examination of thermal impacts from stormwater bmps

20
Examination of Thermal Examination of Thermal Impacts from Stormwater BMPs Impacts from Stormwater BMPs Funded by: Funded by: USEPA Region 1 TMDL Program USEPA Region 1 TMDL Program Robert Roseen Robert Roseen PhD PE D WRE ; PhD PE D WRE ; Nicholas DiGennaro EIT; Nicholas DiGennaro EIT; Project Team: Project Team: The UNH Stormwater Center The UNH Stormwater Center Robert Roseen, Robert Roseen, PhD, PE, D.WRE ; PhD, PE, D.WRE ; Nicholas DiGennaro, EIT; Nicholas DiGennaro, EIT; Alison Alison Watts, PG, PhD; Watts, PG, PhD; Thomas Thomas Ballestero, PE, PhD, PH, CGWP; Ballestero, PE, PhD, PH, CGWP; James James Houle, CPSWQ Houle, CPSWQ; ; Timothy Timothy Puls Puls UNH Stormwater Center, Department of Civil Engineering UNH Stormwater Center, Department of Civil Engineering University of New Hampshire University of New Hampshire 18 2010 18 2010 1 Tuesday May 18, 2010 Tuesday May 18, 2010 1

Upload: others

Post on 28-Nov-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

Examination of Thermal Examination of Thermal Impacts from Stormwater BMPs Impacts from Stormwater BMPs

Funded by: Funded by: USEPA Region 1 TMDL ProgramUSEPA Region 1 TMDL Program

Robert RoseenRobert Roseen PhD PE D WRE ;PhD PE D WRE ; Nicholas DiGennaro EIT;Nicholas DiGennaro EIT;

Project Team:Project Team: The UNH Stormwater Center The UNH Stormwater Center

Robert Roseen, Robert Roseen, PhD, PE, D.WRE ; PhD, PE, D.WRE ; Nicholas DiGennaro, EIT; Nicholas DiGennaro, EIT; Alison Alison Watts, PG, PhD; Watts, PG, PhD; Thomas Thomas Ballestero, PE, PhD, PH, CGWP; Ballestero, PE, PhD, PH, CGWP;

James James Houle, CPSWQHoule, CPSWQ; ; Timothy Timothy PulsPuls

UNH Stormwater Center, Department of Civil EngineeringUNH Stormwater Center, Department of Civil EngineeringUniversity of New HampshireUniversity of New Hampshire

18 201018 2010

11

Tuesday May 18, 2010Tuesday May 18, 2010

11

 

AAiirrHHeeaatt TTrraannssffeerr::

TT hh ee rr mmaa ll    EE nn

IInnppuutt:: SSoollaarr RRaaddiiaattiioonn SSttoorrmmwwaatteerr BBMMPP

FFuunnccttiioonn ooff tthhee ttiimmee ooff ddaayy..

nn ee rr gg yy   TThheerrmmaall  EEnneerrggyy  

IInnppuutt::  SSoollaarr  RRaaddiiaattiioonn  

TThheerrmmaall  EEnneerrggyy  

OOuuttppuutt:: HHeeaatt

SSttoorrmmwwaatteerr BBMMPP  

HHeeaatt TTrraannssffeerr::

FFuunnccttiioonn  ooff  tthhee  mmaassss  ooff  tthhee  ssyysstteemm..   OOuuttppuutt:: HHeeaatt

H T ff

TT hh ee rr mm

GGrroouunndd HHeeaatt TTrraannssffeerr::

FFuunnccttiioonn  ooff  tthhee  ddeepptthh  ooff  tthhee  ssyysstteemm..  

mmaa ll    EE nn ee rr gg yy

22

IntroductionIntroductionProject ObjectiveProject Objective

To quantify the effect of Best Management Practices To quantify the effect of Best Management Practices (BMPs n=8) on the temperature of(BMPs n=8) on the temperature of stormwaterstormwater runoffrunoff(BMPs, n 8) on the temperature of (BMPs, n 8) on the temperature of stormwaterstormwater runoff runoff in relation to established environmental indicators and in relation to established environmental indicators and lethality indices for fisheries and aquatic ecosystemslethality indices for fisheries and aquatic ecosystems

H pothesisH pothesisHypothesisHypothesisLarger surface systems will see greater thermal Larger surface systems will see greater thermal variationsvariationsvariationsvariationsLarger subsurface systems will see greater thermal Larger subsurface systems will see greater thermal bufferingbuffering

CCthth = m * C= m * CPP CCthth = heat capacity of a system (J/= heat capacity of a system (J/ooCC))m = mass of a system (kg)m = mass of a system (kg)

3333

CCPP = specific heat (J/= specific heat (J/kgkgooCC))

SystemsSystems

Retention Pond Gravel WetlandVeg SwaleDetention Pond

Hydrodynamic Separator

Subsurface Infiltration

Isolator RowBioretention Unit

4444

Isolator Row

Experimental DesignExperimental Design

40 Million 40 Million Data PointsData Points

TTininTToutout

StormwaterStormwaterBMPBMP

CBCB

5

6

7

8

9

10FarmSite

60.0

65.0

70.0

75.0

80.0

85.0

mpe

ratu

re (o F)

Examination of StormsExamination of Storms

100

0

1

2

3

4

5

J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D

`

80.0

85.0 Runoff Retention PondDetention Pond Gravel WetlandBioretention Vegetated SwaleHydrodynamic Separator ADS Infiltration SystemStormTech Isolator Row

30.0

35.0

40.0

45.0

50.0

55.0

Runoff Retention Pond Detention Pond Gravel Wetland Bioretention Vegetated Swale HydrodynamicSeparator

ADS InfiltrationSystem

StormTech IsolatorRow

Even

Mea

n Te

80%

90%

100%

100

-80

-60

-40

-20

0

20

40

60

80

100

ΔT in

o F (a

ppro

xim

ate

chan

ge in

stre

am te

mp)

10% 20%25% 30%40% 50%60% 70%75% 80%90% 100%

30.0

35.0

40.0

45.0

50.0

55.0

60.0

65.0

70.0

75.0

Even

t Mea

n Te

mpe

ratu

re (o F)

0%

10%

20%

30%

40%

50%

60%

70%

30 35 40 45 50 55 60 65 70 75 80 85

Event Mean Temperature, EMT (oF)

Cum

ulat

ive

Prob

abili

ty (%

RunoffRetention PondDetention PondGravel WetlandBioretentionVegetated SwaleHDSADSSTIR

-100-100 -80 -60 -40 -20 0 20 40 60 80 100

EMT in oF (relative to stream temp)

55

Date

Performance MetricPerformance MetricEvent Mean Temperature, EMT (oF)

Flow or Volume weighted temperatureFlow or Volume weighted temperatureCalculated for each storm and each system

• 120 Influent EMTs

6080

100120

gpm

)

40

45

50 Temper

FlowTemperatureEMT

∫T

t(t)q(t)dt36.5

0204060

Flow

(

30

35

40

ature ( oF) ∫

∫= T

O

O

q(t)dtEMT

0

9:25 P

M11

:25 PM

1:25 A

M3:2

5 AM

5:25 A

M7:2

5 AM

9:25 A

M11

:25 A

M1:2

5 PM

3:25 P

M

30

VolTemp*VolEMT

∑∑

=

66

Date (3/10/07 - 3/1107)

Qualitative AnalysesQualitative AnalysesAnnual and Seasonal

Summer April through September75.0

80.0

85.0 Runoff Retention PondDetention Pond Gravel WetlandBioretention Vegetated SwaleHydrodynamic Separator ADS Infiltration SystemStormTech Isolator Row

Winter November through MarchTime Series (EMT)

30.0

35.0

40.0

45.0

50.0

55.0

60.0

65.0

70.0

Date

Even

t Mea

n Te

mpe

ratu

re (o F)

70.0

75.0

80.0

85.0

Quartile Assessment (EMT)

Cumulative Distribution Function (EMT)30.0

35.0

40.0

45.0

50.0

55.0

60.0

65.0

Runoff Retention Pond Detention Pond Gravel Wetland Bioretention Vegetated Swale HydrodynamicSeparator

ADS InfiltrationSystem

StormTech IsolatorRow

Even

Mea

n Te

mpe

ratu

re (o F)

80%

90%

100%Cumulative Distribution Function (EMT)

Histogram (Temperature)0%

10%

20%

30%

40%

50%

60%

70%

30 35 40 45 50 55 60 65 70 75 80 85

Event Mean Temperature, EMT (oF)

Cum

ulat

ive

Prob

abili

ty (%

RunoffRetention PondDetention PondGravel WetlandBioretentionVegetated SwaleHDSADSSTIR

Thermal Loading

Stream Mixing0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Stormwater Temperature (oF)

Nor

mal

ized

Fre

quen

cy(C

ount

/Tot

al)

77

St ea g

Environmental IndicatorsEnvironmental IndicatorsTemperature IndicesTemperature Indices

Lower Optimum Limit (LOL) = 45Lower Optimum Limit (LOL) = 45ooFFU O ti Li it (UOL) 65U O ti Li it (UOL) 65ooFFUpper Optimum Limit (UOL) = 65Upper Optimum Limit (UOL) = 65ooFFLethal Limit (LL) = 80Lethal Limit (LL) = 80ooFF

Thermal RegimesThermal RegimesThermal RegimesThermal RegimesVary by streamVary by streamRange and frequency of temperaturesRange and frequency of temperaturesg q y pg q y p

Mean July TemperaturesMean July TemperaturesWarmest monthWarmest montha es oa es o

Groundwater TemperatureGroundwater TemperatureAs a base flow conditionAs a base flow condition

88

As a base flow conditionAs a base flow conditionNew Hampshire = 47New Hampshire = 47ooFF

88

85 085 0 R ff R t ti P d85 0 Runoff Retention Pond85 0 Runoff Retention Pond

Annual Time SeriesAnnual Time Series

75.0

80.0

85.0Runoff

75.0

80.0

85.0 Runoff Retention Pond

Detention Pond Vegetated Swale

75.0

80.0

85.0 Runoff Retention Pond

Detention Pond Gravel Wetland

Bioretention Vegetated Swale

75.0

80.0

85.0 Detention Pond Gravel WetlandBioretention Vegetated SwaleHydrodynamic Separator ADS Infiltration SystemStormTech Isolator Row LLLL

60.0

65.0

70.0

mpe

ratu

re (o F)

60.0

65.0

70.0

mpe

ratu

re (o F)

60.0

65.0

70.0

mpe

ratu

re (o F)

60.0

65.0

70.0

mpe

ratu

re (o F)

UOLUOL

45 0

50.0

55.0

Even

t Mea

n Te

m

45 0

50.0

55.0

Even

t Mea

n Te

m

45 0

50.0

55.0

Even

t Mea

n Te

m

45 0

50.0

55.0

Even

t Mea

n Te

m

GWGW

35.0

40.0

45.0

35.0

40.0

45.0

35.0

40.0

45.0

35.0

40.0

45.0 LOLLOL

30.0

1/13/200

53/14

/2005

5/13/200

57/13

/2005

9/11/200

511/1

1/2005

1/10/200

63/11

/2006

5/11/200

67/10

/2006

9/9/20

0611/8

/2006

1/8/20

073/9/

2007

5/8/20

077/8/

2007

9/6/20

0711/6

/2007

1/5/20

083/5/

2008

5/5/20

087/4/

2008

9/3/20

0811/2

/2008

D t

30.0

1/13/200

53/14

/2005

5/13/200

57/13

/2005

9/11/200

511/1

1/2005

1/10/200

63/11

/2006

5/11/200

67/10

/2006

9/9/20

0611/8

/2006

1/8/20

073/9/

2007

5/8/20

077/8/

2007

9/6/20

0711/6

/2007

1/5/20

083/5/

2008

5/5/20

087/4/

2008

9/3/20

0811/2

/2008

D t

30.0

1/13/200

53/14

/2005

5/13/200

57/13

/2005

9/11/200

511/1

1/2005

1/10/200

63/11

/2006

5/11/200

67/10

/2006

9/9/20

0611/8

/2006

1/8/20

073/9/

2007

5/8/20

077/8/

2007

9/6/20

0711/6

/2007

1/5/20

083/5/

2008

5/5/20

087/4/

2008

9/3/20

0811/2

/2008

D t

30.0

1/13/200

53/14

/2005

5/13/200

57/13

/2005

9/11/200

511/1

1/2005

1/10/200

63/11

/2006

5/11/200

67/10

/2006

9/9/20

0611/8

/2006

1/8/20

073/9/

2007

5/8/20

077/8/

2007

9/6/20

0711/6

/2007

1/5/20

083/5/

2008

5/5/20

087/4/

2008

9/3/20

0811/2

/2008

Date

99

DateDateDateDate

99

Annual Cumulative Distribution FunctionAnnual Cumulative Distribution FunctionLLLLUOLUOLLOLLOL GWGW

0.9

1

0 8

0.9

1

0.9

1

90%

100%LLLLUOLUOLLOLLOL GWGW

0.6

0.7

0.8

ity (% 0.6

0.7

0.8

lity

(%

0.6

0.7

0.8

ity (% 60%

70%

80%

ity (%

R ff

0.4

0.5

Cum

ulat

ive

Prob

abili

Runoff0.4

0.5

Cum

ulat

ive

Prob

abil Runoff

Retention Pond

Detention Pond0.4

0.5

Cum

ulat

ive

Prob

abili Runoff

Retention Pond

Detention Pond

Gravel Wetland40%

50%

Cum

ulat

ive

Prob

abili Runoff

Retention PondDetention PondGravel WetlandBioretentionVegetated Swale

0.2

0.3

C

0.2

0.3

C Detention Pond

Vegetated Swale

0.2

0.3

C

Bioretention

Vegetated Swale

20%

30%

gHDSADSSTIR

0

0.1

30 35 40 45 50 55 60 65 70 75 80 85o

0

0.1

30 35 40 45 50 55 60 65 70 75 80 85

E M T EMT (oF)

0

0.1

30 35 40 45 50 55 60 65 70 75 80 85o

0%

10%

30.0 35.0 40.0 45.0 50.0 55.0 60.0 65.0 70.0 75.0 80.0 85.0o

1010

Event Mean Temperature, EMT (oF)Event Mean Temperature, EMT (oF)Event Mean Temperature, EMT (oF)Event Mean Temperature, EMT (oF)

Summer CDFSummer CDFSummer (April - September)

90%

100%LLLLUOLUOLLOLLOL GWGW

60%

70%

80%

lity

(%

40%

50%

60%

umul

ativ

e Pr

obab

il

RunoffRetention PondDetention PondGravel Wetland

20%

30%

Cu Gravel Wetland

BioretentionVegetated SwaleHDSADSSTIR

0%

10%

35.0 40.0 45.0 50.0 55.0 60.0 65.0 70.0 75.0 80.0 85.0

Event Mean Temperature EMT (oF)

1111

Event Mean Temperature, EMT ( F)

Summer Quartile AssessmentSummer Quartile Assessment

LLLL

75.0

80.0

85.0

UOLUOL65.0

70.0

75.0

(o F)

55.0

60.0

nt M

ean

Tem

pera

ture

(o

LOLLOL

GWGW45.0

50.0Even

30 0

35.0

40.0

12121212

30.0Runoff Retention Pond Detention Pond Gravel Wetland Bioretention Vegetated Swale Hydrodynamic

SeparatorADS Infiltration

SystemStormTech Isolator

Row

Winter Quartile AssessmentWinter Quartile Assessment

80.0

85.0

65.0

70.0

75.0

(F)

55.0

60.0

ent M

ean

Tem

pera

ture

(o

40 0

45.0

50.0Eve

30.0

35.0

40.0

Runoff Retention Pond Detention Pond Gravel Wetland Bioretention Vegetated Swale Hydrodynamic ADS Infiltration StormTech Isolator

1313

Runoff Retention Pond Detention Pond Gravel Wetland Bioretention Vegetated Swale HydrodynamicSeparator

ADS InfiltrationSystem

StormTech IsolatorRow

Annual Temperature HistogramAnnual Temperature HistogramLLLLUOLUOLLOLLOL GWGW

0.12

0.14LLLLUOLUOLLOLLOL GWGW

0 08

0.10

uenc

yl)

RunoffRetention PondGravel Wetland

0.06

0.08

Nor

mal

ized

Fre

qu(C

ount

/Tot

al Gravel Wetland

0.02

0.04

0.0030 35 40 45 50 55 60 65 70 75 80 85 90 95 100

St t T t (oF)

14141414

Stormwater Temperature (oF)

ResultsResultsAnnual Assessments Runoff Retention

Pond Detention

Pond Gravel

Wetland Bioretention VegetatedSwale HDS ADS STIR

Median 52.4 48.1 52.8 47.3 51.8 57.3 56.6 49.2 47.6

Mean 53 5 50 9 52 3 48 7 51 9 54 8 54 1 51 5 49 0EMT(oF)

Mean 53.5 50.9 52.3 48.7 51.9 54.8 54.1 51.5 49.0

StandardDeviation 12.7 14.6 15.1 12.0 13.1 12.6 13.6 9.7 9.2

Maximum 75.4 81.3 79.4 70.0 73.7 75.0 75.0 66.4 67.8

% N E d% Non-ExceedanceUOL (65oF) 72.5% 79.0% 71.5% 87.0% 78.0% 72.5% 65.0% 95.0% 98.5%

Summer Assessments Runoff RetentionPond

DetentionPond

GravelWetland Bioretention Vegetated

Swale HDS ADS STIR

EMT(oF)

Median 66.2 64.6 68.6 60.9 63.9 68.6 66.3 60.3 53.7

Mean 62.5 61.8 66.3 57.3 61.2 65.6 63.8 56.3 53.2( F) Standard

Deviation 9.8 11.8 7.8 10.1 8.7 7.3 9.1 9.3 7.9

Mean JulyTemperatures (oF) 67.1 77.9 72.2 66.0 67.7 70.3 69.0 63.4 58.5

% N E d

15151515

% Non-ExceedanceUOL (65oF) 42.0% 56.0% 37.0% 73.0% 58.5% 35.0% 34.0% 91.0% 96.0%

Summer Natural StreamsSummer Natural Streams

90%

100%LLLLUOLUOLGWGWLOLLOL

60%

70%

80%

obab

ility

(%)

40%

50%

Exce

edan

ce P

rob

10%

20%

30%

Non

-E

College Brook @DMPWednesday Hill BrookDetention PondGravel WetlandVegetated Swale

0%30 35 40 45 50 55 60 65 70 75 80 85

Temperature (oF)

StormTech Isolator Row

1616

Thermal PerformanceThermal Performance% Non% Non--Exceedance Upper Optimum Limit 65*FExceedance Upper Optimum Limit 65*F

100100 0050507575 2525

1717Mean July Temperature*FMean July Temperature*F45 LOL45 LOL 80 LL80 LL665 UOL5 UOL

ConclusionsConclusionsInfiltration practices allow greater buffering of stormwater Infiltration practices allow greater buffering of stormwater temperature.temperature.

The longer subsurface flow paths and mass, the greater the buffering.The longer subsurface flow paths and mass, the greater the buffering.The longer subsurface flow paths and mass, the greater the buffering.The longer subsurface flow paths and mass, the greater the buffering.•• Bioretention Bioretention Gravel Wetland Gravel Wetland ADS Infiltration SystemADS Infiltration System

Conventional stormwater management designs that include Conventional stormwater management designs that include pondingponding as a control measure allow for additional increaseas a control measure allow for additional increasepondingponding as a control measure, allow for additional increase as a control measure, allow for additional increase in temperature.in temperature.

Permanent pools of water act as heat sinks during the warmer Permanent pools of water act as heat sinks during the warmer summer monthssummer monthssummer months.summer months.

•• Vegetated Swale Vegetated Swale Detention Pond Detention Pond Retention PondRetention Pond

This data could be used to estimate the mixing of This data could be used to estimate the mixing of temperatures from the BMPs and receiving streamstemperatures from the BMPs and receiving streamstemperatures from the BMPs and receiving streamstemperatures from the BMPs and receiving streamsA predictive model could be developed based on mass and A predictive model could be developed based on mass and surface expression to determine required BMP surface expression to determine required BMP characteristics (characteristics (ieie type and size) to be protectivetype and size) to be protective

18181818

characteristics (characteristics (ieie type and size) to be protectivetype and size) to be protective

QuestionsQuestions

19191919

Future ResearchFuture Research

Porous AsphaltPorous AsphaltVerify temperature readingsVerify temperature readings

System Size vs. PerformanceSystem Size vs. PerformanceExpand data to include offExpand data to include off--site systemssite systems

Stream MixingStream MixingStream MixingStream MixingDetermine thermal regimes for a variety of Determine thermal regimes for a variety of streamsstreamsModel mixing behavior of temperatureModel mixing behavior of temperature

20202020