exact particle flow for nonlinear filters

67
exact particle flow for nonlinear filters Fred Daum & Jim Huang 14 February 2012 Copyright © 2012 Raytheon Company. All rights reserved. Customer Success Is Our Mission is a trademark of Raytheon Company. 1

Upload: others

Post on 27-Feb-2022

16 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: exact particle flow for nonlinear filters

exact particle flow

for

nonlinear filters

Fred Daum & Jim Huang

14 February 2012

Copyright © 2012 Raytheon Company. All rights reserved.

Customer Success Is Our Mission is a trademark of Raytheon Company.

1

Page 2: exact particle flow for nonlinear filters

new nonlinear filter: particle flow

new particle flow filter standard particle filters

roughly 6 to 8 orders of magnitude faster

than standard particle filters

suffers from curse of dimensionality

3 to 4 orders of magnitude faster

computation per particle

suffers from “particle degeneracy”

3 to 4 orders of magnitude fewer particles

required to achieve optimal accuracy

requires millions or billions of particles

for high dimensional problems

Bayes’ rule is computed using particle

flow (like physics)

Bayes’ rule is computed using a pointwise

multiplication of two functions

no proposal density depends on proposal density (e.g.,

Gaussian from EKF or UKF)

no resampling of particles resampling is needed to repair the damage

done by Bayes’ rule

embarrassingly parallelizable suffers from bottleneck due to resampling

computes log of unnormalized density suffers from severe numerical problems

due to computation of normalized density2

Page 3: exact particle flow for nonlinear filters

discrete time nonlinear filter problem

k

k

k

kkkk

z

w

tx

wttxFtx

tat timet vector measuremen

tat time vector noise process

tat time vectorstate)(

),),(()(

k

k

k

1

=

=

=

=+estimate x

given noisy

measurements

{ }k

k

kk

k

kkkk

k

zzz

Z

Ztxp

v

vttxHz

,...,,Z

tsmeasuremen all ofset

given Z tat time x ofdensity y probabilit),(

tat time vector noiset measuremen

),),((

21k

kk

k

k

=

=

=

=

=

3

Page 4: exact particle flow for nonlinear filters

nonlinear filtering problem

x = d-dimensional state vector

t = time

w(t) = process noise vector

dx = F(x, t)dt + G(x, t) dwcontinuous

time

dynamicsdiscrete

time

measurements

z(tk) = m-dimensional measurement vector

tk = time of kth measurement

vk = measurement noise vector

p(x, t | Zk) = probability density of x at time t given Zk

Zk = set of all measurements up to & including time tk

z(tk) = H(x(tk), tk, vk)

measurements

4

Page 5: exact particle flow for nonlinear filters

curse of dimensionality for

classic particle filter

optimal

accuracy:

r = 1.0

5

Page 6: exact particle flow for nonlinear filters

prediction of

conditional

probability

density from

tk-1 to tk

nonlinear filter

measurements

:rule Bayes'

solution of

Fokker-Planck

equation

),(),(),(

:rule Bayes'

1 kkkkkk txzpZtxpZtxp −=

6

Page 7: exact particle flow for nonlinear filters

particle degeneracy*

likelihood of

measurementprior

density

particles to represent the prior

7

*Daum & Huang, “Particle degeneracy: root cause & solution,” SPIE Proceedings 2011.

Page 8: exact particle flow for nonlinear filters

induced flow of particles

for Bayes’ rule

pdf pdfflow of density

prior posterior

)(log)(log),(log xhxgxp λλ +=

particles particles

flow of particles

sample from

density

sample from

density

λ=0 λ=1

)(log)(log),(log xhxgxp λλ +=

),( λλ

xfd

dx=

8

Page 9: exact particle flow for nonlinear filters

derivation of PDE for exact particle flow:

∂−=

∂−=

=

λλ

λ

λ

λ

λλ

x

pfTrxp

xp

x

pfTr

xp

xfd

dx

)(),(

),(log

)(),(

),( Fokker-Planck

equation with zero

diffusion

definition

of p(x,λ)

−−=

=

−=

∂−

−+=

∂∂

λ

λλη

η

λλ

λ

λλλ

λ

d

Kdxhxp

pfdiv

pfdivxpK

xh

Kxhxgxp

x

)(log)(log),(

)(

)(),()(log

)(log

)(log)(log)(log),(log

9

definition

of η

PDE for

f given p

Page 10: exact particle flow for nonlinear filters

linear first order highly underdetermined PDE:

d

d

x

q

x

q

x

q

d

Kdxhxpx

xxqdiv

∂++

∂+

∂=

−−=

=

...

)(log)(log),(),(

),()),((

2

2

1

λ

λλλη

ληλ

like Gauss’ divergence

law in electromagneticsdxxx ∂∂∂ 21

function values are

only known at

random points in d-

dimensional space

10

define: q = pf

f = unknown function

p & η = known at random points

We want dx/dλ = f(x,λ)

to be a stable dynamical

system.

law in electromagnetics

Page 11: exact particle flow for nonlinear filters

method to solve PDE how to pick unique solution computation

1. generalized inverse of linear differential

operator

minimum norm* Coulomb’s law or fast Poisson solver

(e.g., fast Ewald method)

2. Poisson’s equation assume irrotational flow (i.e., velocity

vector is the gradient of a potential)

Coulomb’s law or fast Poisson solver

(e.g., fast Ewald method)

3. generalized inverse of gradient of log-

homotopy

assume incompressible flow (i.e.,

divergence free flow)

fast (but need to compute the gradient

from random points)

4. most general solution most robustly stable filter or random

pick, etc.

fast (but need to compute the gradient

from random points)

5. separation of variables (Gaussian) pick solution of specific form

(polynomial)

extremely fast (formula)

6. separation of variables

(exponential family)

pick solution of specific form (finite basis

functions)

very fast (formula)

7. variational formulation (Gauss & Hertz) convex function minimization ODEs

8. optimal control formulation convex functional minimization (e.g.,

least action like Monge-Kantorovich)

HJB PDE or Euler-Lagrange PDEs

(or maybe ODES for nice problem)

9. direct integration (of first order linear PDE in

divergence form)

choice of d-1 arbitrary functions one-dimensional integral

10. generalized method of characteristics more conditions (e.g., curl = given or

compute gradient to get d equations)

ODEs from chain rule

11. another homotopy (inspired by Gromov’s

h-principle) like Feynman’s QED perturbation

initial condition of ODE &

uniqueness of sol. to ODE

ODEs from homotopy

12. finite dimensional parametric flow

(e.g., f = Ax+b with A & b parameters)

non-singular matrix to invert d³ or d^6 (least squares for d or d²

parameters, i.e., A & b)

13. Fourier transform of PDE (divergence form

of linear PDE has constant coefficients)

minimum norm* or most stable flow Coulomb’s law or inverse Fourier

transform, etc.

11

Page 12: exact particle flow for nonlinear filters

Fred Daum, Jim Huang & Arjang Noushin, “exact particle flow for nonlinear filters,” Proceedings of SPIE Conference, Orlando Florida,

April 2010.

Fred Daum & Jim Huang, “particle degeneracy: root cause & solution,” Proceedings of SPIE Conference, Orlando Florida, April 2011.

Fred Daum & Jim Huang “numerical experiments for nonlinear filters with exact particle flow induced by log-homotopy,” Proceedings of SPIE Conference, Orlando Florida, April 2010.Conference, Orlando Florida, April 2010.

Fred Daum & Jim Huang, “exact particle flow for nonlinear filters: seventeen dubious solutions to a linear first order underdetermined PDE,” Proceedings of IEEE Conference, Asilomar California, November 2010.

Fred Daum, Jim Huang & Arjang Noushin, “Coulomb’s law particle flow for nonlinear filters,” Proceedings of SPIE Conference, San Diego California, August 2011.

12

Page 13: exact particle flow for nonlinear filters

exact particle flow for Gaussian densities:

fx

pfdivh

xfd

dx

∂−−=

=

:exactly ffor solvecan weGaussian,h & gfor

log)()log(

),( λλ

[ ]

( ) ( )[ ]xAzRPHAIAIb

HRHPHPHA

bAxf

T

TT

+++=

+−=

+=

1

1

2

2

1

:exactly ffor solvecan weGaussian,h & gfor

λλ

λ

13

automatically stable

under very mild

conditions &

extremely fast

Page 14: exact particle flow for nonlinear filters

incompressible particle flow

−=

gradient zero-nonfor

),(log

))(log(dx

2

x

xp

xh

T

λ

λ

∂−

=

otherwise 0

gradient zero-nonfor ),(log

))(log(

d

dx 2

x

xpxh

λλ

14

Page 15: exact particle flow for nonlinear filters

irrotational particle flow:

∫ −

=

≥−

−=

=

∂==

d

T

dyc

dyyx

cyxV

xx

xVTr

xpx

xVxf

d

dx

)logK(

-logh(y))p(y,)V(x,

3 dfor ),(),(

),(),(

),(/),(

),(

2

2

2

λλλ

ληλ

ληλ

λλ

λλ Poisson’s

equation

−−

∂−≈

−−

∂−=

−−

∂−=

− ∂

=

iSjd

ji

T

ji

ji

d

T

d

T

d

xx

xxdcKxh

Mx

xV

yx

yxdcKyhE

x

xV

dyyx

yxdcKyhyp

x

xV

dyyx

))(2()

)(log)((log

1),(

))(2()

)(log)((log

),(

))(2()(log)(log),(

),(

-logh(y))p(y,)V(x,2

λ

λλ

λ

λλ

λ

λλ

λ

λλλ

15

like

Coulomb’s

law

Page 16: exact particle flow for nonlinear filters

0 5 10 15 20 25 30 35 400

100

200

300N = 1000

An

gle

Err

or

(de

g)

EKF

PF

0 5 10 15 20 25 30 35 400

5

10

15

Time

An

gle

Ra

te E

rro

r (d

eg

/se

c)

EKF

PF

16

Page 17: exact particle flow for nonlinear filters

100

200

300

400Time = 1, Frame 1

An

gle

Ra

te (

de

g/s

ec)

-200 -150 -100 -50 0 50 100 150 200-300

-200

-100

0

Angle (deg)

An

gle

Ra

te (

de

g/s

ec)

17

Page 18: exact particle flow for nonlinear filters

100

200

300

400Time = 1, Frame 2

An

gle

Ra

te (

de

g/s

ec)

-200 -150 -100 -50 0 50 100 150 200-300

-200

-100

0

Angle (deg)

An

gle

Ra

te (

de

g/s

ec)

18

Page 19: exact particle flow for nonlinear filters

100

200

300

400Time = 1, Frame 3

An

gle

Ra

te (

de

g/s

ec)

-200 -150 -100 -50 0 50 100 150 200-300

-200

-100

0

Angle (deg)

An

gle

Ra

te (

de

g/s

ec)

19

Page 20: exact particle flow for nonlinear filters

100

200

300

400Time = 1, Frame 4

An

gle

Ra

te (

de

g/s

ec)

-200 -150 -100 -50 0 50 100 150 200-300

-200

-100

0

Angle (deg)

An

gle

Ra

te (

de

g/s

ec)

20

Page 21: exact particle flow for nonlinear filters

100

200

300

400Time = 1, Frame 5

An

gle

Ra

te (

de

g/s

ec)

-200 -150 -100 -50 0 50 100 150 200-300

-200

-100

0

Angle (deg)

An

gle

Ra

te (

de

g/s

ec)

21

Page 22: exact particle flow for nonlinear filters

100

200

300

400Time = 1, Frame 6

An

gle

Ra

te (

de

g/s

ec)

-200 -150 -100 -50 0 50 100 150 200-300

-200

-100

0

Angle (deg)

An

gle

Ra

te (

de

g/s

ec)

22

Page 23: exact particle flow for nonlinear filters

100

200

300

400Time = 1, Frame 7

An

gle

Ra

te (

de

g/s

ec)

-200 -150 -100 -50 0 50 100 150 200-300

-200

-100

0

Angle (deg)

An

gle

Ra

te (

de

g/s

ec)

23

Page 24: exact particle flow for nonlinear filters

100

200

300

400Time = 1, Frame 8

An

gle

Ra

te (

de

g/s

ec)

-200 -150 -100 -50 0 50 100 150 200-300

-200

-100

0

Angle (deg)

An

gle

Ra

te (

de

g/s

ec)

24

Page 25: exact particle flow for nonlinear filters

100

200

300

400Time = 1, Frame 9

An

gle

Ra

te (

de

g/s

ec)

-200 -150 -100 -50 0 50 100 150 200-300

-200

-100

0

Angle (deg)

An

gle

Ra

te (

de

g/s

ec)

25

Page 26: exact particle flow for nonlinear filters

100

200

300

400Time = 1, Frame 10

An

gle

Ra

te (

de

g/s

ec)

-200 -150 -100 -50 0 50 100 150 200-300

-200

-100

0

Angle (deg)

An

gle

Ra

te (

de

g/s

ec)

26

Page 27: exact particle flow for nonlinear filters

103

104

d = 12, ny = 3, y = x2, SNR = 20dB

Dim

en

sio

nle

ss E

rro

r

quadratic measurement

nonlinearity

exact flow

beats EKF by

102

103

104

105

102

Dim

en

sio

nle

ss E

rro

r

Number of Particles

EKF

PF

27

beats EKF by

2 orders of

magnitude

Page 28: exact particle flow for nonlinear filters

0

0.2

0.4

0.6

0.8

1x 10

5 Time = 1, Magenta: truth, Green: PF estimate, Black: KF

-1 -0.5 0 0.5 1 1.5

x 105

-1

-0.8

-0.6

-0.4

-0.2

28

Page 29: exact particle flow for nonlinear filters

0

0.2

0.4

0.6

0.8

1x 10

5 Time = 1, Magenta: truth, Green: PF estimate, Black: KF

-1 -0.5 0 0.5 1 1.5

x 105

-1

-0.8

-0.6

-0.4

-0.2

29

Page 30: exact particle flow for nonlinear filters

0

0.2

0.4

0.6

0.8

1x 10

5 Time = 1, Magenta: truth, Green: PF estimate, Black: KF

-1 -0.5 0 0.5 1 1.5

x 105

-1

-0.8

-0.6

-0.4

-0.2

30

Page 31: exact particle flow for nonlinear filters

0

0.2

0.4

0.6

0.8

1x 10

5 Time = 1, Magenta: truth, Green: PF estimate, Black: KF

-1 -0.5 0 0.5 1 1.5

x 105

-1

-0.8

-0.6

-0.4

-0.2

31

Page 32: exact particle flow for nonlinear filters

0

0.2

0.4

0.6

0.8

1x 10

5 Time = 1, Magenta: truth, Green: PF estimate, Black: KF

-1 -0.5 0 0.5 1 1.5

x 105

-1

-0.8

-0.6

-0.4

-0.2

32

Page 33: exact particle flow for nonlinear filters

0

0.2

0.4

0.6

0.8

1x 10

5 Time = 1, Magenta: truth, Green: PF estimate, Black: KF

-1 -0.5 0 0.5 1 1.5

x 105

-1

-0.8

-0.6

-0.4

-0.2

33

Page 34: exact particle flow for nonlinear filters

0

0.2

0.4

0.6

0.8

1x 10

5 Time = 1, Magenta: truth, Green: PF estimate, Black: KF

-1 -0.5 0 0.5 1 1.5

x 105

-1

-0.8

-0.6

-0.4

-0.2

34

Page 35: exact particle flow for nonlinear filters

0

0.2

0.4

0.6

0.8

1x 10

5 Time = 1, Magenta: truth, Green: PF estimate, Black: KF

-1 -0.5 0 0.5 1 1.5

x 105

-1

-0.8

-0.6

-0.4

-0.2

35

Page 36: exact particle flow for nonlinear filters

0

0.2

0.4

0.6

0.8

1x 10

5 Time = 1, Magenta: truth, Green: PF estimate, Black: KF

-1 -0.5 0 0.5 1 1.5

x 105

-1

-0.8

-0.6

-0.4

-0.2

36

Page 37: exact particle flow for nonlinear filters

0

0.2

0.4

0.6

0.8

1x 10

5 Time = 1, Magenta: truth, Green: PF estimate, Black: KF

-1 -0.5 0 0.5 1 1.5

x 105

-1

-0.8

-0.6

-0.4

-0.2

37

Page 38: exact particle flow for nonlinear filters

105

106

107

d = 12, ny = 3, y = x

3, SNR = 20dB

Dim

en

sio

nle

ss

Err

or exact flow

beats EKF by

2 orders of

magnitude

cubic measurement nonlinearity

102

103

104

105

103

104

Dim

en

sio

nle

ss

Err

or

Number of Particles

EKF

PF

38

magnitude

Page 39: exact particle flow for nonlinear filters

nonlinear filter performance (accuracy wrt

optimal & computational complexity)

DIMENSIONprocess noise

initial uncertainty

of state vector

measurementexploit

smoothness

sparseness

measurement

noise

stability

& mixing

of dynamics

multi-modal

nonlinearityill-conditioning

quality of

proposal density

concentration

of measure

exploit

structure (e.g.

exact filters)

39

Page 40: exact particle flow for nonlinear filters

variation in initial uncertainty of x

1010

1015

1020

Dim

en

sio

nle

ss E

rro

r

N = 1000, Stable, d = 10, Quadratic

Huge Initial Uncertainty

Large Initial Uncertainty

Medium Initial Uncertainty

Small Initial Uncertainty

, λλλλ = 0.6

25 Monte Carlo Trials

0 5 10 15 20 25 3010

-5

100

105

Time

Dim

en

sio

nle

ss E

rro

r

40

Page 41: exact particle flow for nonlinear filters

variation in eigenvalues of the plant (λ)

106

108

1010

1012

Dim

en

sio

nle

ss E

rro

r

N = 1000, d = 10, Cubic

λλλλ = 0.1

0.5

1.0

1.1

1.2

25 Monte Carlo Trials

0 5 10 15 20 25 3010

-2

100

102

104

Time

Dim

en

sio

nle

ss E

rro

r

41

Page 42: exact particle flow for nonlinear filters

variation in dimension of x

106

108

1010

1012

Dim

en

sio

nle

ss E

rro

r

N = 1000, λλλλ = 1.0, Cubic

Dimension = 5

10

15

20

25 Monte Carlo Trials

0 5 10 15 20 25 3010

-2

100

102

104

Time

Dim

en

sio

nle

ss E

rro

r

42

Page 43: exact particle flow for nonlinear filters

exact flow filter is many orders of magnitude faster per

particle than standard particle filters

- - - - -

bootstrap

EKF proposal

incomp flow

exact flow

3

104

105

106

107

Med

ian

Co

mp

uta

tio

n T

ime

fo

r 30 U

pd

ate

s (

sec)

d = 30

d = 20

d = 10

d = 5 bootstrap

particle filter

EKF proposal

* Intel Corel 2 CPU, 1.86GHz, 0.98GB of RAM, PC-MATLAB version 7.7

25 Monte Carlo trials10

210

310

410

510

-1

100

101

102

103

Number of Particles

Med

ian

Co

mp

uta

tio

n T

ime

fo

r 30 U

pd

ate

s (

sec)

43

exact flow

EKF proposal

incompressible

flow

Page 44: exact particle flow for nonlinear filters

particle flow filter is many orders of magnitude faster

real time computation (for the same or better

estimation accuracy)

3 or 4 orders of

3 or 4 orders of magnitude faster

per particle

avoids bottleneck in

many orders of

magnitude faster

3 or 4 orders of magnitude

fewer particles

bottleneck in parallel

processing due to resampling

44

Page 45: exact particle flow for nonlinear filters

new nonlinear filter: particle flow

new particle flow filter standard particle filters

roughly 6 to 8 orders of magnitude faster

than standard particle filters

suffers from curse of dimensionality

3 to 4 orders of magnitude faster

computation per particle

suffers from “particle degeneracy”

3 to 4 orders of magnitude fewer particles

required to achieve optimal accuracy

requires millions or billions of particles

for high dimensional problems

Bayes’ rule is computed using particle

flow (like physics)

Bayes’ rule is computed using a pointwise

multiplication of two functions

no proposal density depends on proposal density (e.g.,

Gaussian from EKF or UKF)

no resampling of particles resampling is needed to repair the damage

done by Bayes’ rule

embarrassingly parallelizable suffers from bottleneck due to resampling

computes log of unnormalized density suffers from severe numerical problems

due to computation of normalized density45

Page 46: exact particle flow for nonlinear filters

MOVIES of

particle flowparticle flow

46

Page 47: exact particle flow for nonlinear filters

exact particle flow for Gaussian densities:

fx

pfdivh

xfd

dx

∂−−=

=

:exactly ffor solvecan weGaussian,h & gfor

log)()log(

),( λλ

[ ]

( ) ( )[ ]xAzRPHAIAIb

HRHPHPHA

bAxf

T

TT

+++=

+−=

+=

1

1

2

2

1

:exactly ffor solvecan weGaussian,h & gfor

λλ

λ

47

automatically stable

under very mild

conditions &

extremely fast

Page 48: exact particle flow for nonlinear filters

0

0.2

0.4

0.6

0.8Inside = 5 percent, Magenta: truth, Green: PF estimate, Black: KF

Ax+

b

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6-0.8

-0.6

-0.4

-0.2

Ax+

b

48

Page 49: exact particle flow for nonlinear filters

0

0.2

0.4

0.6

0.8Inside = 10.6 percent, Magenta: truth, Green: PF estimate, Black: KF

Ax+

b

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6-0.8

-0.6

-0.4

-0.2

Ax+

b

49

Page 50: exact particle flow for nonlinear filters

0

0.2

0.4

0.6

0.8Inside = 13.8 percent, Magenta: truth, Green: PF estimate, Black: KF

Ax+

b

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6-0.8

-0.6

-0.4

-0.2

Ax+

b

50

Page 51: exact particle flow for nonlinear filters

0

0.2

0.4

0.6

0.8Inside = 16.6 percent, Magenta: truth, Green: PF estimate, Black: KF

Ax+

b

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6-0.8

-0.6

-0.4

-0.2

Ax+

b

51

Page 52: exact particle flow for nonlinear filters

0

0.2

0.4

0.6

0.8Inside = 17.6 percent, Magenta: truth, Green: PF estimate, Black: KF

Ax+

b

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6-0.8

-0.6

-0.4

-0.2

Ax+

b

52

Page 53: exact particle flow for nonlinear filters

0

0.2

0.4

0.6

0.8Inside = 21 percent, Magenta: truth, Green: PF estimate, Black: KF

Ax+

b

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6-0.8

-0.6

-0.4

-0.2

Ax+

b

53

Page 54: exact particle flow for nonlinear filters

0

0.2

0.4

0.6

0.8Inside = 21 percent, Magenta: truth, Green: PF estimate, Black: KF

Ax+

b

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6-0.8

-0.6

-0.4

-0.2

Ax+

b

54

Page 55: exact particle flow for nonlinear filters

0

0.2

0.4

0.6

0.8Inside = 23.8 percent, Magenta: truth, Green: PF estimate, Black: KF

Ax+

b

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6-0.8

-0.6

-0.4

-0.2

Ax+

b

55

Page 56: exact particle flow for nonlinear filters

0

0.2

0.4

0.6

0.8Inside = 26.4 percent, Magenta: truth, Green: PF estimate, Black: KF

Ax+

b

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6-0.8

-0.6

-0.4

-0.2

Ax+

b

56

Page 57: exact particle flow for nonlinear filters

0

0.2

0.4

0.6

0.8Inside = 27.6 percent, Magenta: truth, Green: PF estimate, Black: KF

Ax+

b

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6-0.8

-0.6

-0.4

-0.2

Ax+

b

57

Page 58: exact particle flow for nonlinear filters

incompressible particle flow

2

log)log(

dx

∂−

= x

ph

T

gradient zerofor 0

2logd

=

∂ ∂=

λ

λ

d

dx

x

px

58

Page 59: exact particle flow for nonlinear filters

0

0.2

0.4

0.6

0.8Inside = 6 percent, Magenta: truth, Green: PF estimate, Black: KF

Hessia

n

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6-0.8

-0.6

-0.4

-0.2

Hessia

n

59

Page 60: exact particle flow for nonlinear filters

0

0.2

0.4

0.6

0.8Inside = 5.8 percent, Magenta: truth, Green: PF estimate, Black: KF

Hessia

n

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6-0.8

-0.6

-0.4

-0.2

Hessia

n

60

Page 61: exact particle flow for nonlinear filters

0

0.2

0.4

0.6

0.8Inside = 8.2 percent, Magenta: truth, Green: PF estimate, Black: KF

Hessia

n

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6-0.8

-0.6

-0.4

-0.2

Hessia

n

61

Page 62: exact particle flow for nonlinear filters

0

0.2

0.4

0.6

0.8Inside = 9.2 percent, Magenta: truth, Green: PF estimate, Black: KF

Hessia

n

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6-0.8

-0.6

-0.4

-0.2

Hessia

n

62

Page 63: exact particle flow for nonlinear filters

0

0.2

0.4

0.6

0.8Inside = 11.2 percent, Magenta: truth, Green: PF estimate, Black: KF

Hessia

n

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6-0.8

-0.6

-0.4

-0.2

Hessia

n

63

Page 64: exact particle flow for nonlinear filters

0

0.2

0.4

0.6

0.8Inside = 11.8 percent, Magenta: truth, Green: PF estimate, Black: KF

Hessia

n

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6-0.8

-0.6

-0.4

-0.2

Hessia

n

64

Page 65: exact particle flow for nonlinear filters

0

0.2

0.4

0.6

0.8Inside = 12.8 percent, Magenta: truth, Green: PF estimate, Black: KF

Hessia

n

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6-0.8

-0.6

-0.4

-0.2

Hessia

n

65

Page 66: exact particle flow for nonlinear filters

0

0.2

0.4

0.6

0.8Inside = 12 percent, Magenta: truth, Green: PF estimate, Black: KF

Hessia

n

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6-0.8

-0.6

-0.4

-0.2

Hessia

n

66

Page 67: exact particle flow for nonlinear filters

0

0.2

0.4

0.6

0.8Inside = 11.6 percent, Magenta: truth, Green: PF estimate, Black: KF

Hessia

n

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6-0.8

-0.6

-0.4

-0.2

Hessia

n

67