exercise of mechanical vibration (1-dof vibration ... · (2) find the natural angular frequency of...

22
Q1: Consider a balancer depicted below. Answer its equation of motion and natural angular frequency. The mass of the stick can be ignored and a small angle assumption is available: sin ≅ . Exercise of mechanical vibration (1-dof vibration (rotation) Basic Q2: A stick with a mass m is supported by a frictionless pin, around which the stick rotates. An end of the stick is connected to the wall by a spring. When ൌ0, its length is natural. Gravity force acts on the mass. Answer the equation of motion of the system about θ and the period of free vibration. m k Basic Q3: A pulley, which rotates around the center of mass, with a string hangs mass m. The mass moment of inertia of the pulley is denoted by I. There is no slippage between the pulley and string. The string is supported by a spring of coefficient k. Answer the period of free vibration of the system. m R k g Basic o Z Y X a b Q4: Consider a homogeneous stick of which volume can be negligible. Its lengths and mass are l and m, respectively. Answer its mass moment of inertia about the center O. Q5: Consider a rectangle plate made of a homogeneous material. Its thickness is small enough to be neglected. The mass and dimensions are m and 2a by 2b, respectively. X and Y axes are on the surface and along with its edges. Z axis is normal to the plate. Answer the mass moments of inertia about each of the three axes. Basic

Upload: others

Post on 30-May-2020

10 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Exercise of mechanical vibration (1-dof vibration ... · (2) Find the natural angular frequency of the pendulum, when 𝜃is small enough that small angle assumptions are available

Q1: Consider a balancer depicted below. Answer its equation of motion and natural angular frequency. The mass of the stick can be ignored and a small angle assumption is available: sin 𝜃 ≅ 𝜃.

𝑓 𝑓

Exercise of mechanical vibration (1-dof vibration (rotation)

Basic

Q2:  A stick with a mass m is supported by a frictionless pin, around which the stick rotates. An end of the stick is connected to the wall by a spring. When 𝜃 0, its length is natural. Gravity force acts on the mass. Answer the equation of motion of the system about θ and the period of free vibration.

m

𝑙𝑙

𝜃k

Basic

Q3: A pulley, which rotates around the center of mass, with a string hangs mass m. The mass moment of inertia of the pulley is denoted by I. There is no slippage between the pulley and string. The string is supported by a spring of coefficient k. Answer the period of free vibration of the system.

m

R

k

g

Basic

𝑙oZY

X

ab

Q4: Consider a homogeneous stick of which volume can be negligible. Its lengths and mass are l and m, respectively. Answer its mass moment of inertia about the center O.

Q5: Consider a rectangle plate made of a homogeneous material. Its thickness is small enough to be neglected. The mass and dimensions are m and 2a by 2b, respectively. X and Y axes are on the surface and along with its edges. Z axis is normal to the plate. Answer the mass moments of inertia about each of the three axes.

Basic

Page 2: Exercise of mechanical vibration (1-dof vibration ... · (2) Find the natural angular frequency of the pendulum, when 𝜃is small enough that small angle assumptions are available

Q6: A slender rod of mass m and length l, moves around a circular trackunder the influence of gravity. The small rollers at the ends of therod are confined to the circular track and roll without friction.Neglect the mass of the rollers. The radius of the track is r and 𝑙3𝑟. Find an equation of motion of the rod as a function of thecoordinate, θ, as shown in the figure.

𝜃

𝑙 3𝑟𝑟𝑟2Basic

Q7: A cuckoo clock pendulum consists of two pieces glued together:・ a slender rod of mass m1 and length l, and・ a circular disk of mass m2 and radius r, centered at the slenderrod’s midpoint.

The pendulum is attached at one end to a fixed pivot (center ofrotation), O. , as shown below. The gravity acts.a) Find the mass moment of inertia about O.b) Find the pendulum’s angular momentum about O.c) Find the equation of motion of the pendulum about θ.

Basic

θ

O

rl

m1

m2

Basic

Q8: Consider a pendulum made by a homogeneous plate. Its dimensionsare, a, b, and h as shown in the figure. The plate rotates around Ounder the gravity force, and small‐angle‐assumption applies. Thematerial density is ρ = m / (abh) as the mass and thickness of theplate are m and h, respectively. θ is 0 at the equilibrium position ofthe system.

(1) Obtain the plate’s mass moment of inertia about O.(2) Obtain the equation of motion in terms of θ.(3) Find the natural angular frequency of the pendulum.(4) Solve the rotational behavior of the object θ(t) with the initial

conditions 𝜃 0 𝜃 and 𝜃 0 0.(5) Solve the rotational behavior of the object with the initial

conditions 𝜃 0 0 and 𝜃 0 𝜔 .

Basic

Page 3: Exercise of mechanical vibration (1-dof vibration ... · (2) Find the natural angular frequency of the pendulum, when 𝜃is small enough that small angle assumptions are available

a θ

O

b/2b/2

Basic

Q9: Consider a homogenous plate of skewed T‐shape as is shown in thefigure. It is composed of two parts M1 and M2, each of which hasthe same dimensions and mass m.

(1) Obtain the mass moment of inertia about an axis passingthrough O.

(2) Obtain the centroid (center of gravity) of the plate using x and y.

Oa

bb/2

M1

M2

X

Y

Basic

Q10: Consider a cylinder that rolls without slipping. Let x = 0 denote therest position of the cylinder. The mass of the cylinder is m. Neglectthe mass of the spring. The mass moment of inertia of the cylinderis I.

Rk

φ

x

θ

Basic

(1) Obtain the equation of motion in terms of x.

(2) Determine the natural angular frequency of the cylinder.

(3) Let δ is the static deflection of the spring. Answer the kinetic and potential energy of the system.

(4) Suppose 𝑥 𝐴cos 𝑝𝑡 , answer the maximum kinetic and potential energy of the cylinder as well as the minimum potential energy.

(5) Solve 𝑇 𝑈 𝑈 for p to obtain the natural angular frequency of the cylinder.

Basic

Page 4: Exercise of mechanical vibration (1-dof vibration ... · (2) Find the natural angular frequency of the pendulum, when 𝜃is small enough that small angle assumptions are available

Q11:  As shown in the figure, one end of the spring of constant k is fixed to the wall. The other end hangs the mass of m through the a pulley. The radius and mass of the pulley are a and M, respectively. The pulley rotates smoothly around its fixed central axis and the mass vibrates along the vertical direction. The string does not slip on the pulley. x and θ are the displacement of the mass and the rotation angle of the pulley from their statistically equivalent position.

1) What is the moment of inertia of the pulley about its rotation axis?

2) When the displacement of the mass is x, answer tension Tusing x and k. Furthermore, answer the relation between x and θ.

Basic

x

MT

T’

T’Displacement from the statically equivalent position

θ

3) Answer the equation of motion about x. Use m, M, k, and a, and not T and T’.

4) Answer kinetic energy of K in this system.5) Answer potential energy of U in this system.6) By Lagrange’s method, answer the motion equation.

* Lagrange’s method is not the scope of mini quiz.

Basic

Q12:  Consider a disk with a handle. The disk rotates around its center, which is fixed to the ground. The length of the handle is l, and its width is negligibly small. Two ends of the disk are linked to the wall by springs of coefficient k. Answer the following problems.1) Mass of the disk and handle is m, for each. Answer the mass 

moment of inertia of the disk with a handle around the rotation axis.

2) Establish the equation of motion about θ.3) Answer the natural frequency of the disk.

θ

Radius r

Length l

Basic

Q13: Consider a thin circular disk of radius a and mass m. Answer the mass moment of inertia around axis Y.

X

Y d𝜃dr

rdrd𝜃a

Q14: Consider a cylinder of radius a and height l. Answer the mass moment of inertia around axis Y.

Y

Z

a

Basic

Page 5: Exercise of mechanical vibration (1-dof vibration ... · (2) Find the natural angular frequency of the pendulum, when 𝜃is small enough that small angle assumptions are available

Q15: A simplified model of a rack‐and‐pinion steering system is shown inthe figure. A gear of radius r and mass moment of inertia I isattached to a shaft of torsional stiffness kt, for which the restoringtorque is given by 𝜏 𝑘 Δ𝜃. The gear rolls without slip on therack of mass m. The rack is attached to a spring of coefficient k. x isthe horizontal displacement of the rack from the system’sequilibrium position.

k

x

Rack (m)

Pinion (I)

θ

Basic

(1) Derive the differential equation governing the motion of thesystem using x.

(2) Looking at the rack‐and‐pinion system as a 1‐DOF spring‐masssystem, the above equation is rewritten as 𝑚 𝑥 𝑘 𝑥 0.Answer the equivalent mass me and spring constant ke.

(3) Answer the kinetic energy of the system using x.(4) Answer the potential energy of the system using x.(5) Suppose 𝑥 𝐴cos 𝑝𝑡 , solve p based on the energy

conservation law.

Basic

mm

l

a a

R1: Consider a balancer that has two weights at each side and rotates around O. The weight of the stick is ignorable. Find the equation of motion of a balancer (やじろべえ) and its natural angular frequency p.

Given that θ≪ 1, sinθ ≂ θ and cosθ ≂ 1 – θ2/2

O

Intermediate

R2: When the arm of the balancer is circular, answer l such that the natural frequency becomes 1 Hz.

mm l

l

l

Intermediate

Page 6: Exercise of mechanical vibration (1-dof vibration ... · (2) Find the natural angular frequency of the pendulum, when 𝜃is small enough that small angle assumptions are available

R3: Consider the following system which consists of a disk of mass m andspring. The spring is fixed to the disk at its center of gravity, around whichthe disk rotates. The motion of the disk is constrained along x‐axis. Theslippage between the disk and ground does not occur. Mass moment ofthe disk is I.

rk

x

(1) Answer the equation of motion about x.

(2) Answer the kinetic energy of translation (Tt) and rotation (Tr) using 𝑥 and 𝜃, respectively.

(3) Answer the potential energy of the spring (U) using x.

(4) When 𝑥 =𝐴 cos 𝜔 𝑡, find the natural frequency of the system (𝜔 ) based on the relationship of T =𝑈 .

m

Intermediate

R4: 半径Rの円筒内で転がりながら微小振動をする質量m,半径r の円柱を考える.円筒は,滑らないものとする.(1)‐(4)の問いに答えよ.回答には,Φは用いてはならない.

(1) 並進の運動エネルギー𝑇 を求めよ.

(2) 円筒の慣性モーメントを I とするとき,円筒の回転の運動エネルギー𝑇 を求めよ.

(3) 位置エネルギーU を求めよ.θが十分

に小さいとし,cos 𝜃 1 の近似を

用いること.

(4) 𝜃=𝐴 cos 𝑝𝑡 として,円筒の最大角度𝜃 𝐴 であり,最大角速度 𝜔𝐴𝑝 となる.このとき,𝑇 𝑈 を 𝑝について解け.なお,𝑝 はこの系の固有角周波数である.

𝜃R 𝜙 r

出題: テキストの演習問題 2.8aIntermediate

R5: Figure (1) shows a simplified seesaw. The main plate is of length 2land mass M. Its width and thickness are small enough to be neglected. The supporting pivot O is at d from the plate. The gravity acceleration is g. Using the small inclination of the seesaw 𝜃, establish the equation of motion. Also, find the natural frequency.Furthermore, as is shown in Fig. (2), when a mass point is at 

each end, answer the equation of motion and the natural frequency.

𝜃d

ll

(1) 𝜃d

ll

(2)

m

mM M

Intermediate

R6: The inverted pendulum is connected by two springs as shown in the figure.  Assume small angles of vibration and neglect the rod mass. 

a) Derive the equation of motion of the system about 𝜃. 

b) What is the relation among 𝑙 , 𝑙 , 𝑚, and 𝑘 for the characteristic roots to include at least one positive real value?

c) Describe the behavior of the system when the characteristic roots include positive real values.

𝑚𝑘 𝑘𝑙𝑙 𝑙

𝜃

𝜃𝑔

Intermediate

Page 7: Exercise of mechanical vibration (1-dof vibration ... · (2) Find the natural angular frequency of the pendulum, when 𝜃is small enough that small angle assumptions are available

R7: A T‐shaped plate is made from two solid plates M1 and M2 ofuniform density. Their dimensions are shown in the figure. M1 andM2 have mass 2m and 2/3m, respectively. G1 and G2 are thecenters of mass of each plate.a) Find the location of the center of mass of the combined plate,

G12, which lies somewhere on the vertical line. Express it as adistance s measured from the top of the object.

b) Find the mass moment of inertia of the plate about its gravitycenter, G12.

M1

M2

a

b G1

G2

sG12

b

bIntermediate

R8: A grandpa accidentally dropped a rice ball (weight m, radius r), andit rolled on a curved surface of which radius was R. The rice ball did not slip on the surface. The angle of the rice ball is denoted by θ.

(1) Assume that the rice ball is a homogeneous sphere. Answer the moment of inertia of the rice ball around its centroid.

(2) Answer the equation of motion of the rice ball about θ.

(3) Using a small angle assumption (sinθ ~ θ), determine the natural frequency of the ball.

R

mg

θ

hr

Riceball

Intermediate

R9: The mass moment of inertia of a tire can be investigated by rolling it on a slope, i.e., release it from rest at a certain height. Answer what quantities and which formula should be used for calculating the mass moment of inertia. Note that the density of the tire is not disclosed.

θg

Intermediate

R10: A pendulum of length l and mass m is fixed to a pin on a rodrotating at a constant angular speed 𝜔. The pendulum rotatesaround the pin and its rotation angle is denoted by 𝜃. 𝜃 is smallenough 𝜃 0 when the pendulum aligns with the gravitationalacceleration.(1) Find the equation of 

motion about 𝜃.(2) Find the natural frequency 

of the pendulum when 𝜃 is small enough and the small‐angle approximation of trigonometric functions is available.

𝑙𝜃

𝜔Frictionlesspin

m𝑔

Intermediate

Page 8: Exercise of mechanical vibration (1-dof vibration ... · (2) Find the natural angular frequency of the pendulum, when 𝜃is small enough that small angle assumptions are available

R11: We calculate the natural frequency of a rocking chair. The base ofthis rocking chair is a circular arc, and its center of mass (m) moveson the x‐y plane as the chair rocks back and forth. The radius of thearc is R. The position of the center of mass is L from the bottom.The origin of the coordinate system lies at the contact pointbetween the arc and floor when 𝜃 0.(1) Express the coordinate (x and y) of the center of mass as a

function of 𝜃.(2) Find the kinetic energy of the center of mass.(3) From the principle of energy conservation, find

the natural frequency of the chair when θ issmall. Use g as the gravitational acceleration.

ロッキングチェアのような転がる振子を,転動振子(転がり振子)と呼ぶ.Intermediate

Rm

L

m

x

y

(x, y)𝜃

O O

Intermediate

R12: Consider a physical pendulum made of a homogeneous rod of which length and mass are l and m, respectively. The rod rotates about the frictionless pivot. The gravitational acceleration is g. The rotational angle of the rod is 𝜃, for which 𝜃 0 at its equilibrium position.

(1) Find the mass moment of inertia of the rod about the pivot.(2) Find the natural angular frequency of the pendulum, when 𝜃 is 

small enough that small angle assumptions are available.(3) Find the position of pivot d such that the natural angular 

frequency becomes maximum. d is the distance between the pivot and the centroid of the rod.

Intermediate

𝑙3

𝜃𝑔2𝑙3 𝑙2

𝑑 Distance between the pivot and the mass center of the rod.

Intermediate

Page 9: Exercise of mechanical vibration (1-dof vibration ... · (2) Find the natural angular frequency of the pendulum, when 𝜃is small enough that small angle assumptions are available

R13: Inertial mass damper. The mechanism in the figure realizes an effective mass significantly greater than the actual mass. When the displacement arises at the tip of the ball screw, it revolves the flywheel, of which radius is r, in the chamber. When the mass and mass moment of inertia of the flywheel are m and  1/2 𝑚𝑟 . Find the effective mass.

[Sugimoto et al., J. Struct. Constr. Eng., 2018]

rTorque: τ

Force: fDisplacement: x

Flywheel: I

Intermediate

(1) Ld is the displacement of the screw when it revolves 2𝜋 rad. Find the angular velocity 𝜃 of the flywheel when the velocity of the ball screw is 𝑥.

(2) Ld also determines the ratio of force f and torque 𝜏: 𝜏 𝑓. Find the relationship between f and 𝜃.

(3) Find the effective (apparent) mass by using following values: 𝐿 0.02 m, 𝑟 0.3 m, and 𝑚 1.0 kg.

Intermediate

S1: A rod of mass M and length 2a revolves around its frictionless center O. Thickness of the rod is small enough to be neglected. A weight m is attached at b from the center. The gravity force acts on the mass and rod, and they behave as a pendulum. Answer the following problems.(1) Answer the mass moment of 

inertia of the pendulum around O.

(2) Answer the centroid of the pendulum from O.

(3) Using a small angle assumption (sinθ ~ θ), determine the natural frequency of the pendulum.

(4) Determine b, such that the pendulum rotates most quickly.

O

a

am

b

M

g

大学院入試を解いてみよう! 名古屋大学 2018年外国人留学生試験

S2: Consider a cube made by solid bars of which lengths are l and masses are negligible. The mass points of m or 2m are distributed on the corners as in the figure. The origin O is set on one of the corners. Answer the following problems.(1) Find the center of mass of the cube.(2) Find the mass moment of inertia of the cube with respect to 

the X‐axis.(3) Find the mass moment of inertia about an axis passing through 

the center of mass and parallel to the X‐axis.(4) When the gravitational acceleration g acts on the masses in the 

negative Z direction, answer the moment vector about O.

大学院入試を解いてみよう! 名古屋大学 2018年外国人留学生試験

Page 10: Exercise of mechanical vibration (1-dof vibration ... · (2) Find the natural angular frequency of the pendulum, when 𝜃is small enough that small angle assumptions are available

X

Y

Z

2m

2m

2mm

m

l

l

l

O

大学院入試を解いてみよう! 名古屋大学 2018年外国人留学生試験

S3: Consider a mass particle and a stepped cylinder wound by masslesscables. Their motions are linear along the Z‐axis. A gravitationalforce is acting in the downward direction, and the acceleration ofgravity is g. The cylinder has mass m1 and the moment of inertia Iwith respect to the rotational axis located at the mass center of thecylinder. The upper cable is fixed on the ceiling, and its positivetension is denoted by T1. r1 and r2 denote the radii of the cylinder.z1 and z2 are the positions from the ceiling, and 𝜃 denotes therotational angle of the cylinder. The mass particle of the mass m2 isattached to the lower cable, and its positive tension is denoted byT2. Answer the following questions.(1) Find the equation of translational motion of the mass particle.

You may use T2 in the answer.(2) Find the equations of translational and rotational motions of

the cylinder. You may use T1 and T2 in the answer.

大学院入試を解いてみよう! 名古屋大学 2018年外国人留学生試験

𝑚

𝑚𝑟𝑟

𝑚𝑟

𝑟

𝜃 𝑚𝑧

𝑧

(3) Represent the velocity 𝑧 using the angular velocity 𝜃.(4) The angular acceleration 𝜃 can be given by 𝜃 𝛼𝑔, where 𝛼 is

a constant. Find 𝛼, not using T1 and T2.

大学院入試を解いてみよう! 名古屋大学 2018年外国人留学生試験

S4:  Two masses are supported by four rigid links. This system is symmetric about z‐axis and revolves around z‐axis at constant angular velocity 𝜔. Points O and B are connected by a spring of coefficient k. The spring’s natural length is 2𝐿. The position of B is limited to 0 𝑧 2𝐿. The gravitational acceleration is g. The angle between link OA is denoted by 𝜃.(1) Find the equation of force at B using 𝑓 which is the tension of 

link AB.(2) Find the equation of motion of the mass about x and z using  𝑓

and  𝑓 which is the tension of link OA.(3) Find the equation of motion of the mass about 𝜃 by removing 𝑓 and 𝑓 from the equations found in (1) and (2).(4) The generalized coordinate of the system is 𝜃. Find the kinetic 

energy of the system.(5) The generalized coordinate of the system is 𝜃. Find the 

potential energy of the system.

大学院入試問題を解いてみよう! H31年度大阪大学‐一部

Page 11: Exercise of mechanical vibration (1-dof vibration ... · (2) Find the natural angular frequency of the pendulum, when 𝜃is small enough that small angle assumptions are available

S4: Cont.

大学院入試問題を解いてみよう! H31年度大阪大学‐一部

A: Translate the following paragraph on pulley dynamics into Japanese.

The figure provides an example of pulley dynamics. The pulley’scenter is fixed, and forces f1 and f2 are the tensions in the cord oneither side of the pulley. From law of rotational motion,

The tension forces are equal if 𝐼𝜃 is negligible.This condition is satisfied if either the pulleyrotates at a constant speed or the pulleyinertia is negligible compared to the otherinertias in the system. The pulley inertia willbe negligible if either its radius or its mass issmall. The force on the support at the pulleycenter is f3 = f1 + f2. If 𝐼𝜃 is negligible, then thesupport force is 2f1.

𝐼𝜃 𝑓 𝑅 𝑓 𝑅.R

θ

f1 f2

f3

COLUMN: Monkey climb puzzle from Lewis Carrol

不思議の国のアリスで知られる Lewis Carrol の有名なパズルがある.

摩擦の無い滑車に質量を無視できるロープが掛けられており,その両端に同じ質量のおもりとサルがぶら下がっている.サルは,ロープをつたって上に登ろうとする.ある人は,サルはロープを登ることができずに同じ場所に留まる,もしくは下に落ちてしまうと言う.別の人

は,サルはロープを登ることができると言う.さて,サルはロープを登ることができるだろうか?その理由は?

mm演習問題および解答にはミスがあります.ミスを初めに見つけて教えてくれた人には,最終成績に加点します.1個目なら2点,2個目以降は1点ずつを加点します.

Solution (Basic)Q1: 𝑘𝑙 𝜃 𝑚𝑙 𝜃 0

𝑝 𝑙𝑙 𝑘𝑚𝜃 𝑚𝑔𝑙 𝑙 𝑘𝑚𝑙 𝜃 0𝑝 𝑚𝑔𝑙 𝑙 𝑘𝑚𝑙

Q2:

Q3: 𝐼 𝑚𝑅 𝜃 𝑅 𝑘𝜃 0𝑝 𝑅 𝑘𝐼 𝑚𝑅

𝑇 2𝜋𝑝𝑇 2𝜋𝑝

Page 12: Exercise of mechanical vibration (1-dof vibration ... · (2) Find the natural angular frequency of the pendulum, when 𝜃is small enough that small angle assumptions are available

𝐼 𝑚𝑙12Q4: Q5: 𝐼 13 𝑚𝑏𝐼 13 𝑚𝑎𝐼 13 𝑚 𝑎 𝑏 𝐼 𝐼

𝑟𝜃 𝑔sin𝜃 0Q6:

𝐼 13 𝑚 𝑙 𝑚 𝑟2 𝑙4Q7:

a)

𝐼 𝜃b)

13 𝑚 𝑙 𝑚 𝑟2 𝑙4 𝜃 𝑚 𝑚 𝑔 𝑙2 sin𝜃 0c)

Q8:(1)

22412

bamIO

(2)

(3)

(4)

(5)

Q9:(1)

a

b

O X

Y

COG2

COG1r1

r2

a/4

(3a+b)/4

S

(2)回転中心Oから下記の位置S

Q10:R3と同じ運動方程式になります.

𝜃 𝑡 𝜃 cos 𝑝𝑡𝜃 𝑡 𝜔𝑝 sin 𝑝𝑡

𝐼 𝑚12 20𝑎 12𝑎𝑏 5𝑏𝜃 𝑚𝑔𝑎2𝐼 𝜃 0𝑝 𝑚𝑔𝑎2𝐼 6𝑔𝑎4𝑎 𝑏

Q11:

I 12

Ma2 T kxx a

1) 2)

021

kxxmM 3)

U 12

kx2

4)

5)

6)

Q12:1 𝐼 𝐼 𝐼𝐼 12 𝑚𝑅𝐼 13 𝑚𝑙3 𝑝 2𝑟 𝑘 𝐼

2 𝜃 2𝑟 𝑘 𝐼 𝜃 0

Q13: 14 𝑚𝑎 14 𝑚𝑎 112 𝑚𝑙Q14:

Page 13: Exercise of mechanical vibration (1-dof vibration ... · (2) Find the natural angular frequency of the pendulum, when 𝜃is small enough that small angle assumptions are available

Q15:

𝐼𝑟 𝑚 𝑥 𝑘 𝑘𝑟 𝑥 0(1)

(3) 𝑇 12 𝑚 𝐼𝑟 𝑥𝑈 12 𝑘 𝑘𝑟 𝑥(4)

(2) 𝑚 𝐼𝑟 𝑚 𝑘 𝑘 𝑘𝑟

𝑝 𝑘 𝑘𝑟𝐼 𝑚𝑟(5)

R1: 𝜃 𝑔𝑙𝑎 𝑙 𝜃 0𝑝 𝑔𝑙𝑎 𝑙

R2: 𝑙 𝑔8𝜋

(1)𝐼 12 𝑚𝑟𝑚 𝐼𝑟 𝑥 𝑘𝑥 0(3)𝑈 12 𝑘𝑥

R3:

(2)𝑇 12 𝑚𝑥 ,𝑇 12 𝐼𝜃 12 𝐼 𝑥𝑟(4)𝑝 𝑘𝑚 𝐼𝑟

R4:

(1) 𝑇 12 𝑚 𝑅 𝑟 𝜃 質量中心の併進速度は, 𝑅 𝑟 𝜃である

(2) 𝑇 12 𝐼 𝑅 𝑟𝑟 𝜃 𝜙は接触点からの角度であるので,円盤自体の回転角度は,𝜙 𝜃であり,𝑅𝜃 𝑟𝜙 で

あるため,円盤の角速度 𝜙 𝜃 1 𝜃となる.

(3) 𝑈 𝑚𝑔 𝑅 𝑟 1 cos 𝜃∼ 𝑚𝑔 𝑅 𝑟 𝜃2(4) 𝑇 𝜃 𝑇 𝑇 12 𝑅 𝑟 𝜃 𝑚 𝐼𝑟 𝜃 𝐴𝑝

𝑇 𝜃 𝐴𝑝2 𝑅 𝑟 𝑚 𝐼𝑟

𝑈 𝜃 ∼ 𝑚𝑔 𝑅 𝑟 𝐴2 𝜃 𝐴𝑈 𝜃 𝑇 𝜃 から,

𝑝 𝑚𝑔𝑟𝑅 𝑟 𝑚𝑟 𝐼

Page 14: Exercise of mechanical vibration (1-dof vibration ... · (2) Find the natural angular frequency of the pendulum, when 𝜃is small enough that small angle assumptions are available

(1)棒の中心周りの慣性モーメントは

であり,pivot周りでは 𝑀𝑑𝑝 𝑔𝑑𝑙3 𝑑 .

(2)棒の中心周りの慣性モーメントは2𝑚𝑙 であり,pivot周りでは2𝑚𝑙 𝑀 2𝑚 𝑑

R5: R6: 𝑚𝑙 𝜃 2𝑘𝑙 𝑚𝑔𝑙 𝜃 0a) 2𝑘𝑙 𝑚𝑔𝑙 0b)

c) The pendulum falls down. なぜならば,𝜃 𝐴exp 𝜆𝑡であるとして,𝜆が正の実部を有するなら,時間とともに,θが大きくなり続けるから.

𝑝 𝑀 2𝑚 𝑔𝑑𝑀 𝑙3 𝑑 2𝑚(d2+l2)

𝑠 34 𝑏R7:

a) 𝐼 𝐼 𝑑 𝑚 𝐼 𝑑 𝑚b) 𝑑 14 𝑏 𝑑 34 𝑏𝐼 2𝑚12 𝑎 𝑏𝐼 𝑚𝑏9d1 and d2 are the distances from G12 to G1and G2, respectively.

𝐼 𝑚 𝑎6 79 𝑏

(1)

(2)

2

52 mrI

(3)

R8:

半径rの球の慣性モーメントとして

𝑚𝑅𝜃 𝑚𝑔sin𝜃 𝐹𝐼 𝜙 𝜃 𝑟𝐹𝑅 𝑟 𝜃 𝑟𝜙𝜃 5𝑔7𝑅 𝜃 0

𝜔 5𝑔7𝑅θ

h

h𝜙𝜙を球の回転角度(地面との接点からの)とすると,𝑅 𝑟 𝜃 𝑟𝜙となることに注意.Q7も参考にして下さい.

𝑅

R9: We should measure the following parameters:m: mass of the tirer: radius of the tirex: position of the tire on the slope

and use the formula:

θ

x

𝑓 𝑚𝑔sin𝜃 𝑓 𝑓𝑚𝑥 𝐼 𝑥𝑟

𝐼 𝑟 𝑚𝑔sin𝜃𝑥 𝑚fx: Force along x‐axisft: Force for translationfr: Force for rotation

Page 15: Exercise of mechanical vibration (1-dof vibration ... · (2) Find the natural angular frequency of the pendulum, when 𝜃is small enough that small angle assumptions are available

R9: From the preservation of energy, we may use the following relationships. In this case, we need to measure the velocity of the tire after the slope and the height of the slope.

θ

x

𝑈 𝑚𝑔𝑙Initial energy

𝑇 0

l

After the slope𝑈 0𝑇 12 𝑚𝑥 12 𝐼𝜔12 𝑚 𝐼𝑟 𝑥𝑈 𝑇

R10:

𝜃𝜔

m

𝑚𝑔𝑚𝜔 𝑙sin𝜃Centrifugalforce

(1)

𝑚𝑙 𝜃 𝑚𝑔𝑙sin𝜃 𝑚𝜔 𝑙sin𝜃𝑙cos𝜃(2)

𝑚𝑙 𝜃 𝑚𝑔𝑙𝜃 𝑚𝜔 𝑙 𝜃

遠心力は,常にθの正の方向に働くことに注意して

回転角度の近似を用いると,(1)の式は下記の通りになる.

𝑙𝜃 𝜃 𝑔 𝑙𝜔 0𝜔 𝑔 𝑙𝜔𝑙

R11:(1)

m𝜃

O

𝑥 𝑅𝜃 𝑅 𝐿 sin𝜃𝑅𝜃 𝑅 𝐿 sin𝜃𝑦 𝑅 𝑅 𝐿 cos𝜃

𝑅 𝐿 cos𝜃(2) 𝑥 𝑅𝜃 𝑅 𝐿 𝜃cos𝜃𝑦 𝑅 𝐿 𝜃sin𝜃𝑇 12 𝑚𝑣 12 𝑚 𝑥 𝑦12 𝑚𝜃 𝑅 2𝑅 𝑅 𝐿 cos𝜃 𝑅 𝐿

~ 12 𝑚𝐿 𝜃 cos𝜃 1 のとき

(3)左辺: 運動エネルギーが最大になり,位置エネルギーが最小にな

る姿勢 𝜃 0右辺: 運動エネルギーが最小(0)になり,位置エネルギーが最大

になる姿勢 𝜃 𝜃12 𝑚𝐿 𝜃 𝐿𝑚𝑔 0 𝑅 𝑅 𝐿 cos𝜃 𝑚𝑔𝜃 が十分に小さいので, cos𝜃 ~1 𝜃 として整理すると12 𝑚𝐿 𝜃 𝑅 𝐿 𝑚𝑔𝜃2Rayleigh’s method (𝜃 𝑎sin𝜔𝑡) を用いて固有周波数を得る

𝜔 𝑅 𝐿 𝑔𝐿

Page 16: Exercise of mechanical vibration (1-dof vibration ... · (2) Find the natural angular frequency of the pendulum, when 𝜃is small enough that small angle assumptions are available

R12:(1) 𝐼 19 𝑚𝑙(2)

(3)

𝜔 3𝑔2𝑙 𝐼 𝜃 16 𝑚𝑔𝑙𝜃 0𝑑 𝑙2 3

R13:(1)

(2)

(3)

Effective mass: kg

1 kg の質量のフライホイールが,4 t もの質量の役割を果たす.

S1:

(1) 𝐼 13 𝑀𝑎 𝑚𝑏 (2) 𝑏𝑚𝑚 𝑀(3) 𝑔𝑏𝑚13 𝑀𝑎 𝑚𝑏 (4) 𝑏 𝑎 𝑀3𝑚

S2:(1) 重心の位置ベクトル rG, 質点iの位置ベクトルri

𝒓 𝑚 𝒓 𝑚8𝑚𝒓 𝑙𝑚 100 𝑙𝑚 010 2𝑙𝑚 101 +2𝑙𝑚 111 𝑙𝑚 534 𝒓 𝑙8 534

(2) 𝐼 𝑚𝑙 2𝑚𝑙 2𝑚 2𝑙 7𝑚𝑙(3) 𝐼 𝐼 8𝑚 0, 𝑟 , 𝑟 𝐼 8𝑚 𝑙64 3 4 𝐼 258 𝑚𝑙

𝐼 𝐼 258 𝑚𝑙 56 258 𝑚𝑙 318 𝑚𝑙

Page 17: Exercise of mechanical vibration (1-dof vibration ... · (2) Find the natural angular frequency of the pendulum, when 𝜃is small enough that small angle assumptions are available

(4) 𝒎 1 21 40 𝑚𝑙𝑔 350 𝑚𝑙𝑔S3:

(1) 𝑚 𝑧 𝑚 𝑔 𝑇(2) 𝑚 𝑧 𝑚 𝑔 𝑇 𝑇𝐼𝜃 𝑟 𝑇 𝑟 𝑇(3) 𝑧 𝑧 𝑟 𝜃𝑟 𝜃 𝑟 𝜃𝑟 𝑟 𝜃

(4) (1)‐(3)で得られた式を連立させて,等加速度運動の加速度を得る𝐼𝜃 𝑟 𝑇 𝑟 𝑇𝑟 𝑚 𝑔 𝑚 𝑟 𝑟 𝜃𝑟 𝑚 𝑚 𝑔 𝑚 𝑟 𝑟 𝜃𝑚 𝑟 𝜃𝑚 𝑟 𝑟 𝜃 𝑚 𝑟 𝜃 𝑚 𝑟 𝑔𝑟 𝑚 𝑚 𝑔 𝜃 𝑚 𝑟 𝑟 𝑚 𝑚𝐼 𝑚 𝑟 𝑟 𝑚 𝑟 𝑔

S4:(1) 2𝑘𝐿 1 sin𝜃 2𝑓 sin𝜃(2) 𝑚𝑥 𝑚𝐿cos𝜃𝜔 𝑓 cos𝜃 𝑓 cos𝜃𝑚𝑧 𝑚𝑔 𝑓 sin𝜃 𝑓 sin𝜃(3) 𝑥 𝐿cos𝜃 𝑧 𝐿sin𝜃𝑚𝐿 𝜃 𝑚𝑔𝐿cos𝜃 𝑚𝐿 𝜔 cos𝜃sin𝜃 2𝑘𝐿 cos𝜃 1 sin𝜃(4) 𝑇 𝑚𝐿 𝜃 𝜔 cos 𝜃(5) 𝑈 12 𝑘 2𝐿 1 sin𝜃 2𝑚𝑔𝐿sin𝜃2𝑘𝐿 1 sin𝜃 2𝑚𝑔𝐿sin𝜃

1st comp: Inertia around point O2nd comp: Centrifugal force about z‐axis

A: Translate the following paragraph on pulley dynamics into Japanese.

図は,プーリの動力学の例である.プーリの中心は固定されており,f1 および f2 はそれぞれ,プーリの両端の紐の張力である.回転運動の法則より,

𝐼𝜃 が無視できるとき,2つの張力は等しい.こ

の条件は,プーリが等速で回転しているときや,プーリの慣性が系の中の他の慣性に比べて無視できるときに満たされる.プーリの半径もしくは質量が小さいときは,プーリの慣性は無視できる.プーリ中心の支持部に加わる力はf3 = f1 + f2 となる.𝐼𝜃 が無視できるときは,支持力は 2f1 となる.

𝐼𝜃 𝑓 𝑅 𝑓 𝑅.R

θ

f1 f2

f3

Q1:

並進の方程式から:𝑓 𝑘𝑙 sin 𝜃𝑓 𝑚 𝑑 𝑙 sin 𝜃𝑑𝑡 𝑚𝑙 𝜃𝑓 𝑙 𝑓 𝑙𝑘𝑙 sin 𝜃 𝑚𝑙 𝜃𝑘𝑙 𝜃 𝑚𝑙 𝜃 0𝑝 𝑙𝑙 𝑘𝑚

回転の方程式から:𝐼 𝑚𝑙𝑀 𝐼𝜃 𝑚𝑙 𝜃𝑘𝑙 sin 𝜃 𝑘𝑙 𝜃𝑘𝑙 𝜃 𝑚𝑙 𝜃 0

Page 18: Exercise of mechanical vibration (1-dof vibration ... · (2) Find the natural angular frequency of the pendulum, when 𝜃is small enough that small angle assumptions are available

Q2:𝜃 0 のとき,ばねは自然長になり,棒の質量は無視できる.回転運動θに関する運動方程式を立て,周期Tを求めよ.

𝑚𝑔𝑙 𝑠𝑖𝑛𝜃 𝑙 𝑘𝑠𝑖𝑛𝜃 𝑚𝑙 𝜃𝜃 𝑚𝑔𝑙 𝑙 𝑘𝑚𝑙 𝜃 0𝑝 𝑚𝑔𝑙 𝑙 𝑘𝑚𝑙

𝑇 2𝜋𝑝

Q3:

m

R

k

g

質量mの変位をx、ひもの張力をTとしたとき、つりあいの式より、𝑚𝑥 𝑇滑車周りの運動方程式は、𝐼𝜃  𝐹 𝑇𝐼𝜃 𝑘𝑅𝜃 · 𝑅 𝑚𝑥𝐼𝜃 𝑘𝑅 𝜃 𝑚𝑅𝜃𝐼 𝑚𝑅 𝜃 𝑘𝑅 𝜃 0したがって固有角振動数は𝑝 𝑘𝑅𝐼 𝑚𝑅

𝑇 2𝜋𝑝 2𝜋 𝐼 𝑚𝑅𝑘𝑅

I

𝐼 2 𝑥 𝑑𝑚 , 𝑑𝑚 𝑚𝑏 𝑑𝑥 2 𝑚𝑏 𝑥 𝑑𝑥 𝑚𝑙12

Q4: Q5:ZY

X

ab

密度ρは 𝜌 𝑚4𝑎𝑏このとき、微小面積における質量dmはd𝑚 𝜌d𝑠 𝜌d𝑥d𝑦

微小面積d𝑠 d𝑥d𝑦

x軸周りの慣性モーメント𝐼 𝑦 𝜌d𝑥d𝑦𝑚4𝑎𝑏 𝑑𝑥 𝑦 𝑑𝑦13 𝑚𝑏

y軸周りの慣性モーメント𝐼 𝑥 𝜌d𝑥d𝑦𝑚4𝑎𝑏 𝑥 𝑑𝑥 𝑑𝑦13 𝑚𝑎

z軸周りの慣性モーメント𝐼 𝑥 𝑦 𝜌d𝑥d𝑦𝑚4𝑎𝑏 𝑥 𝑑𝑥 𝑑𝑦𝑑𝑥 𝑦 𝑑𝑦13 𝑚 𝑎 𝑏 𝐼 𝐼

Page 19: Exercise of mechanical vibration (1-dof vibration ... · (2) Find the natural angular frequency of the pendulum, when 𝜃is small enough that small angle assumptions are available

Q8:

a θ

O

b/2b/2𝐼 𝑚 𝑎3 𝑏121)

𝐼𝜃 𝑚2 𝑔𝑎sin𝜃2)

𝑚 𝑎3 𝑏12 𝜃 𝑚𝑔𝑎2 sin𝜃 0

Q6: 𝐼 112 𝑚 3𝑟 𝑚 𝑟4𝑚 𝑟2𝐼𝜃 𝑚𝑔 𝑟2 𝜃𝑟𝜃 𝑔𝜃 0

3)

4)

𝑝 𝑚𝑔𝑎2𝑚 𝑎3 𝑏12𝑝 6𝑔𝑎4𝑎 𝑏

𝑚 𝑎3 𝑏12 𝜃 𝑚𝑔𝑎2 sin𝜃 0𝜃 0 𝐴𝑠𝑖𝑛 𝑝𝑡 𝜑 𝜃𝜃 0 𝐴𝑝𝑐𝑜𝑠 𝑝𝑡 𝜑 0

𝑝 6𝑔𝑎4𝑎 𝑏𝜑 90°𝐴 𝜃𝜃 𝑡 𝜃 cos 6𝑔𝑎4𝑎 𝑏 𝑡

𝜃 0 𝐴𝑠𝑖𝑛 𝑝 · 0 𝜑 0𝜃 0 𝐴𝑝𝑐𝑜𝑠 𝑝 · 0 𝜑 𝜔𝑝 6𝑔𝑎4𝑎 𝑏𝜑 0°𝐴 𝜔𝑝𝜃 𝑡 𝜔𝑝 sin 6𝑔𝑎4𝑎 𝑏 𝑡

5)

Q9:

a

b

O X

Y M1

COG2

da+b/2

a/2

a

(1)

IO IO1 IO2

From the last problem,𝐼 𝑚12 4𝑎 𝑏𝐼 𝐼 𝑑𝑚𝑚12 𝑎 𝑏 𝑚 𝑎2 𝑎 𝑏2𝐼 𝑚12 20𝑎 12𝑎𝑏 5𝑏a

b

O X

Y

COG2

COG1r1

r2

a/4

(3a+b)/4

S

mSx mirx

mSy miry

m1 m2 S m1r1 m2r2

S Sx, Sy ,r1 0, a2

,r2 a

2, a b

2

X

Y

0 m1 a2

m2 Sx m1 m2

Sx a4

a2

m1 a b2

m2 Sy m1 m2

Sy 3a b

4

m1 m2 m

M2

XY

mi

COG

riS

(2) Definition of COG重心

‐ centroid‐ center of gravity

mS miri

S, r1, r2 をそれぞれ原点Oから,合板の重心,板1の重心,板2の重心への位置ベクトルとする

Page 20: Exercise of mechanical vibration (1-dof vibration ... · (2) Find the natural angular frequency of the pendulum, when 𝜃is small enough that small angle assumptions are available

1𝐼 12 𝑚𝑅𝑚 𝐼𝑅 𝑥 𝑘𝑥 0(2) 𝑝(3)𝑇 12 𝑚𝛿 ,𝑇 12 𝐼𝜃 12 𝐼 𝛿𝑅𝑈 12 𝑘𝛿

Q10:

Rk

φ

x

θ

(4) 𝑥 𝑡 𝐴𝑐𝑜𝑠 𝑝𝑡𝑥 𝑡 𝐴𝑝𝑠𝑖𝑛 𝑝𝑡𝑇 12 𝑚𝐴 𝑝 ,𝑇 12 𝐼 𝐴 𝑝𝑅𝑈 12 𝑘𝐴

𝐴 𝑅

𝑈 0(5) 12 𝑚𝑅 𝑝 12 𝐼𝑝 12 𝑘𝑅 0

𝑝 𝑘𝑚 𝐼𝑅

Q13: 厚みの無視できる円盤のY回りの慣性モーメントを求めよ。円盤の質量は m

X

Yd𝜃

drrdrd𝜃

a

極座標 𝑟, 𝜃 の微小質量d𝑚d𝑚 𝑚𝜋𝑎 𝑟d𝜃d𝑟Y軸からd𝑚までの距離𝑟 cos 𝜃求めるY軸周りの慣性モーメント𝐼 𝑟 cos 𝜃 d𝑚

𝑟 cos 𝜃 𝑚𝜋𝑎 𝑟d𝜃d𝑟 14 𝑚𝑎

Y

Z

a

Q14: 解説

座標 𝑟, 𝜃, 𝑧 の微小質量d𝑚d𝑚 𝑚𝜋𝑎 𝑙 𝑟d𝜃d𝑟d𝑧Y軸からd𝑚までの距離𝑟 cos 𝜃 𝑧求めるY軸周りの慣性モーメント𝐼 𝑟 cos 𝜃 𝑧 d𝑚

𝑟 cos 𝜃 𝑚𝜋𝑎 𝑙 𝑟d𝜃d𝑟d𝑧 14 𝑚𝑎 112 𝑚𝑙Z

Y𝑟 cos 𝜃 𝑧

Q21の円板についてz軸を加え,同様に考える.

Page 21: Exercise of mechanical vibration (1-dof vibration ... · (2) Find the natural angular frequency of the pendulum, when 𝜃is small enough that small angle assumptions are available

R1:  Solution

𝑙sin𝜃

平行軸の定理から𝐼 2𝑚𝑎 2𝑚𝑙 2𝑚 𝑎 𝑙𝐼𝜃𝑚𝑔 𝑎cos𝜃 𝑙sin𝜃 𝑚𝑔 𝑎cos𝜃𝑙sin𝜃𝜃 ≪ 1, ∴ cos𝜃 1, sin𝜃 𝜃2𝑚 𝑎 𝑙𝑚𝑔 𝑎 𝑙𝜃 𝑚𝑔 𝑎 𝑙𝜃∴ 𝜃 𝑔𝑙𝑎 𝑙 𝜃 0𝑝 𝑔𝑙𝑎 𝑙

mm

l

a a

O

mg mg

R2:

Q4と同じ角振動数になるため、𝑎 𝑙として、𝑝 𝑔2𝑙振動数𝑓 であるので、

𝑓 𝑔2𝑙2𝜋1 𝑔2𝑙2𝜋𝑙 𝑔8𝜋

R3: 1𝐼 12 𝑚𝑟𝑚 𝐼𝑟 𝑥 𝑘𝑥 0(2)𝑇 12 𝑚𝑥 ,𝑇 12 𝐼𝜃 12 𝐼 𝑥𝑟(3)𝑈 12 𝑘𝑥(4)𝑇 12 𝑚 𝐼𝑟 𝑥 12 𝑚 𝐼𝑟 𝐴 𝑝 , 𝑈 12 𝑘𝐴𝑇 𝑈 より、 𝑝

𝑓 𝑘𝑥𝑓 𝑓 𝑓𝑓 𝑚𝑥𝑟𝑓 𝐼𝜃ばねの復元力 f が,併進のための力 f1 と回転のための力 f2 に分かれる. f2 は,地面とディスクの摩擦そのものであり,f2にディ

スクの回転中心までのモーメントアームrをかけた rf2 がモーメントになる.

f1

f2

𝑥 𝑟𝜃

R5:(1)平行線の定理から,I = M (2l)2/12+Md2 = M (l2 /3+d2).復元モーメントはMgdsin 𝜃.𝜃M (l2 /3+d2)𝜃+Mgd𝜃 =0𝑝 𝑔𝑑𝑙3 𝑑 .

(2)I = M (2l)2/12+Md2 +2ml2+ 2md2 =M (l2 /3+d2) +2m(d2+l2)復元モーメントは (M+2m)gdsin 𝜃𝑀 𝑑 2𝑚(d2+l2) 𝜃+(M+2m)gd𝜃 =0

𝑝 𝑀 2𝑚 𝑔𝑑𝑀 𝑙3 𝑑 2𝑚(d2+l2)

Page 22: Exercise of mechanical vibration (1-dof vibration ... · (2) Find the natural angular frequency of the pendulum, when 𝜃is small enough that small angle assumptions are available

𝑚𝑘 𝑘𝑙𝑙 𝑙

𝜃

𝜃𝑔

R6:(1) 𝐼𝜃 𝑘𝑙 sin 𝜃 𝑘𝑙 sin 𝜃 𝑚𝑔𝑙 sin 𝜃

𝑚𝑙 𝜃 2𝑘𝑙 𝑚𝑔𝑙 𝜃 0(2)       λ𝑚𝑔𝑙 2𝑘𝑙 0

(3) The pendulum is unstable, falling down.

R8:

1)

𝑚𝑅𝜃 𝑚𝑔𝑠𝑖𝑛𝜃 𝐹2) 𝐼 𝜑 𝜃 𝑟𝐹

𝑚𝑅𝜃 𝑚𝑔𝜃 𝐼𝑟 𝜑 𝜃 0𝜃 𝑅 𝑟 𝜑𝑟

𝜑 𝑅 𝑟𝑟 𝜃𝑚𝑅 25 𝑚𝑅 𝜃 𝑚𝑔𝜃 0

3) 𝑝 5𝑔7𝑅

mg

θ

Riceball φ

φ

F