exact post-scheduling sinr analysis for orthogonal random beamforming systems

2
 Exact post-scheduling SINR analysis for orthogonal random beamforming systems Chanhong Kim and Jungwoo Lee Derived are the exact cumulative distribution functions (CDFs) of each user’s feedback signal-to-interference-plus-noise ratio (SINR), and the  post-scheduling SINR in orthogonal random beamforming systems with  M  transmit antennas and  K  single-ante nna users cons iderin g  both user feedback and scheduling. A key contribution is to derive the exact CDF of the post-scheduling SINR by direct integration, and it is veried by Monte-Carlo simula tions. It is also sho wn that the existing approximate CDF is different from the exact distribution for SINR smaller than 0 dB.  Introduction:  Since orthogonal random beamforming (ORBF) was rst  proposed in [1], it has been considered a practical scheme for a Gaussian  broadcast channel with M  transmit antennas and  K  single-antenna users. To ana lys e the per for mance of ORBF sy stems suc h as sum-r ate , throughput, and average BER, it is necessary to know the statistical distr ibution of the schedu led user’s signal- to-inte rfere nce-plu s-nois e rati o (SINR). In the literatur e  [1–5], howe ver, performanc e analys is has been done with an appr oximat e cumula tive distribut ion functio n (CDF) of the pos t-s ched ulin g SINR, whi ch ass ume s an unr eali sti c feedback scheme. This Letter studies the exact statistical distribution of the post-sche- duling SINR in the orthogonal random beamforming system with M trans mit antennas and  K  single- antenna users conside ring both user feedback and scheduling. The probability distributions of each user’s feedback SINR and the post-scheduling SINR are derived rigorously  by direct integration and multinomial distribution. It is also shown that the derived CDF of the post-scheduling SINR happens to be the same as the the existing approximate CDF for SINR higher than 0 dB. System model:  Let us consider a Gaussian broadcast channel with M tra nsmit ant enna s (  M  orthonor mal ran dom bea ms) and  K  single- antenna users. If the transmit power is equally allocated to M  beams, the received signal at the k th user is given by  y k  =  1  M     M m=1 h T k  w m  s m  + n k ,  k  =  1, . . .  ,  K  (1) where  h k  is the  k th user’s  M ×  1 chan nel vec tor composed of IID comple x Gaussi an rand om entries with distri bution  CN (0, 1),  w m ’s are orthono rmal rando m beamfo rming vector s,  s m  is the tra nsmitte d symbol at the  mth beam, and  n k  is an IID comple x addi tive whit e Gaussia n noise with distr ibution  CN (0,  N 0 ).  M  SINRs of the  k th user can be calculated as [1] SINR k ,m  =  |h T k  w m | 2  M /r +   l =m |h T k  w l | 2  , m = 1, . . .  , M  (2) where  r ¼ E  s /  N 0  and  E  s ¼E [|  s m | 2 ]. It is assumed that all the users ha ve the s am e av e ra ge S NR ( r ). Ea ch re cei ve r feeds ba ck its maximum SINR  h k  along with the corresponding index i k . Thus,  h k and  i k  can be wr it ten as  h k ¼max 1m ≤  M  SINR k,m  and  i k ¼arg max 1m  M  SINR k,m , respectively. The transmitter assigns s m  to the user with the largest SINR among candidates whose feedback index is m. The pos t-s ched ulin g SINR  g m  c an then be wr it ten as  g m ¼ max k [K m h k  (m ¼1,  . . . ,  M ) where  K m  is the user index set of the mth beam given by K m ¼{k |i k ¼m,  k ¼1,  . . . ,  K }. CDF of each user’s feedback SINR:  In (2), let  |h k T w m | 2 ¼ z m , M /r ¼c, and  SINR k,m ¼ x m  for convenience. Since  SINR k,m  is II D over   k , the subscr ipt  k  is omitt ed. Now (2) can be rewritt en as  x m  =  z m /c +   l =1,l =m (m = 1, 2, . . .  , M ). Since  z m ’s are IID with  x 2 (2) and variance of 1/2 per each degree of freedom, the joint probability density function (JPDF) of  z m ’s is deno ted by  f   (  z 1 ,  z 2 ,  . . . ,  z  M ) ¼ e 2  M m1 z m  (  z m  ≥ 0,  ∀  z m ). The CDF of each user’s feedback SINR can  be d enoted b y  F h k (  x) =  Pr {  x m  ≤  x,  x m } = Pr  z m  ≤  x c +  M l =1 l =m  z l  ,  z m (3) where we use the fact that the denominator ( c + l ¼1,l = m M z l ) is always  positive. Since  x m ’s ar e not indepen dent fr om eac h othe r,  F h k  (  x) cannot  be easily obtained from simple order statistics  [6]. Instead, we try to direct ly int egra te the re gi on  R = {(  z 1 , z 2 , . . .  , z  M )|0 ≤ z m  ≤  x(c+  M l =1,l =m  z l ), m}  using the JPDF given of  z m ’s.  F h k (  x) can be written in an integral form as  F h k (  x) = ··· R e  M m=1  z m dz 1 dz 2  · ·· dz  M  (4) We change the variable z m ’s as  z 1   y 1 ,  z 2   y 2 ,  . . . ,  z  M 21   y  M 21 ,  z 1 + ... + z  M   y. Si nc e the de terminant of the c or r es ponding Jacobian is equal to 1,  dz l ... dz  M ¼dy l ... dy 1 ... dy  M 21 dy.  Thus, (4) can  be rewritten as  F h k (  x) = 1 0 e  y ··· S 1dy 1 dy 2  ··· dy  M 1 dy  (5) where, from (3), S = (  y 1 , y 2 , . . .  , y  M 1 |0 ≤ y m  ≤  x (c + y) 1 + x , m, and  y  − cx 1 + x   y 1  + ···+ y  M 1  ≤  y (6) To calculate the last integral, for  a, b ≥ 0, let  I n (a, b)  : = ··· S n(a,b) 1dx 1 dx 2  · ·· dx n  (7) where S n (a, b) = {(  x 1 , x 2 , . . .  , x n )|0 ≤ x k  ≤  a, k , b − a ≤ x 1  + x 2  + ·· · + x n  ≤  b} , R n  (8)  I n (a, b) can be compute d in a closed form of Lemma 1, which can be easily proven with mathematical induction. Lemma 1 For n ≥ 1,  I n (a, b) =  1 n! n+1 r =0 (1) r  n + 1 r  kb ral n (9) where k  xl ¼ x  if  x  ≥ 0, otherwise k  xl ¼0. Since S = S  M 1 (  x(c + y)/1 + x, y), Lemma 1 can be applied to (5) as F h k (  x) =  1  1 (1 + x)  M 1 min(  M 1,1/  x⌉−1) r =0 (1) r  M r  + 1 × (1  rx)  M 1 e (r +1)cx/1rx (10) where ⌈  x is the smallest integer not less than x . CDF of post- schedul ing SINR: By using the independence of over  g m with a multino mial distribution for  |K m | ¼d m  for  m ¼1,  . . . ,  M , we have F g 1 ,g 2 ,...,g  M (  x 1 , x 2 , . . .  ,  x  M ) =  M m=1  p m  F h k (  x m )  K (11) ELECTRONICS LETTERS 1st March 2012 Vol. 48 No. 5 

Upload: thuy-dung-nguyen

Post on 05-Oct-2015

2 views

Category:

Documents


0 download

DESCRIPTION

dgfdgfdgd

TRANSCRIPT

  • Exact post-scheduling SINR analysis for be denoted by

    orthogonal random beamforming systems

    Chanhong Kim and Jungwoo Lee

    Derived are the exact cumulative distribution functions (CDFs) of eachusers feedback signal-to-interference-plus-noise ratio (SINR), and thepost-scheduling SINR in orthogonal random beamforming systemswith M transmit antennas and K single-antenna users consideringboth user feedback and scheduling. A key contribution is to derivethe exact CDF of the post-scheduling SINR by direct integration, andit is veried by Monte-Carlo simulations. It is also shown that theexisting approximate CDF is different from the exact distribution forSINR smaller than 0 dB.

    Introduction: Since orthogonal random beamforming (ORBF) was rstproposed in [1], it has been considered a practical scheme for a Gaussianbroadcast channel with M transmit antennas and K single-antenna users.To analyse the performance of ORBF systems such as sum-rate,throughput, and average BER, it is necessary to know the statisticaldistribution of the scheduled users signal-to-interference-plus-noiseratio (SINR). In the literature [15], however, performance analysishas been done with an approximate cumulative distribution function(CDF) of the post-scheduling SINR, which assumes an unrealisticfeedback scheme.This Letter studies the exact statistical distribution of the post-sche-

    duling SINR in the orthogonal random beamforming system with Mtransmit antennas and K single-antenna users considering both userfeedback and scheduling. The probability distributions of each usersfeedback SINR and the post-scheduling SINR are derived rigorouslyby direct integration and multinomial distribution. It is also shownthat the derived CDF of the post-scheduling SINR happens to be thesame as the the existing approximate CDF for SINR higher than 0 dB.

    System model: Let us consider a Gaussian broadcast channel with Mtransmit antennas (M orthonormal random beams) and K single-antenna users. If the transmit power is equally allocated to M beams,the received signal at the kth user is given by

    yk =NameMeNameMeNameMe1

    M

    Mm=1

    hTkwmsm + nk , k = 1, . . . ,K (1)

    where hk is the kth users M 1 channel vector composed of IIDcomplex Gaussian random entries with distribution CN(0, 1), wms areorthonormal random beamforming vectors, sm is the transmittedsymbol at the mth beam, and nk is an IID complex additive whiteGaussian noise with distribution CN(0, N0).

    M SINRs of the kth user can be calculated as [1]

    SINRk,m = |hTkwm|2

    M/r+ l=m

    |hTkwl|2,m = 1, . . . ,M (2)

    where r Es/N0 and Es E[|sm|2]. It is assumed that all the usershave the same average SNR (r). Each receiver feeds back itsmaximum SINR hk along with the corresponding index ik. Thus, hkand ik can be written as hk max1m M SINRk,m and ik argmax1m M SINRk,m, respectively. The transmitter assigns sm to theuser with the largest SINR among candidates whose feedback index ism. The post-scheduling SINR gm can then be written as gm maxk[Km hk (m 1, . . . , M ) where Km is the user index set of themth beam given by Km {k|ik m, k 1, . . . , K}.

    CDF of each users feedback SINR: In (2), let |hkTwm|2 zm, M/r c,and SINRk,m xm for convenience. Since SINRk,m is IID over k,the subscript k is omitted. Now (2) can be rewritten as

    xm = zm/c+

    l=1,l=m(m = 1, 2, . . . ,M ). Since zms are IID with x2(2)

    and variance of 1/2 per each degree of freedom, the joint probabilitydensity function (JPDF) of zms is denoted by f (z1, z2, . . . , zM) e 2

    Mm1zm (zm 0, zm). The CDF of each users feedback SINR can

    ELECTRONICS LETTERS 1st March 2012 Vol. 48Fhk (x) = Pr{xm x, xm}

    = Pr zm x c+Ml=1l=m

    zl

    , zm

    (3)

    where we use the fact that the denominator (c+l1,l = mM zl ) is alwayspositive.Since xms are not independent from each other, Fhk (x) cannot

    be easily obtained from simple order statistics [6]. Instead, we try to

    directly integrate the region R = {(z1, z2, . . . , zM )|0 zm x(c+Ml=1,l=m

    zl), m} using the JPDF given of zms. Fhk(x) can be written inan integral form as

    Fhk (x) =

    R

    eMm=1

    zmdz1dz2 dzM (4)

    We change the variable zms as z1 y1,z2 y2, . . ., zM21 yM21,z1+ ...+ zM y. Since the determinant of the correspondingJacobian is equal to 1, dzl...dzM dyl...dy1...dyM21dy. Thus, (4) canbe rewritten as

    Fhk (x) =10

    ey

    S

    1dy1dy2 dyM1dy (5)

    where, from (3),

    S = (y1, y2, . . . , yM1|0 ym x(c+ y)1+ x , m,

    {

    andy cx1+ x y1 + + yM1 y

    } (6)

    To calculate the last integral, for a, b 0, let

    In(a, b) :=

    Sn(a,b)

    1dx1dx2 dxn (7)

    where

    Sn(a, b) = {(x1, x2, . . . , xn)|0 xk a, k,b a x1 + x2 + + xn b} , Rn

    (8)

    In(a, b) can be computed in a closed form of Lemma 1, which can beeasily proven with mathematical induction.

    Lemma 1 For n 1,

    In(a, b) = 1n!

    n+1r=0

    (1)r n+ 1r

    ( )kb raln (9)

    where kxl x if x 0, otherwise kxl 0.Since S = SM1(x(c+ y)/1+ x, y), Lemma 1 can be applied to (5) as

    Fhk (x) = 11

    (1+ x)M1min(M1,1/x1)r=0

    (1)r Mr + 1

    ( )

    (1 rx)M1e(r+1)cx/1rx(10)

    where x is the smallest integer not less than x.

    CDF of post-scheduling SINR: By using the independence of over gmwith a multinomial distribution for |Km| dm for m 1, . . . ,M, wehave

    Fg1,g2,...,gM (x1, x2, . . . , xM ) =Mm=1

    pmFhk (xm){ }K

    (11)

    No. 5

  • Since the channel is assumed to be IID, all the pms are identical, i.e. m,pm 1/M. The marginal CDF Fgm(x) is nally obtained as

    Fgm (x) = 11

    M (1+ x)M1min(M1,1/x1)r=0

    (1)r Mr + 1

    ( ){

    (1 rx)M1e(r+1)M/r(1rx)}K

    (12)

    Numerical results: In the literature [15], the asymptotic behaviour andthe closed form bounds of sum-rate capacity are analysed by theapproximate CDF, which is given by

    Fs(x) = 1 eM/rx

    (1+ x)M1{ }K

    (x 0) (13)

    which is the CDF of max1k K SINRk,m [1]. However, Fs(x) cannotalways be the post-scheduling SINR because (13) assumes that all theSINRs of users are fed back to the transmitter. But in ORBF feedbacksystems, each user feeds back only one SINR. It is observed thatFgm(x) Fs(x) when x 1. For 0 x , 1, however, Fs(x) is notexact any more. To verify (12) numerically, two theoretical CDFs andtwo empirical CDFs are plotted in Fig. 1. Simul. (sm) denotes theempirical CDF of gm (m 1, 2). In Fig. 1, the two empirical CDFsmatch with the derived result (12), but not with (13) when 0 x 1.

    Conclusion: A key contribution of this Letter is to derive the exactpost-scheduling SINR distribution for orthogonal random beamformingsystems by using direct integration. It is shown that the approximatedistribution in the existing literature happens to be exact whenSINR . 0 dB, and it is not when SINR , 0 dB. The exact distributioncan be used to obtain performance measures such as throughput, BER,and sum-rate more accurately, especially in the low SNR regime.

    Acknowledgments: This research was supported in part by NRF pro-grammes (20100013397, 2010-0027155), the Seoul R&BD Program(JP091007, 0423-20090051), the KETEP grant (2011T100100151),the INMAC, and BK21.

    # The Institution of Engineering and Technology 20123 September 2011doi: 10.1049/el.2011.2650One or more of the Figures in this Letter are available in colour online.

    Chanhong Kim and Jungwoo Lee (School of Electrical Engineering,Seoul National University, 599 Kwanak-Ro, Kwanak-Gu, Seoul151-744, Korea)

    E-mail: [email protected]

    References

    1 Sharif, M., and Hassibi, B.: On the capacity of MIMO broadcastchannels with partial side information, IEEE Trans. Inf. Theory, 2005,51, (2), pp. 506522

    2 Zhang, W., and Letaief, K.: MIMO broadcast scheduling with limitedfeedback, IEEE J. Sel. Areas Commun., 2007, 25, (7), pp. 14571467

    3 Kim, Y., Yang, J., and Kim, D.K.: A closed form approximation of thesum rate upper-bound of random beamforming, IEEE Commun. Lett.,2008, 12, (5), pp. 365367

    4 Vicario, J., Bosisio, R., Anton-Haro, C., and Spagnolini, U.: Beamselection strategies for orthogonal random beamforming in sparsenetworks, IEEE Trans. Wirel. Commun., 2008, 7, (9), pp. 33853396

    5 Park, K.-H., Ko, Y.-C., and Alouini, M.-S.: Accurate approximations12.0 11.5 11.0 10.5 10.00

    0.002

    0.004

    0.006

    0.008

    0.010

    0.012

    0.014

    0.016

    0.018

    0.020

    SINR, dB

    Pr(S

    INR