.08E-05 7.65E-03

    TrackRail1 30 172.9967 1 0 531 -6.75 22.5 5.97E-05 TrackRail1 30 172.9967 1 0 531 -6.75 22.5 -3.51E-06 6.32E-05 6.83E-03

    TrackRail1 31 181.9934 1 0 539.9967 -6.75 22.5 5.25E-05 TrackRail1 31 181.9934 1 0 539.9967 -6.75 22.5 -3.13E-06 5.56E-05 6.00E-03

    TrackRail1 32 182 1 0 540.0033 -6.75 22.5 5.25E-05 TrackRail1 32 182 1 0 540.0033 -6.75 22.5 -3.13E-06 5.56E-05 6.00E-03

    TrackRail1 33 190.9967 1 0 549 -6.75 22.5 4.34E-05 TrackRail1 33 190.9967 1 0 549 -6.75 22.5 -2.73E-06 4.61E-05 4.98E-03

    TrackRail1 34 199.9934 1 0 557.9967 -6.75 22.5 3.43E-05 TrackRail1 34 199.9934 1 0 557.9967 -6.75 22.5 -2.33E-06 3.66E-05 3.95E-03

    TrackRail1 35 200 1 0 558.0033 -6.75 22.5 3.43E-05 TrackRail1 35 200 1 0 558.0033 -6.75 22.5 -2.33E-06 3.66E-05 3.95E-03

    TrackRail1 36 208.9967 1 0 567 -6.75 22.5 2.57E-05 TrackRail1 36 208.9967 1 0 567 -6.75 22.5 -1.89E-06 2.76E-05 2.98E-03

    TrackRail1 37 217.9934 1 0 575.9967 -6.75 22.5 1.71E-05 TrackRail1 37 217.9934 1 0 575.9967 -6.75 22.5 -1.46E-06 1.85E-05 2.00E-03

    Influence Line for U3 of Joint #1550 Influence Line for U3 of Joint #874 Misalignment

    Page C-4

  • Moving Load Influence on Truss Member Axial Load:

    Critical Case 1: Truss T2 (and Truss T1 similar) End Diagonal Member

    Side Truss Diagonal Member 2C15x40+CapPl,

    Compression capacity = 805 kips (see Calc. pp. 299)

    Max Influence = 8.2 kips = 1% Capacity OK.

    Case Bellow Moving Load Influence forFrame 394, RD = 0.5, Axial Force @

    9 kips

    Lane Station Sta. Dist Ordinate Ord. Dist Global X Global Y Global Z Influence

    ft ft ft ft ft Kip in

    TrackRail1 1 0 1 0 358.0033 -6.75 22.5 -0.6413 -5.77

    TrackRail1 2 8.9967 1 0 367 -6.75 22.5 -0.6981 -6.28

    TrackRail1 3 17.9934 1 0 375.9967 -6.75 22.5 -0.7549 -6.79

    TrackRail1 4 18 1 0 376.0033 -6.75 22.5 -0.755 -6.80

    TrackRail1 5 26.9967 1 0 385 -6.75 22.5 -0.832 -7.49

    TrackRail1 6 35.9934 1 0 393.9967 -6.75 22.5 -0.9091 -8.18

    TrackRail1 7 36 1 0 394.0033 -6.75 22.5 -0.9091 -8.18

    TrackRail1 8 45.4967 1 0 403.5 -6.75 22.5 -0.6738 -6.06

    TrackRail1 9 54.9934 1 0 412.9967 -6.75 22.5 -0.4385 -3.95

    TrackRail1 10 55 1 0 413.0033 -6.75 22.5 -0.4384 -3.95

    TrackRail1 11 64.4967 1 0 422.5 -6.75 22.5 -0.2031 -1.83

    TrackRail1 12 73.9934 1 0 431.9967 -6.75 22.5 0.0322 0.29

    TrackRail1 13 74 1 0 432.0033 -6.75 22.5 0.0322 0.29

    TrackRail1 14 82.9934 1 0 440.9967 -6.75 22.5 0.031 0.28

    TrackRail1 15 83 1 0 441.0033 -6.75 22.5 0.031 0.28

    TrackRail1 16 91.9934 1 0 449.9967 -6.75 22.5 0.0297 0.27

    TrackRail1 17 92 1 0 450.0033 -6.75 22.5 0.0297 0.27

    TrackRail1 18 100.9967 1 0 459 -6.75 22.5 0.0281 0.25

    TrackRail1 19 109.9934 1 0 467.9967 -6.75 22.5 0.0265 0.24

    TrackRail1 20 110 1 0 468.0033 -6.75 22.5 0.0265 0.24

    TrackRail1 21 118.9967 1 0 477 -6.75 22.5 0.0252 0.23

    TrackRail1 22 127.9934 1 0 485.9967 -6.75 22.5 0.024 0.22

    TrackRail1 23 128 1 0 486.0033 -6.75 22.5 0.024 0.22

    TrackRail1 24 136.9967 1 0 495 -6.75 22.5 0.0229 0.21

    TrackRail1 25 145.9934 1 0 503.9967 -6.75 22.5 0.0218 0.20

    TrackRail1 26 146 1 0 504.0033 -6.75 22.5 0.0218 0.20

    TrackRail1 27 154.9967 1 0 513 -6.75 22.5 0.0208 0.19

    TrackRail1 28 163.9934 1 0 521.9967 -6.75 22.5 0.0197 0.18

    TrackRail1 29 164 1 0 522.0033 -6.75 22.5 0.0197 0.18

    TrackRail1 30 172.9967 1 0 531 -6.75 22.5 0.0184 0.17

    TrackRail1 31 181.9934 1 0 539.9967 -6.75 22.5 0.0171 0.15

    TrackRail1 32 182 1 0 540.0033 -6.75 22.5 0.0171 0.15

    TrackRail1 33 190.9967 1 0 549 -6.75 22.5 0.0155 0.14

    TrackRail1 34 199.9934 1 0 557.9967 -6.75 22.5 0.0139 0.13

    TrackRail1 35 200 1 0 558.0033 -6.75 22.5 0.0139 0.13

    TrackRail1 36 208.9967 1 0 567 -6.75 22.5 0.0118 0.11

    TrackRail1 37 217.9934 1 0 575.9967 -6.75 22.5 9.66E-03 0.09

    Page C-5

  • Critical Case 2: Truss T1 Bottom Chord

    Side Bottom Chord Member 2C15x33.9+4WebPl,

    Tension capacity = 1344 kips (see Calc. pp. 299)

    Max Influence = 6.7 kips = 0.5% Capacity OK.

    Case Bellow Moving Load Influence forFrame 1076, RD = 0.5, Axial Force @

    9 kips

    Lane Station Sta. Dist Ordinate Ord. Dist Global X Global Y Global Z Influence

    ft ft ft ft ft Kip in

    TrackRail1 1 0 1 0 358.0033 -6.75 22.5 3.04E-04 0.00

    TrackRail1 2 8.9967 1 0 367 -6.75 22.5 5.49E-04 0.00

    TrackRail1 3 17.9934 1 0 375.9967 -6.75 22.5 7.94E-04 0.01

    TrackRail1 4 18 1 0 376.0033 -6.75 22.5 7.94E-04 0.01

    TrackRail1 5 26.9967 1 0 385 -6.75 22.5 2.01E-03 0.02

    TrackRail1 6 35.9934 1 0 393.9967 -6.75 22.5 3.23E-03 0.03

    TrackRail1 7 36 1 0 394.0033 -6.75 22.5 3.24E-03 0.03

    TrackRail1 8 45.4967 1 0 403.5 -6.75 22.5 0.0329 0.30

    TrackRail1 9 54.9934 1 0 412.9967 -6.75 22.5 0.0625 0.56

    TrackRail1 10 55 1 0 413.0033 -6.75 22.5 0.0625 0.56

    TrackRail1 11 64.4967 1 0 422.5 -6.75 22.5 0.0922 0.83

    TrackRail1 12 73.9934 1 0 431.9967 -6.75 22.5 0.1218 1.10

    TrackRail1 13 74 1 0 432.0033 -6.75 22.5 0.1218 1.10

    TrackRail1 14 82.9934 1 0 440.9967 -6.75 22.5 0.184 1.66

    TrackRail1 15 83 1 0 441.0033 -6.75 22.5 0.184 1.66

    TrackRail1 16 91.9934 1 0 449.9967 -6.75 22.5 0.2461 2.21

    TrackRail1 17 92 1 0 450.0033 -6.75 22.5 0.2462 2.22

    TrackRail1 18 100.9967 1 0 459 -6.75 22.5 0.2998 2.70

    TrackRail1 19 109.9934 1 0 467.9967 -6.75 22.5 0.3534 3.18

    TrackRail1 20 110 1 0 468.0033 -6.75 22.5 0.3535 3.18

    TrackRail1 21 118.9967 1 0 477 -6.75 22.5 0.4291 3.86

    TrackRail1 22 127.9934 1 0 485.9967 -6.75 22.5 0.5047 4.54

    TrackRail1 23 128 1 0 486.0033 -6.75 22.5 0.5048 4.54

    TrackRail1 24 136.9967 1 0 495 -6.75 22.5 0.6266 5.64

    TrackRail1 25 145.9934 1 0 503.9967 -6.75 22.5 0.7483 6.73

    TrackRail1 26 146 1 0 504.0033 -6.75 22.5 0.7484 6.74

    TrackRail1 27 154.9967 1 0 513 -6.75 22.5 0.7299 6.57

    TrackRail1 28 163.9934 1 0 521.9967 -6.75 22.5 0.7115 6.40

    TrackRail1 29 164 1 0 522.0033 -6.75 22.5 0.7114 6.40

    TrackRail1 30 172.9967 1 0 531 -6.75 22.5 0.5565 5.01

    TrackRail1 31 181.9934 1 0 539.9967 -6.75 22.5 0.4015 3.61

    TrackRail1 32 182 1 0 540.0033 -6.75 22.5 0.4014 3.61

    TrackRail1 33 190.9967 1 0 549 -6.75 22.5 0.3279 2.95

    TrackRail1 34 199.9934 1 0 557.9967 -6.75 22.5 0.2544 2.29

    TrackRail1 35 200 1 0 558.0033 -6.75 22.5 0.2543 2.29

    TrackRail1 36 208.9967 1 0 567 -6.75 22.5 0.1777 1.60

    TrackRail1 37 217.9934 1 0 575.9967 -6.75 22.5 0.1011 0.91

    Page C-6

  • Critical Case 3: Truss T1 Top Chord

    Side Top Chord Member 2C15x55+1cvr+2web,

    Compression capacity = 1323 kips (see Calc. pp. 299)

    Max Influence = 6.2 kips = 0.5% Capacity OK.

    Case Bellow Moving Load Influence forFrame 1080, RD = 0.5, Axial Force @

    9 kips

    Lane Station Sta. Dist Ordinate Ord. Dist Global X Global Y Global Z Influence

    ft ft ft ft ft Kip in

    TrackRail1 1 0 1 0 358.0033 -6.75 22.5 2.27E-03 0.02

    TrackRail1 2 8.9967 1 0 367 -6.75 22.5 2.41E-03 0.02

    TrackRail1 3 17.9934 1 0 375.9967 -6.75 22.5 2.55E-03 0.02

    TrackRail1 4 18 1 0 376.0033 -6.75 22.5 2.55E-03 0.02

    TrackRail1 5 26.9967 1 0 385 -6.75 22.5 3.42E-03 0.03

    TrackRail1 6 35.9934 1 0 393.9967 -6.75 22.5 4.29E-03 0.04

    TrackRail1 7 36 1 0 394.0033 -6.75 22.5 4.28E-03 0.04

    TrackRail1 8 45.4967 1 0 403.5 -6.75 22.5 -0.0303 -0.27

    TrackRail1 9 54.9934 1 0 412.9967 -6.75 22.5 -0.0648 -0.58

    TrackRail1 10 55 1 0 413.0033 -6.75 22.5 -0.0648 -0.58

    TrackRail1 11 64.4967 1 0 422.5 -6.75 22.5 -0.0993 -0.89

    TrackRail1 12 73.9934 1 0 431.9967 -6.75 22.5 -0.1339 -1.21

    TrackRail1 13 74 1 0 432.0033 -6.75 22.5 -0.1339 -1.21

    TrackRail1 14 82.9934 1 0 440.9967 -6.75 22.5 -0.1984 -1.79

    TrackRail1 15 83 1 0 441.0033 -6.75 22.5 -0.1984 -1.79

    TrackRail1 16 91.9934 1 0 449.9967 -6.75 22.5 -0.2629 -2.37

    TrackRail1 17 92 1 0 450.0033 -6.75 22.5 -0.2629 -2.37

    TrackRail1 18 100.9967 1 0 459 -6.75 22.5 -0.3144 -2.83

    TrackRail1 19 109.9934 1 0 467.9967 -6.75 22.5 -0.3659 -3.29

    TrackRail1 20 110 1 0 468.0033 -6.75 22.5 -0.366 -3.29

    TrackRail1 21 118.9967 1 0 477 -6.75 22.5 -0.4364 -3.93

    TrackRail1 22 127.9934 1 0 485.9967 -6.75 22.5 -0.5068 -4.56

    TrackRail1 23 128 1 0 486.0033 -6.75 22.5 -0.5068 -4.56

    TrackRail1 24 136.9967 1 0 495 -6.75 22.5 -0.6002 -5.40

    TrackRail1 25 145.9934 1 0 503.9967 -6.75 22.5 -0.6935 -6.24

    TrackRail1 26 146 1 0 504.0033 -6.75 22.5 -0.6935 -6.24

    TrackRail1 27 154.9967 1 0 513 -6.75 22.5 -0.662 -5.96

    TrackRail1 28 163.9934 1 0 521.9967 -6.75 22.5 -0.6305 -5.67

    TrackRail1 29 164 1 0 522.0033 -6.75 22.5 -0.6304 -5.67

    TrackRail1 30 172.9967 1 0 531 -6.75 22.5 -0.5554 -5.00

    TrackRail1 31 181.9934 1 0 539.9967 -6.75 22.5 -0.4803 -4.32

    TrackRail1 32 182 1 0 540.0033 -6.75 22.5 -0.4802 -4.32

    TrackRail1 33 190.9967 1 0 549 -6.75 22.5 -0.4117 -3.71

    TrackRail1 34 199.9934 1 0 557.9967 -6.75 22.5 -0.3431 -3.09

    TrackRail1 35 200 1 0 558.0033 -6.75 22.5 -0.343 -3.09

    TrackRail1 36 208.9967 1 0 567 -6.75 22.5 -0.2696 -2.43

    TrackRail1 37 217.9934 1 0 575.9967 -6.75 22.5 -0.1962 -1.77

    Page C-7

  • Critical Case 4: Truss T1 Vertical

    Side Vertical Member W14x82,

    Compression capacity = 386 kips (see Calc. pp. 299)

    Max Influence = 5.9 kips = 1.5% Capacity OK.

    Case Bellow Moving Load Influence forFrame 1452, RD = 0.5, Axial Force @

    9 kips

    Lane Station Sta. Dist Ordinate Ord. Dist Global X Global Y Global Z Influence

    ft ft ft ft ft Kip in

    TrackRail1 1 0 1 0 358.0033 -6.75 22.5 3.77E-03 0.03

    TrackRail1 2 8.9967 1 0 367 -6.75 22.5 4.14E-03 0.04

    TrackRail1 3 17.9934 1 0 375.9967 -6.75 22.5 4.52E-03 0.04

    TrackRail1 4 18 1 0 376.0033 -6.75 22.5 4.52E-03 0.04

    TrackRail1 5 26.9967 1 0 385 -6.75 22.5 4.92E-03 0.04

    TrackRail1 6 35.9934 1 0 393.9967 -6.75 22.5 5.31E-03 0.05

    TrackRail1 7 36 1 0 394.0033 -6.75 22.5 5.32E-03 0.05

    TrackRail1 8 45.4967 1 0 403.5 -6.75 22.5 0.0279 0.25

    TrackRail1 9 54.9934 1 0 412.9967 -6.75 22.5 0.0504 0.45

    TrackRail1 10 55 1 0 413.0033 -6.75 22.5 0.0504 0.45

    TrackRail1 11 64.4967 1 0 422.5 -6.75 22.5 0.073 0.66

    TrackRail1 12 73.9934 1 0 431.9967 -6.75 22.5 0.0956 0.86

    TrackRail1 13 74 1 0 432.0033 -6.75 22.5 0.0954 0.86

    TrackRail1 14 82.9934 1 0 440.9967 -6.75 22.5 -0.2799 -2.52

    TrackRail1 15 83 1 0 441.0033 -6.75 22.5 -0.2801 -2.52

    TrackRail1 16 91.9934 1 0 449.9967 -6.75 22.5 -0.6554 -5.90

    TrackRail1 17 92 1 0 450.0033 -6.75 22.5 -0.6555 -5.90

    TrackRail1 18 100.9967 1 0 459 -6.75 22.5 -0.5434 -4.89

    TrackRail1 19 109.9934 1 0 467.9967 -6.75 22.5 -0.4314 -3.88

    TrackRail1 20 110 1 0 468.0033 -6.75 22.5 -0.4313 -3.88

    TrackRail1 21 118.9967 1 0 477 -6.75 22.5 -0.3466 -3.12

    TrackRail1 22 127.9934 1 0 485.9967 -6.75 22.5 -0.2618 -2.36

    TrackRail1 23 128 1 0 486.0033 -6.75 22.5 -0.2618 -2.36

    TrackRail1 24 136.9967 1 0 495 -6.75 22.5 -0.2315 -2.08

    TrackRail1 25 145.9934 1 0 503.9967 -6.75 22.5 -0.2012 -1.81

    TrackRail1 26 146 1 0 504.0033 -6.75 22.5 -0.2012 -1.81

    TrackRail1 27 154.9967 1 0 513 -6.75 22.5 -0.1782 -1.60

    TrackRail1 28 163.9934 1 0 521.9967 -6.75 22.5 -0.1552 -1.40

    TrackRail1 29 164 1 0 522.0033 -6.75 22.5 -0.1552 -1.40

    TrackRail1 30 172.9967 1 0 531 -6.75 22.5 -0.1359 -1.22

    TrackRail1 31 181.9934 1 0 539.9967 -6.75 22.5 -0.1166 -1.05

    TrackRail1 32 182 1 0 540.0033 -6.75 22.5 -0.1166 -1.05

    TrackRail1 33 190.9967 1 0 549 -6.75 22.5 -0.0987 -0.89

    TrackRail1 34 199.9934 1 0 557.9967 -6.75 22.5 -0.0808 -0.73

    TrackRail1 35 200 1 0 558.0033 -6.75 22.5 -0.0808 -0.73

    TrackRail1 36 208.9967 1 0 567 -6.75 22.5 -0.0615 -0.55

    TrackRail1 37 217.9934 1 0 575.9967 -6.75 22.5 -0.0423 -0.38

    Page C-8

  • Single truss model with moving loads (Lateral and Gravity):

    See sketch below for a graphic representation of the models used in this analysis.

    A single bridge truss (T2) is analyzed. The truss is modeled as simple supported on 4 points

    (corresponding to 2 supports on each pier). Only the portion of pipe within the length of Truss

    T2 is modeled. The pipe is fixed at either ends above the pier to represent the effective restrain

    from a continuation of the pipe. This single truss model does not fully represent the behaviors

    of the full bridge, but rather serves as an approximate of the local behavior of the truss-pipe

    interaction under relatively small lateral loading. Note that the temporary seismic load is

    estimated to be 10% of the seismic weight, which is much less than the lateral demands in a

    MCE earthquake. The displacement of the isolators shall be much smaller than the MCE

    displacement and the isolators effective stiffness is higher. Laterally fixed truss supports and

    fixed pipe restrains are thus judged to be appropriate for such an approximation purpose.

    Above the location of the expansion joint, the top truss diagonal members (2 total) are

    removed to represent the temporary structure condition.

    Single Truss Model

    Page C-9

  • Two Single Truss Models are created for different stages of construction:

    Model A: Hinged Pipe with Full Water Mass

    At the expansion joint, the pipe is modeled as a hinge, where shears but no moments

    are transferred to the other side of the joint. Mass of water completely fulfilling the

    pipe is modeled -- 10% water weight contributing the temporary seismic demand

    together with the rest of the structural weight.

    Model B: Open Pipe with No Water Mass

    At the expansion joint, the pipe is open, where neither shears nor moments are

    transferred to the other side of the joint. No mass of water in the pipe is modeled

    only the weight of the structure is taken into consideration.

    Since SAP2000 program does not handle horizontal moving load, the lateral Trolley Rail loading

    on the truss is explicitly modeled as point loads at a few representing locations. The

    overturning effect due to the center of mass above the top truss is also considered.

    Temporary seismic in transverse direction (Y-Y direction)

    Lateral Shear = 9 kips x 0.1 = 0.9 kips (applied as two 0.45 kips point loads in each case)

    Overturning = 9 kips x 0.1 x (H/B) = 0.5 kips (applied as up and down point loads in

    each case).

    Temporary seismic in longitudinal direction (X-X direction)

    Lateral Shear = 9 kips x 0.1 = 0.9 kips (applied as four 0.23 kips point loads in each case)

    Overturning = 9/2 kips x 0.1 x (H/B) = 0.13 kips (applied as up and down point loads in

    each case).

    Page C-10

  • Y-Y Location 1 Y-Y Location 2

    Y-Y Location 3 Y-Y Location 4

    Y-Y Location 5

    Moving Lateral Load (Transverse Direction) Modeled as Point Loads at Critical Locations

    Page C-11

  • X-X Location 1 X-X Location 2

    Moving Lateral Load (Longitudinal Direction) Modeled as Point Loads at Critical Locations

    Model A:

    1. Max lateral drift at frames adjacent to expansion joint

    Lateral Drift Ratio 1

    Lateral Drift Ratio 2

    Page C-12

  • Drift Ratio 1 (see sketch above for definition)

    Max drift ratio 1 = 0.05% very small, negligible

    Drift Ratio 2 (see sketch above for definition)

    Max drift ratio 2 = 0.02% very small, negligible

    TABLE: Joint Displacements

    Joint OutputCase CaseType U1 U2 U3 R1 R2 R3 D(U2) Drift Ratio

    Text Text Text ft ft ft Radians Radians Radians ft %

    224 10%Lateral + Moving Y Loc 1 Combination -0.000592 0.004804 0.001424 -0.000187 0.000038 -0.000144 0.007896 0.05%

    224 10%Lateral + Moving Y Loc2 Combination -0.00059 0.004804 0.001428 -0.000187 0.000038 -0.000144 0.007933 0.05%

    224 10%Lateral + Moving Y Loc3 Combination -0.000588 0.0048 0.001439 -0.000189 0.000037 -0.000143 0.007984 0.05%

    224 10%Lateral + Moving Y Loc4 Combination -0.000586 0.004796 0.001411 -0.000185 0.000037 -0.000143 0.007817 0.05%

    224 10%Lateral + Moving Y Loc5 Combination -0.000583 0.004788 0.001392 -0.000182 0.000036 -0.000142 0.007658 0.05%

    324 10%Lateral + Moving Y Loc 1 Combination -0.000085 0.0127 0.001459 -0.000362 0.000031 -0.000235

    324 10%Lateral + Moving Y Loc2 Combination -0.000081 0.012737 0.001463 -0.000363 0.000031 -0.000231

    324 10%Lateral + Moving Y Loc3 Combination -0.00007 0.012784 0.001475 -0.000365 0.000032 -0.00023

    324 10%Lateral + Moving Y Loc4 Combination -0.000074 0.012613 0.001442 -0.000358 0.000031 -0.000223

    324 10%Lateral + Moving Y Loc5 Combination -0.000079 0.012446 0.001418 -0.000351 0.000031 -0.000213

    TABLE: Joint Displacements

    Joint OutputCase CaseType U1 U2 U3 R1 R2 R3 D(U2) Drift Ratio

    Text Text Text ft ft ft Radians Radians Radians ft %

    142 10%Lateral + Moving Y Loc 1 Combination -0.000445 0.002266 0.000527 -0.000132 0.000047 -0.000082 0.004206 0.02%

    142 10%Lateral + Moving Y Loc2 Combination -0.000444 0.002269 0.000531 -0.000133 0.000047 -0.000081 0.004248 0.02%

    142 10%Lateral + Moving Y Loc3 Combination -0.000443 0.002269 0.000538 -0.000134 0.000047 -0.000081 0.004287 0.02%

    142 10%Lateral + Moving Y Loc4 Combination -0.000442 0.002274 0.000533 -0.000136 0.000046 -0.000078 0.004488 0.02%

    142 10%Lateral + Moving Y Loc5 Combination -0.00044 0.002277 0.000534 -0.000139 0.000046 -0.000076 0.00468 0.02%

    264 10%Lateral + Moving Y Loc 1 Combination 0.000212 0.006472 0.000506 0.000053 0.000044 -0.000358

    264 10%Lateral + Moving Y Loc2 Combination 0.000214 0.006517 0.000509 0.000052 0.000045 -0.000359

    264 10%Lateral + Moving Y Loc3 Combination 0.000224 0.006556 0.000516 0.000052 0.000045 -0.000359

    264 10%Lateral + Moving Y Loc4 Combination 0.000211 0.006762 0.00051 0.000042 0.000044 -0.000335

    264 10%Lateral + Moving Y Loc5 Combination 0.000207 0.006957 0.00051 0.000036 0.000043 -0.000318

    Page C-13

  • 2. Bottom truss diagonals

    Bottom Diagonals in the Bay Directly under Expansion Joint

    Max Axial Load (compression) = 13.3 kips < Brace Capacity = 73.3 kips (Calc. pp. 302), OK.

    TABLE: Element Forces - Frames

    Frame Station OutputCase CaseType P V2 V3 T M2 M3

    Text ft Text Text Kip Kip Kip Kip-ft Kip-ft Kip-ft

    627 1.25 10%Lateral + (D+Water) + Y Loc1 Combination -0.932 -0.201 0.011 -0.0003098 0.0521 -0.7264

    627 12.4363 10%Lateral + (D+Water) + Y Loc1 Combination -0.932 -0.004515 0.011 -0.0003098 -0.0668 0.4252

    627 1.25 10%Lateral + (D+Water) + Y Loc2 Combination -0.93 -0.201 0.011 -0.0003106 0.0523 -0.7262

    627 12.4363 10%Lateral + (D+Water) + Y Loc2 Combination -0.93 -0.004488 0.011 -0.0003106 -0.0668 0.4251

    627 1.25 10%Lateral + (D+Water) + Y Loc3 Combination -0.932 -0.201 0.011 -0.0003111 0.0525 -0.7262

    627 12.4363 10%Lateral + (D+Water) + Y Loc3 Combination -0.932 -0.004477 0.011 -0.0003111 -0.067 0.425

    627 1.25 10%Lateral + (D+Water) + Y Loc4 Combination -0.957 -0.201 0.011 -0.0003137 0.0537 -0.7244

    627 12.4363 10%Lateral + (D+Water) + Y Loc4 Combination -0.957 -0.00431 0.011 -0.0003137 -0.0673 0.4249

    627 1.25 10%Lateral + (D+Water) + Y Loc5 Combination -0.987 -0.201 0.011 -0.0003164 0.0547 -0.7228

    627 12.4363 10%Lateral + (D+Water) + Y Loc5 Combination -0.987 -0.004147 0.011 -0.0003164 -0.0676 0.4247

    628 0.2917 10%Lateral + (D+Water) + Y Loc1 Combination -0.933 0.001253 0.00837 -0.0001005 0.0535 0.4262

    628 11.4779 10%Lateral + (D+Water) + Y Loc1 Combination -0.933 0.198 0.00837 -0.0001005 -0.0401 -0.6889

    628 0.2917 10%Lateral + (D+Water) + Y Loc2 Combination -0.931 0.001231 0.008363 -0.00009962 0.0535 0.4261

    628 11.4779 10%Lateral + (D+Water) + Y Loc2 Combination -0.931 0.198 0.008363 -0.00009962 -0.0401 -0.6888

    628 0.2917 10%Lateral + (D+Water) + Y Loc3 Combination -0.932 0.001223 0.008341 -0.00009884 0.0533 0.426

    628 11.4779 10%Lateral + (D+Water) + Y Loc3 Combination -0.932 0.198 0.008341 -0.00009884 -0.04 -0.6888

    628 0.2917 10%Lateral + (D+Water) + Y Loc4 Combination -0.957 0.001133 0.008307 -0.00009941 0.053 0.4259

    628 11.4779 10%Lateral + (D+Water) + Y Loc4 Combination -0.957 0.198 0.008307 -0.00009941 -0.04 -0.6879

    628 0.2917 10%Lateral + (D+Water) + Y Loc5 Combination -0.987 0.001037 0.008286 -0.00009973 0.0526 0.4257

    628 11.4779 10%Lateral + (D+Water) + Y Loc5 Combination -0.987 0.198 0.008286 -0.00009973 -0.0401 -0.6871

    641 1.25 10%Lateral + (D+Water) + Y Loc1 Combination -13.312 -0.21 -0.009097 0.0001664 -0.0409 -0.7717

    641 12.4363 10%Lateral + (D+Water) + Y Loc1 Combination -13.312 -0.013 -0.009097 0.0001664 0.0609 0.4725

    641 1.25 10%Lateral + (D+Water) + Y Loc2 Combination -13.314 -0.21 -0.009073 0.0001657 -0.0407 -0.7719

    641 12.4363 10%Lateral + (D+Water) + Y Loc2 Combination -13.314 -0.013 -0.009073 0.0001657 0.0608 0.4726

    641 1.25 10%Lateral + (D+Water) + Y Loc3 Combination -13.312 -0.21 -0.00904 0.0001651 -0.0405 -0.7719

    641 12.4363 10%Lateral + (D+Water) + Y Loc3 Combination -13.312 -0.013 -0.00904 0.0001651 0.0607 0.4727

    641 1.25 10%Lateral + (D+Water) + Y Loc4 Combination -13.287 -0.21 -0.008909 0.0001625 -0.0393 -0.7736

    641 12.4363 10%Lateral + (D+Water) + Y Loc4 Combination -13.287 -0.013 -0.008909 0.0001625 0.0603 0.4728

    641 1.25 10%Lateral + (D+Water) + Y Loc5 Combination -13.257 -0.21 -0.008789 0.0001598 -0.0383 -0.7753

    641 12.4363 10%Lateral + (D+Water) + Y Loc5 Combination -13.257 -0.013 -0.008789 0.0001598 0.06 0.473

    642 0.2917 10%Lateral + (D+Water) + Y Loc1 Combination -13.311 0.001979 -0.012 0.0001993 -0.0588 0.4755

    642 11.4779 10%Lateral + (D+Water) + Y Loc1 Combination -13.311 0.199 -0.012 0.0001993 0.0755 -0.6478

    642 0.2917 10%Lateral + (D+Water) + Y Loc2 Combination -13.313 0.002001 -0.012 0.0002001 -0.0589 0.4756

    642 11.4779 10%Lateral + (D+Water) + Y Loc2 Combination -13.313 0.199 -0.012 0.0002001 0.0755 -0.648

    642 0.2917 10%Lateral + (D+Water) + Y Loc3 Combination -13.311 0.002008 -0.012 0.0002009 -0.059 0.4757

    642 11.4779 10%Lateral + (D+Water) + Y Loc3 Combination -13.311 0.199 -0.012 0.0002009 0.0756 -0.648

    642 0.2917 10%Lateral + (D+Water) + Y Loc4 Combination -13.286 0.002099 -0.012 0.0002003 -0.0594 0.4758

    642 11.4779 10%Lateral + (D+Water) + Y Loc4 Combination -13.286 0.199 -0.012 0.0002003 0.0756 -0.6488

    642 0.2917 10%Lateral + (D+Water) + Y Loc5 Combination -13.256 0.002194 -0.012 0.0002 -0.0597 0.476

    642 11.4779 10%Lateral + (D+Water) + Y Loc5 Combination -13.256 0.199 -0.012 0.0002 0.0755 -0.6497

    Page C-14

  • Bottom Diagonals in the End Bay

    Max Axial Load (compression) = 14.8 kips < Brace Capacity = 73.3 kips (Calc. pp. 302), OK.

    TABLE: Element Forces - Frames

    Frame Station OutputCase CaseType P V2 V3 T M2 M3

    Text ft Text Text Kip Kip Kip Kip-ft Kip-ft Kip-ft

    625 1.25 10%Lateral + (D+Water) + Y Loc1 Combination 0.266 -0.202 0.004869 -0.0001853 0.0066 -0.7272

    625 12.4363 10%Lateral + (D+Water) + Y Loc1 Combination 0.266 -0.004884 0.004869 -0.0001853 -0.0479 0.4286

    625 1.25 10%Lateral + (D+Water) + Y Loc2 Combination 0.279 -0.202 0.004749 -0.0001856 0.0056 -0.7271

    625 12.4363 10%Lateral + (D+Water) + Y Loc2 Combination 0.279 -0.004878 0.004749 -0.0001856 -0.0475 0.4286

    625 1.25 10%Lateral + (D+Water) + Y Loc3 Combination 0.285 -0.202 0.00464 -0.0001859 0.0047 -0.7271

    625 12.4363 10%Lateral + (D+Water) + Y Loc3 Combination 0.285 -0.004874 0.00464 -0.0001859 -0.0472 0.4285

    625 1.25 10%Lateral + (D+Water) + Y Loc4 Combination 0.31 -0.202 0.003995 -0.0001877 -0.00053 -0.7267

    625 12.4363 10%Lateral + (D+Water) + Y Loc4 Combination 0.31 -0.00486 0.003995 -0.0001877 -0.0452 0.4288

    625 1.25 10%Lateral + (D+Water) + Y Loc5 Combination 0.329 -0.202 0.003395 -0.0001894 -0.0054 -0.7264

    625 12.4363 10%Lateral + (D+Water) + Y Loc5 Combination 0.329 -0.004855 0.003395 -0.0001894 -0.0434 0.429

    626 0.2917 10%Lateral + (D+Water) + Y Loc1 Combination 0.227 0.00919 0.026 -0.0001418 0.1574 0.4275

    626 11.4779 10%Lateral + (D+Water) + Y Loc1 Combination 0.227 0.206 0.026 -0.0001418 -0.1336 -0.7764

    626 0.2917 10%Lateral + (D+Water) + Y Loc2 Combination 0.24 0.00923 0.026 -0.0001412 0.1578 0.4275

    626 11.4779 10%Lateral + (D+Water) + Y Loc2 Combination 0.24 0.206 0.026 -0.0001412 -0.134 -0.7769

    626 0.2917 10%Lateral + (D+Water) + Y Loc3 Combination 0.247 0.009256 0.026 -0.0001408 0.1581 0.4274

    626 11.4779 10%Lateral + (D+Water) + Y Loc3 Combination 0.247 0.206 0.026 -0.0001408 -0.1343 -0.7773

    626 0.2917 10%Lateral + (D+Water) + Y Loc4 Combination 0.27 0.00936 0.027 -0.0001377 0.1602 0.4277

    626 11.4779 10%Lateral + (D+Water) + Y Loc4 Combination 0.27 0.206 0.027 -0.0001377 -0.1364 -0.7782

    626 0.2917 10%Lateral + (D+Water) + Y Loc5 Combination 0.288 0.009469 0.027 -0.0001346 0.1621 0.4279

    626 11.4779 10%Lateral + (D+Water) + Y Loc5 Combination 0.288 0.206 0.027 -0.0001346 -0.1383 -0.7792

    639 1.25 10%Lateral + (D+Water) + Y Loc1 Combination -14.787 -0.204 -0.043 0.0001058 -0.3054 -0.7475

    639 12.4363 10%Lateral + (D+Water) + Y Loc1 Combination -14.787 -0.006784 -0.043 0.0001058 0.1717 0.4295

    639 1.25 10%Lateral + (D+Water) + Y Loc2 Combination -14.8 -0.204 -0.043 0.0001055 -0.3064 -0.7476

    639 12.4363 10%Lateral + (D+Water) + Y Loc2 Combination -14.8 -0.00679 -0.043 0.0001055 0.172 0.4295

    639 1.25 10%Lateral + (D+Water) + Y Loc3 Combination -14.807 -0.204 -0.043 0.0001052 -0.3073 -0.7476

    639 12.4363 10%Lateral + (D+Water) + Y Loc3 Combination -14.807 -0.006795 -0.043 0.0001052 0.1724 0.4296

    639 1.25 10%Lateral + (D+Water) + Y Loc4 Combination -14.832 -0.204 -0.044 0.0001034 -0.3125 -0.748

    639 12.4363 10%Lateral + (D+Water) + Y Loc4 Combination -14.832 -0.006808 -0.044 0.0001034 0.1743 0.4293

    639 1.25 10%Lateral + (D+Water) + Y Loc5 Combination -14.851 -0.204 -0.044 0.0001017 -0.3174 -0.7483

    639 12.4363 10%Lateral + (D+Water) + Y Loc5 Combination -14.851 -0.006813 -0.044 0.0001017 0.1762 0.4291

    640 0.2917 10%Lateral + (D+Water) + Y Loc1 Combination -14.763 -0.000325 -0.0079 0.0002847 -0.0278 0.4315

    640 11.4779 10%Lateral + (D+Water) + Y Loc1 Combination -14.763 0.197 -0.0079 0.0002847 0.0605 -0.666

    640 0.2917 10%Lateral + (D+Water) + Y Loc2 Combination -14.776 -0.000365 -0.007836 0.0002853 -0.0275 0.4315

    640 11.4779 10%Lateral + (D+Water) + Y Loc2 Combination -14.776 0.197 -0.007836 0.0002853 0.0602 -0.6655

    640 0.2917 10%Lateral + (D+Water) + Y Loc3 Combination -14.782 -0.00039 -0.007776 0.0002857 -0.0271 0.4316

    640 11.4779 10%Lateral + (D+Water) + Y Loc3 Combination -14.782 0.196 -0.007776 0.0002857 0.0598 -0.6652

    640 0.2917 10%Lateral + (D+Water) + Y Loc4 Combination -14.806 -0.000495 -0.007411 0.0002888 -0.0251 0.4314

    640 11.4779 10%Lateral + (D+Water) + Y Loc4 Combination -14.806 0.196 -0.007411 0.0002888 0.0578 -0.6643

    640 0.2917 10%Lateral + (D+Water) + Y Loc5 Combination -14.824 -0.000604 -0.007071 0.0002919 -0.0232 0.4312

    640 11.4779 10%Lateral + (D+Water) + Y Loc5 Combination -14.824 0.196 -0.007071 0.0002919 0.0559 -0.6632

    Page C-15

  • Bottom Diagonals in the Interior Bay Adjacent to Expansion Joint

    Max Axial Load (compression) = 7.5 kips < Brace Capacity = 73.3 kips (Calc. pp. 302), OK.

    TABLE: Element Forces - Frames

    Frame Station OutputCase CaseType P V2 V3 T M2 M3

    Text ft Text Text Kip Kip Kip Kip-ft Kip-ft Kip-ft

    629 1.25 10%Lateral + (D+Water) + Y Loc1 Combination 9.488 -0.205 -0.001547 -0.0003116 -0.0196 -0.7201

    629 12.4363 10%Lateral + (D+Water) + Y Loc1 Combination 9.488 -0.007669 -0.001547 -0.0003116 -0.0023 0.4668

    629 1.25 10%Lateral + (D+Water) + Y Loc2 Combination 9.491 -0.205 -0.001539 -0.0003122 -0.0195 -0.7197

    629 12.4363 10%Lateral + (D+Water) + Y Loc2 Combination 9.491 -0.007654 -0.001539 -0.0003122 -0.0023 0.4671

    629 1.25 10%Lateral + (D+Water) + Y Loc3 Combination 9.5 -0.205 -0.001542 -0.0003128 -0.0195 -0.7194

    629 12.4363 10%Lateral + (D+Water) + Y Loc3 Combination 9.5 -0.007637 -0.001542 -0.0003128 -0.0023 0.4672

    629 1.25 10%Lateral + (D+Water) + Y Loc4 Combination 9.463 -0.204 -0.001534 -0.0003109 -0.0195 -0.7191

    629 12.4363 10%Lateral + (D+Water) + Y Loc4 Combination 9.463 -0.007572 -0.001534 -0.0003109 -0.0023 0.4667

    629 1.25 10%Lateral + (D+Water) + Y Loc5 Combination 9.43 -0.204 -0.001509 -0.0003091 -0.0192 -0.7188

    629 12.4363 10%Lateral + (D+Water) + Y Loc5 Combination 9.43 -0.007497 -0.001509 -0.0003091 -0.0023 0.4662

    630 0.2917 10%Lateral + (D+Water) + Y Loc1 Combination 9.487 0.013 -0.007879 0.0001603 -0.033 0.4652

    630 11.4779 10%Lateral + (D+Water) + Y Loc1 Combination 9.487 0.21 -0.007879 0.0001603 0.0552 -0.7853

    630 0.2917 10%Lateral + (D+Water) + Y Loc2 Combination 9.491 0.013 -0.007882 0.0001598 -0.033 0.4654

    630 11.4779 10%Lateral + (D+Water) + Y Loc2 Combination 9.491 0.21 -0.007882 0.0001598 0.0552 -0.7851

    630 0.2917 10%Lateral + (D+Water) + Y Loc3 Combination 9.499 0.013 -0.007878 0.0001594 -0.033 0.4655

    630 11.4779 10%Lateral + (D+Water) + Y Loc3 Combination 9.499 0.21 -0.007878 0.0001594 0.0551 -0.7848

    630 0.2917 10%Lateral + (D+Water) + Y Loc4 Combination 9.463 0.013 -0.007881 0.000155 -0.033 0.4651

    630 11.4779 10%Lateral + (D+Water) + Y Loc4 Combination 9.463 0.21 -0.007881 0.000155 0.0552 -0.7826

    630 0.2917 10%Lateral + (D+Water) + Y Loc5 Combination 9.43 0.013 -0.0079 0.0001502 -0.033 0.4646

    630 11.4779 10%Lateral + (D+Water) + Y Loc5 Combination 9.43 0.21 -0.0079 0.0001502 0.0553 -0.7802

    643 1.25 10%Lateral + (D+Water) + Y Loc1 Combination -7.453 -0.2 0.002948 0.0001841 0.011 -0.6973

    643 12.4363 10%Lateral + (D+Water) + Y Loc1 Combination -7.453 -0.002884 0.002948 0.0001841 -0.022 0.4362

    643 1.25 10%Lateral + (D+Water) + Y Loc2 Combination -7.456 -0.2 0.002956 0.0001836 0.0111 -0.6977

    643 12.4363 10%Lateral + (D+Water) + Y Loc2 Combination -7.456 -0.0029 0.002956 0.0001836 -0.022 0.4359

    643 1.25 10%Lateral + (D+Water) + Y Loc3 Combination -7.464 -0.2 0.002954 0.000183 0.011 -0.698

    643 12.4363 10%Lateral + (D+Water) + Y Loc3 Combination -7.464 -0.002917 0.002954 0.000183 -0.022 0.4358

    643 1.25 10%Lateral + (D+Water) + Y Loc4 Combination -7.428 -0.2 0.002961 0.0001849 0.0111 -0.6982

    643 12.4363 10%Lateral + (D+Water) + Y Loc4 Combination -7.428 -0.002981 0.002961 0.0001849 -0.022 0.4363

    643 1.25 10%Lateral + (D+Water) + Y Loc5 Combination -7.395 -0.2 0.002986 0.0001867 0.0114 -0.6985

    643 12.4363 10%Lateral + (D+Water) + Y Loc5 Combination -7.395 -0.003057 0.002986 0.0001867 -0.022 0.4368

    644 0.2917 10%Lateral + (D+Water) + Y Loc1 Combination -7.455 -0.003369 -0.000164 0.0001493 0.0106 0.4375

    644 11.4779 10%Lateral + (D+Water) + Y Loc1 Combination -7.455 0.194 -0.000164 0.0001493 0.0125 -0.626

    644 0.2917 10%Lateral + (D+Water) + Y Loc2 Combination -7.459 -0.003368 -0.000168 0.0001488 0.0106 0.4373

    644 11.4779 10%Lateral + (D+Water) + Y Loc2 Combination -7.459 0.194 -0.000168 0.0001488 0.0125 -0.6262

    644 0.2917 10%Lateral + (D+Water) + Y Loc3 Combination -7.467 -0.003352 -0.000163 0.0001485 0.0106 0.4371

    644 11.4779 10%Lateral + (D+Water) + Y Loc3 Combination -7.467 0.194 -0.000163 0.0001485 0.0124 -0.6265

    644 0.2917 10%Lateral + (D+Water) + Y Loc4 Combination -7.431 -0.003118 -0.000166 0.0001441 0.0106 0.4376

    644 11.4779 10%Lateral + (D+Water) + Y Loc4 Combination -7.431 0.194 -0.000166 0.0001441 0.0125 -0.6287

    644 0.2917 10%Lateral + (D+Water) + Y Loc5 Combination -7.397 -0.002856 -0.000185 0.0001392 0.0106 0.4381

    644 11.4779 10%Lateral + (D+Water) + Y Loc5 Combination -7.397 0.194 -0.000185 0.0001392 0.0126 -0.6311

    Page C-16

  • 3. Bottom truss chords

    Bottom Chord in the Bay Directly under Expansion Joint

    Max Axial Load (compression) = 70.9 kips < Member (2C15x33.9_SD) Capacity = 501 kips (Calc.

    pp. 299), OK.

    TABLE: Element Forces - Frames

    Frame Station OutputCase CaseType P V2 V3 T M2 M3

    Text ft Text Text Kip Kip Kip Kip-ft Kip-ft Kip-ft

    151 0.8333 10%Lateral + (D+Water) + Y Loc1 Combination -61.478 -0.768 0.077 0.0009852 1.0094 -4.4066

    151 17.1667 10%Lateral + (D+Water) + Y Loc1 Combination -61.478 0.344 0.077 0.0009852 -0.2508 -0.9479

    151 0.8333 10%Lateral + (D+Water) + Y Loc2 Combination -61.512 -0.767 0.079 0.000984 1.0224 -4.4056

    151 17.1667 10%Lateral + (D+Water) + Y Loc2 Combination -61.512 0.345 0.079 0.000984 -0.2614 -0.963

    151 0.8333 10%Lateral + (D+Water) + Y Loc3 Combination -61.556 -0.766 0.079 0.0009873 1.0327 -4.4055

    151 17.1667 10%Lateral + (D+Water) + Y Loc3 Combination -61.556 0.346 0.079 0.0009873 -0.2654 -0.9752

    151 0.8333 10%Lateral + (D+Water) + Y Loc4 Combination -61.585 -0.768 0.086 0.0009419 1.1048 -4.4206

    151 17.1667 10%Lateral + (D+Water) + Y Loc4 Combination -61.585 0.344 0.086 0.0009419 -0.3054 -0.9585

    151 0.8333 10%Lateral + (D+Water) + Y Loc5 Combination -61.625 -0.769 0.093 0.0009006 1.1726 -4.4353

    151 17.1667 10%Lateral + (D+Water) + Y Loc5 Combination -61.625 0.342 0.093 0.0009006 -0.348 -0.9478

    379 0.8333 10%Lateral + (D+Water) + Y Loc1 Combination -70.873 -0.843 0.283 -0.0001667 3.0506 -4.9024

    379 17.1667 10%Lateral + (D+Water) + Y Loc1 Combination -70.873 0.268 0.283 -0.0001667 -1.5743 -0.2085

    379 0.8333 10%Lateral + (D+Water) + Y Loc2 Combination -70.839 -0.844 0.285 -0.0001679 3.0636 -4.9034

    379 17.1667 10%Lateral + (D+Water) + Y Loc2 Combination -70.839 0.267 0.285 -0.0001679 -1.5849 -0.1934

    379 0.8333 10%Lateral + (D+Water) + Y Loc3 Combination -70.795 -0.845 0.285 -0.0001646 3.074 -4.9035

    379 17.1667 10%Lateral + (D+Water) + Y Loc3 Combination -70.795 0.267 0.285 -0.0001646 -1.5889 -0.1812

    379 0.8333 10%Lateral + (D+Water) + Y Loc4 Combination -70.765 -0.843 0.292 -0.0002101 3.146 -4.8884

    379 17.1667 10%Lateral + (D+Water) + Y Loc4 Combination -70.765 0.269 0.292 -0.0002101 -1.629 -0.1979

    379 0.8333 10%Lateral + (D+Water) + Y Loc5 Combination -70.726 -0.841 0.299 -0.0002514 3.2138 -4.8737

    379 17.1667 10%Lateral + (D+Water) + Y Loc5 Combination -70.726 0.27 0.299 -0.0002514 -1.6715 -0.2086

    Page C-17

  • Bottom Chord in End Bay

    Max Axial Load (compression) = 80.3 kips < Member (2C15x33.9_SD) Capacity = 501 kips (Calc.

    pp. 299), OK.

    TABLE: Element Forces - Frames

    Frame Station OutputCase CaseType P V2 V3 T M2 M3

    Text ft Text Text Kip Kip Kip Kip-ft Kip-ft Kip-ft

    150 0.8333 10%Lateral + (D+Water) + Y Loc1 Combination -51.921 -0.453 -0.118 0.0013 -1.0322 -2.3322

    150 17.1667 10%Lateral + (D+Water) + Y Loc1 Combination -51.921 0.658 -0.118 0.0013 0.8895 -4.0053

    150 0.8333 10%Lateral + (D+Water) + Y Loc2 Combination -51.945 -0.453 -0.122 0.0013 -1.0863 -2.3297

    150 17.1667 10%Lateral + (D+Water) + Y Loc2 Combination -51.945 0.658 -0.122 0.0013 0.9016 -4.0041

    150 0.8333 10%Lateral + (D+Water) + Y Loc3 Combination -51.987 -0.453 -0.125 0.0013 -1.137 -2.3285

    150 17.1667 10%Lateral + (D+Water) + Y Loc3 Combination -51.987 0.658 -0.125 0.0013 0.911 -4.0038

    150 0.8333 10%Lateral + (D+Water) + Y Loc4 Combination -52.019 -0.452 -0.147 0.0013 -1.4248 -2.3286

    150 17.1667 10%Lateral + (D+Water) + Y Loc4 Combination -52.019 0.659 -0.147 0.0013 0.9787 -4.0183

    150 0.8333 10%Lateral + (D+Water) + Y Loc5 Combination -52.068 -0.452 -0.168 0.0013 -1.6958 -2.3296

    150 17.1667 10%Lateral + (D+Water) + Y Loc5 Combination -52.068 0.66 -0.168 0.0013 1.0425 -4.0324

    378 0.8333 10%Lateral + (D+Water) + Y Loc1 Combination -80.315 -0.461 -0.841 0.0001988 -11.0793 -2.9232

    378 17.1667 10%Lateral + (D+Water) + Y Loc1 Combination -80.315 0.651 -0.841 0.0001988 2.665 -4.4773

    378 0.8333 10%Lateral + (D+Water) + Y Loc2 Combination -80.292 -0.461 -0.846 0.0002046 -11.1335 -2.9256

    378 17.1667 10%Lateral + (D+Water) + Y Loc2 Combination -80.292 0.651 -0.846 0.0002046 2.6771 -4.4786

    378 0.8333 10%Lateral + (D+Water) + Y Loc3 Combination -80.25 -0.461 -0.849 0.0002123 -11.1842 -2.9268

    378 17.1667 10%Lateral + (D+Water) + Y Loc3 Combination -80.25 0.651 -0.849 0.0002123 2.6865 -4.4789

    378 0.8333 10%Lateral + (D+Water) + Y Loc4 Combination -80.218 -0.462 -0.871 0.0002186 -11.4719 -2.9267

    378 17.1667 10%Lateral + (D+Water) + Y Loc4 Combination -80.218 0.65 -0.871 0.0002186 2.7542 -4.4644

    378 0.8333 10%Lateral + (D+Water) + Y Loc5 Combination -80.169 -0.463 -0.891 0.0002304 -11.7429 -2.9257

    378 17.1667 10%Lateral + (D+Water) + Y Loc5 Combination -80.169 0.649 -0.891 0.0002304 2.818 -4.4503

    Page C-18

  • 4. Frame columns

    Critical Frame Column 1 (See sketch above for definition)

    Pu = 100.3 kips, Mu = 22 k-ft.

    Member W14x82, Capacity Pn = 386 kips (Calc pp. 299), Mn = 297 k-ft, D/C = 0.33 < 1, OK.

    TABLE: Element Forces - Frames

    Frame Station OutputCase CaseType P V2 V3 T M2 M3

    Text ft Text Text Kip Kip Kip Kip-ft Kip-ft Kip-ft

    432 0.625 10%Lateral + (D+Water) + Y Loc1 Combination -97.325 -0.92 0.528 -0.0017 5.3084 -6.1106

    432 16.5 10%Lateral + (D+Water) + Y Loc1 Combination -96.015 -0.92 0.528 -0.0017 -3.0665 8.4932

    432 0.625 10%Lateral + (D+Water) + Y Loc2 Combination -97.29 -0.929 0.528 -0.0016 5.3143 -6.1836

    432 16.5 10%Lateral + (D+Water) + Y Loc2 Combination -95.98 -0.929 0.528 -0.0016 -3.0699 8.5612

    432 0.625 10%Lateral + (D+Water) + Y Loc3 Combination -97.269 -0.938 0.529 -0.0016 5.3208 -6.2589

    432 16.5 10%Lateral + (D+Water) + Y Loc3 Combination -95.959 -0.938 0.529 -0.0016 -3.0737 8.6313

    432 0.625 10%Lateral + (D+Water) + Y Loc4 Combination -97.47 -0.905 0.529 -0.0015 5.3245 -5.9645

    432 16.5 10%Lateral + (D+Water) + Y Loc4 Combination -96.16 -0.905 0.529 -0.0015 -3.0753 8.403

    432 0.625 10%Lateral + (D+Water) + Y Loc5 Combination -97.682 -0.869 0.529 -0.0013 5.3272 -5.6371

    432 16.5 10%Lateral + (D+Water) + Y Loc5 Combination -96.373 -0.869 0.529 -0.0013 -3.0763 8.1528

    434 0.625 10%Lateral + (D+Water) + Y Loc1 Combination -100.242 -2.181 0.539 -0.0026 5.4236 -21.8638

    434 16.5 10%Lateral + (D+Water) + Y Loc1 Combination -98.932 -2.181 0.539 -0.0026 -3.1323 12.7542

    434 0.625 10%Lateral + (D+Water) + Y Loc2 Combination -100.276 -2.19 0.538 -0.0025 5.4176 -21.9369

    434 16.5 10%Lateral + (D+Water) + Y Loc2 Combination -98.967 -2.19 0.538 -0.0025 -3.1289 12.8221

    434 0.625 10%Lateral + (D+Water) + Y Loc3 Combination -100.297 -2.199 0.538 -0.0025 5.4112 -22.0121

    434 16.5 10%Lateral + (D+Water) + Y Loc3 Combination -98.988 -2.199 0.538 -0.0025 -3.1251 12.8922

    434 0.625 10%Lateral + (D+Water) + Y Loc4 Combination -100.096 -2.166 0.537 -0.0023 5.4075 -21.7178

    434 16.5 10%Lateral + (D+Water) + Y Loc4 Combination -98.787 -2.166 0.537 -0.0023 -3.1235 12.664

    434 0.625 10%Lateral + (D+Water) + Y Loc5 Combination -99.884 -2.129 0.537 -0.0021 5.4048 -21.3903

    434 16.5 10%Lateral + (D+Water) + Y Loc5 Combination -98.574 -2.129 0.537 -0.0021 -3.1225 12.4137

    Critical Frame Column 1

    Critical Frame Column 2

    Page C-19

  • Critical Frame Column 2 (See sketch above for definition)

    Pu = 180.1 kips, Mu = 36.2 k-ft (weak axis)

    Member 2C15x40+CapPl, Capacity Pn = 805 kips (Calc pp. 299), Mn = 398 k-ft, D/C = 0.30 < 1,

    OK.

    TABLE: Element Forces - Frames

    Frame Station OutputCase CaseType P V2 V3 T M2 M3

    Text ft Text Text Kip Kip Kip Kip-ft Kip-ft Kip-ft

    394 0 10%Lateral + (D+Water) + Y Loc1 Combination -152.803 -0.373 0.637 -0.0056 9.4393 3.4877

    394 12.8176 10%Lateral + (D+Water) + Y Loc1 Combination -151.602 0.587 0.637 -0.0056 1.275 2.1172

    394 0 10%Lateral + (D+Water) + Y Loc2 Combination -152.728 -0.374 0.658 -0.0056 9.5898 3.4853

    394 12.8176 10%Lateral + (D+Water) + Y Loc2 Combination -151.527 0.587 0.658 -0.0056 1.1587 2.1197

    394 0 10%Lateral + (D+Water) + Y Loc3 Combination -152.7 -0.374 0.677 -0.0056 9.7282 3.4842

    394 12.8176 10%Lateral + (D+Water) + Y Loc3 Combination -151.499 0.587 0.677 -0.0056 1.0525 2.1212

    394 0 10%Lateral + (D+Water) + Y Loc4 Combination -152.433 -0.373 0.783 -0.005 10.516 3.4849

    394 12.8176 10%Lateral + (D+Water) + Y Loc4 Combination -151.232 0.588 0.783 -0.005 0.4794 2.11

    394 0 10%Lateral + (D+Water) + Y Loc5 Combination -152.211 -0.372 0.883 -0.0048 11.2545 3.4866

    394 12.8176 10%Lateral + (D+Water) + Y Loc5 Combination -151.01 0.589 0.883 -0.0048 -0.0626 2.0986

    395 0 10%Lateral + (D+Water) + Y Loc1 Combination -179.993 -0.299 5.144 0.0058 30.5461 3.9974

    395 12.8176 10%Lateral + (D+Water) + Y Loc1 Combination -178.792 0.662 5.144 0.0058 -35.3929 1.6691

    395 0 10%Lateral + (D+Water) + Y Loc2 Combination -180.068 -0.298 5.165 0.0058 30.6966 3.9998

    395 12.8176 10%Lateral + (D+Water) + Y Loc2 Combination -178.867 0.662 5.165 0.0058 -35.5092 1.6666

    395 0 10%Lateral + (D+Water) + Y Loc3 Combination -180.096 -0.298 5.184 0.0058 30.8351 4.0009

    395 12.8176 10%Lateral + (D+Water) + Y Loc3 Combination -178.896 0.663 5.184 0.0058 -35.6153 1.6652

    395 0 10%Lateral + (D+Water) + Y Loc4 Combination -180.364 -0.299 5.29 0.0064 31.6228 4.0002

    395 12.8176 10%Lateral + (D+Water) + Y Loc4 Combination -179.163 0.662 5.29 0.0064 -36.1885 1.6764

    395 0 10%Lateral + (D+Water) + Y Loc5 Combination -180.585 -0.3 5.39 0.0066 32.3613 3.9985

    395 12.8176 10%Lateral + (D+Water) + Y Loc5 Combination -179.384 0.661 5.39 0.0066 -36.7304 1.6878

    Page C-20

  • Model B:

    1. Max lateral drift at frames adjacent to expansion joint

    Drift Ratio 1 (definition similar to Model A)

    Max drift ratio 1 = 0.04% very small, negligible

    Drift Ratio 2 (definition similar to Model A)

    Max drift ratio 2 = 0.02% very small, negligible

    TABLE: Joint Displacements

    Joint OutputCase CaseType U1 U2 U3 R1 R2 R3 D(U2) Drift Ratio

    Text Text Text ft ft ft Radians Radians Radians ft %

    224 10%Lateral + Moving Y Loc1 Combination -0.000249 0.004749 0.001381 -0.000174 0.00003 -0.000064 0.005867 0.04%

    224 10%Lateral + Moving Y Loc2 Combination -0.000247 0.004751 0.001385 -0.000175 0.000029 -0.000063 0.005904 0.04%

    224 10%Lateral + Moving Y Loc3 Combination -0.000245 0.004751 0.001396 -0.000176 0.000029 -0.000063 0.005954 0.04%

    224 10%Lateral + Moving Y Loc4 Combination -0.000242 0.004706 0.001362 -0.000172 0.000028 -0.000062 0.005793 0.04%

    224 10%Lateral + Moving Y Loc5 Combination -0.000239 0.004661 0.001339 -0.000169 0.000027 -0.000061 0.005639 0.03%

    324 10%Lateral + Moving Y Loc1 Combination 0.000135 0.010616 0.001411 -0.000279 0.000024 -0.000159

    324 10%Lateral + Moving Y Loc2 Combination 0.000139 0.010655 0.001416 -0.000281 0.000024 -0.000155

    324 10%Lateral + Moving Y Loc3 Combination 0.00015 0.010705 0.001428 -0.000283 0.000025 -0.000154

    324 10%Lateral + Moving Y Loc4 Combination 0.000145 0.010499 0.00139 -0.000275 0.000024 -0.000147

    324 10%Lateral + Moving Y Loc5 Combination 0.000139 0.0103 0.001361 -0.000268 0.000024 -0.000137

    TABLE: Joint Displacements

    Joint OutputCase CaseType U1 U2 U3 R1 R2 R3 D(U2) Drift Ratio

    Text Text Text ft ft ft Radians Radians Radians ft %

    142 10%Lateral + Moving Y Loc1 Combination -0.00031 0.002433 0.000631 -0.000122 0.000044 -0.000104 0.003423 0.02%

    142 10%Lateral + Moving Y Loc2 Combination -0.000309 0.002437 0.000635 -0.000124 0.000044 -0.000104 0.003464 0.02%

    142 10%Lateral + Moving Y Loc3 Combination -0.000308 0.002439 0.000642 -0.000125 0.000045 -0.000104 0.003503 0.02%

    142 10%Lateral + Moving Y Loc4 Combination -0.000305 0.002423 0.000634 -0.000127 0.000044 -0.0001 0.00371 0.02%

    142 10%Lateral + Moving Y Loc5 Combination -0.000302 0.002407 0.000633 -0.000129 0.000043 -0.000096 0.003906 0.02%

    264 10%Lateral + Moving Y Loc1 Combination 0.000384 0.005856 0.000611 0.000042 0.00004 -0.000288

    264 10%Lateral + Moving Y Loc2 Combination 0.000386 0.005901 0.000614 0.000042 0.000041 -0.00029

    264 10%Lateral + Moving Y Loc3 Combination 0.000396 0.005942 0.000622 0.000042 0.000041 -0.00029

    264 10%Lateral + Moving Y Loc4 Combination 0.000381 0.006133 0.000613 0.000032 0.00004 -0.000265

    264 10%Lateral + Moving Y Loc5 Combination 0.000375 0.006313 0.000611 0.000024 0.000038 -0.000247

    Page C-21

  • 2. Bottom truss diagonals

    Bottom Diagonals in the Bay Directly under Expansion Joint

    Max Axial Load (compression) = 8.9 kips < Brace Capacity = 73.3 kips (Calc. pp. 302), OK.

    TABLE: Element Forces - Frames

    Frame Station OutputCase CaseType P V2 V3 T M2 M3

    Text ft Text Text Kip Kip Kip Kip-ft Kip-ft Kip-ft

    627 1.25 10%Lateral + D + Y Loc1 Combination 4.712 -0.208 0.001816 -0.0002566 0.0041 -0.758

    627 12.4363 10%Lateral + D + Y Loc1 Combination 4.712 -0.011 0.001816 -0.0002566 -0.0162 0.4623

    627 1.25 10%Lateral + D + Y Loc2 Combination 4.718 -0.207 0.001838 -0.0002573 0.0043 -0.7578

    627 12.4363 10%Lateral + D + Y Loc2 Combination 4.718 -0.011 0.001838 -0.0002573 -0.0163 0.4622

    627 1.25 10%Lateral + D + Y Loc3 Combination 4.724 -0.207 0.001867 -0.0002578 0.0045 -0.7578

    627 12.4363 10%Lateral + D + Y Loc3 Combination 4.724 -0.011 0.001867 -0.0002578 -0.0164 0.4621

    627 1.25 10%Lateral + D + Y Loc4 Combination 4.626 -0.207 0.002037 -0.0002606 0.006 -0.7559

    627 12.4363 10%Lateral + D + Y Loc4 Combination 4.626 -0.01 0.002037 -0.0002606 -0.0168 0.462

    627 1.25 10%Lateral + D+ Y Loc5 Combination 4.531 -0.207 0.002192 -0.0002633 0.0073 -0.7542

    627 12.4363 10%Lateral + D+ Y Loc5 Combination 4.531 -0.01 0.002192 -0.0002633 -0.0172 0.4619

    628 0.2917 10%Lateral + D + Y Loc1 Combination 4.709 -0.003009 0.006481 -0.0001249 0.0297 0.4663

    628 11.4779 10%Lateral + D + Y Loc1 Combination 4.709 0.194 0.006481 -0.0001249 -0.0428 -0.6012

    628 0.2917 10%Lateral + D + Y Loc2 Combination 4.715 -0.003032 0.006476 -0.0001241 0.0296 0.4662

    628 11.4779 10%Lateral + D + Y Loc2 Combination 4.715 0.194 0.006476 -0.0001241 -0.0428 -0.601

    628 0.2917 10%Lateral + D + Y Loc3 Combination 4.721 -0.003041 0.006457 -0.0001233 0.0295 0.4661

    628 11.4779 10%Lateral + D + Y Loc3 Combination 4.721 0.194 0.006457 -0.0001233 -0.0428 -0.601

    628 0.2917 10%Lateral + D + Y Loc4 Combination 4.624 -0.003118 0.006397 -0.0001238 0.029 0.466

    628 11.4779 10%Lateral + D + Y Loc4 Combination 4.624 0.194 0.006397 -0.0001238 -0.0426 -0.6002

    628 0.2917 10%Lateral + D+ Y Loc5 Combination 4.529 -0.003202 0.006354 -0.000124 0.0286 0.4659

    628 11.4779 10%Lateral + D+ Y Loc5 Combination 4.529 0.194 0.006354 -0.000124 -0.0425 -0.5995

    641 1.25 10%Lateral + D + Y Loc1 Combination -8.847 -0.213 -0.00404 0.000147 -0.0233 -0.7823

    641 12.4363 10%Lateral + D + Y Loc1 Combination -8.847 -0.016 -0.00404 0.000147 0.0219 0.4957

    641 1.25 10%Lateral + D + Y Loc2 Combination -8.853 -0.213 -0.004018 0.0001463 -0.0232 -0.7825

    641 12.4363 10%Lateral + D + Y Loc2 Combination -8.853 -0.016 -0.004018 0.0001463 0.0218 0.4958

    641 1.25 10%Lateral + D + Y Loc3 Combination -8.859 -0.213 -0.003989 0.0001458 -0.023 -0.7825

    641 12.4363 10%Lateral + D + Y Loc3 Combination -8.859 -0.016 -0.003989 0.0001458 0.0217 0.4959

    641 1.25 10%Lateral + D + Y Loc4 Combination -8.761 -0.213 -0.003819 0.0001431 -0.0215 -0.7844

    641 12.4363 10%Lateral + D + Y Loc4 Combination -8.761 -0.016 -0.003819 0.0001431 0.0212 0.496

    641 1.25 10%Lateral + D+ Y Loc5 Combination -8.666 -0.213 -0.003665 0.0001403 -0.0201 -0.7861

    641 12.4363 10%Lateral + D+ Y Loc5 Combination -8.666 -0.016 -0.003665 0.0001403 0.0209 0.4961

    642 0.2917 10%Lateral + D + Y Loc1 Combination -8.839 -0.002913 -0.004596 0.000204 -0.0239 0.5011

    642 11.4779 10%Lateral + D + Y Loc1 Combination -8.839 0.194 -0.004596 0.000204 0.0275 -0.5675

    642 0.2917 10%Lateral + D + Y Loc2 Combination -8.845 -0.002891 -0.004601 0.0002048 -0.024 0.5012

    642 11.4779 10%Lateral + D + Y Loc2 Combination -8.845 0.194 -0.004601 0.0002048 0.0275 -0.5677

    642 0.2917 10%Lateral + D + Y Loc3 Combination -8.851 -0.002882 -0.00462 0.0002056 -0.0241 0.5013

    642 11.4779 10%Lateral + D + Y Loc3 Combination -8.851 0.194 -0.00462 0.0002056 0.0276 -0.5677

    642 0.2917 10%Lateral + D + Y Loc4 Combination -8.754 -0.002805 -0.00468 0.0002052 -0.0246 0.5013

    642 11.4779 10%Lateral + D + Y Loc4 Combination -8.754 0.194 -0.00468 0.0002052 0.0278 -0.5685

    642 0.2917 10%Lateral + D+ Y Loc5 Combination -8.659 -0.002721 -0.004724 0.0002049 -0.025 0.5015

    642 11.4779 10%Lateral + D+ Y Loc5 Combination -8.659 0.194 -0.004724 0.0002049 0.0279 -0.5692

    Page C-22

  • Bottom Diagonals in the End Bay

    Max Axial Load (compression) = 10.4 kips < Brace Capacity = 73.3 kips (Calc. pp. 302), OK.

    TABLE: Element Forces - Frames

    Frame Station OutputCase CaseType P V2 V3 T M2 M3

    Text ft Text Text Kip Kip Kip Kip-ft Kip-ft Kip-ft

    625 1.25 10%Lateral + D + Y Loc1 Combination 6.114 -0.202 -0.005564 -0.00004602 -0.0601 -0.7269

    625 12.4363 10%Lateral + D + Y Loc1 Combination 6.114 -0.005391 -0.005564 -0.00004602 0.0021 0.4345

    625 1.25 10%Lateral + D + Y Loc2 Combination 6.131 -0.202 -0.005686 -0.00004633 -0.0611 -0.7269

    625 12.4363 10%Lateral + D + Y Loc2 Combination 6.131 -0.005385 -0.005686 -0.00004633 0.0025 0.4345

    625 1.25 10%Lateral + D + Y Loc3 Combination 6.145 -0.202 -0.005797 -0.00004661 -0.0621 -0.7269

    625 12.4363 10%Lateral + D + Y Loc3 Combination 6.145 -0.00538 -0.005797 -0.00004661 0.0028 0.4344

    625 1.25