ewahyuni-mekbanenglish colour.pdf

Upload: profesor-jenius

Post on 25-Feb-2018

222 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/25/2019 ewahyuni-MekbanEnglish colour.pdf

    1/74

    09/02/2014

    Dr. Endah Wahyuni 1

    MEKANIKA BAHAN

    Mechanics of Materials)

    3 CREDITS

    Statically Determinate

    Mechanics11

    Lecturers:Lecturers:

    UntilUntil EETSTS

    EndahEndah WahyuniWahyuni, ST (ITS),, ST (ITS), MScMSc (UMIST), PhD ((UMIST), PhD (UoMUoM))[email protected]@gmail.com @end222@end222

    --

    Prof. Ir. Priyo Suprobo, MS, PhDProf. Ir. Priyo Suprobo, MS, PhD

    22

  • 7/25/2019 ewahyuni-MekbanEnglish colour.pdf

    2/74

    09/02/2014

    Dr. Endah Wahyuni 2

    BILINGUAL CLASSBILINGUAL CLASS

    Module in English, Class in Indonesian; orModule in English, Class in Indonesian; or

    v ce versa.v ce versa.

    Delivery of contents in 2 languagesDelivery of contents in 2 languages

    (Indonesian & English).(Indonesian & English).

    Technical terms in EnglishTechnical terms in English

    33

    MaterialsMaterials Books:Books:

    1.1. E.P. Popov, 1978, Mechanics of MaterialsE.P. Popov, 1978, Mechanics of Materials

    .. , ,, ,MaterialsMaterials

    3.3. R.C. Hibbeler, 1997, Mechanics of MaterialsR.C. Hibbeler, 1997, Mechanics of Materials

    4.4. Any related books, with topic: Mechanics ofAny related books, with topic: Mechanics ofMaterialMaterial

    ..

    http://personal.its.ac.id/dataPersonal.php?userid=http://personal.its.ac.id/dataPersonal.php?userid=ewahyuniewahyuni

    http://www.structuralconcepts.orghttp://www.structuralconcepts.org44

  • 7/25/2019 ewahyuni-MekbanEnglish colour.pdf

    3/74

    09/02/2014

    Dr. Endah Wahyuni 3

    E.P. Popov, 1978, Mechanics ofE.P. Popov, 1978, Mechanics of

    Materials, 2Materials, 2ndnd editionedition

    55

    GereGere & Timoshenko& Timoshenko, 2008, Mechanics, 2008, Mechanics

    of Materials, 7of Materials, 7thth editionedition

    66

  • 7/25/2019 ewahyuni-MekbanEnglish colour.pdf

    4/74

    09/02/2014

    Dr. Endah Wahyuni 4

    R.C. Hibbeler,R.C. Hibbeler, 20102010, Mechanics of, Mechanics ofMaterialsMaterials, 8, 8thth editionedition

    77

    Other books: Mechanics of MaterialOther books: Mechanics of Material

    88

  • 7/25/2019 ewahyuni-MekbanEnglish colour.pdf

    5/74

    09/02/2014

    Dr. Endah Wahyuni 5

    Learning MethodsLearning Methods ClassClass

    Students areStudents are requiredrequired to read the courseto read the coursematerial to be provided in the existing classmaterial to be provided in the existing classscheduleschedule

    ResponsivenessResponsiveness

    Exercises in class with guidanceExercises in class with guidance

    QuizQuiz

    nn--c ass exam a any g ven mec ass exam a any g ven me Home workHome work

    Students do the work to be doneStudents do the work to be done at homeat home withwiththe responsibility, not only collects the dutythe responsibility, not only collects the duty..

    99

    EvaluationsEvaluationsUTS (30%) UAS (30%)

    Quiz1 (10%) Quiz2 (10%)

    PR1 (10%) PR2 (10%)

    *Prosentase bisa diubah sesuai yang menguntungkan mahasiswa

    1010

  • 7/25/2019 ewahyuni-MekbanEnglish colour.pdf

    6/74

    09/02/2014

    Dr. Endah Wahyuni 6

    Notes:Notes: 20 minutes late20 minutes late, not permitted to enter the class, not permitted to enter the class..

    Disturbing classDisturbing class go outgo out

    Home work is collected before the class startingHome work is collected before the class starting

    Keep the spirit on!Keep the spirit on!

    1111

    ContentsContentsMetode Pembel aj aran Bobo t Ni l ai

    dan Evaluasi %

    1 1 Ketepatan penjelaskan Kuliah lihat UTS

    tentang tegangan, rergangan, modulus

    elastisitas serta modulus geser

    No

    Dapat menjelaskan tentang tegangan, a. pendahuluan

    regangan, modulus elastisitas serta modulus b. pengertian tegangan, regangan

    geser c. pengertian modulus elastisitas

    Minggu ke Kompetensi Indikator Kompetensi Materi Pembelajaran

    2 2 & 3 Ketepatan perhitungan tegangan pada Kuliah lihat UTS

    balok yang menerima beban lentur murni Responsi

    PR 1 2

    3 4 & 5 Ketepatan perhitungan tegangan geser Kuliah lihat UTS

    pada balok akibat beban lentur Responsi

    PR 2 2

    4 6 Ketepatan perhitungan tegangan dan Kuliah lihat UTSDapat menghitung tegangan dan regangan a. pengertian torsi

    penampang. lentur

    c. shear center

    d. geser pada profil berdinding tipis

    Dapat menghitung tegangan geser pada balok a. hubungan momen dan gaya

    yang disebabkan oleh beban lentur, lintang

    pada balok-balok dengan berbagai bentuk b. tegangan geser akibat beban

    baik semasih pada kondisi elastis maupun non elastis

    sesudah mencapai kondisi non elastis

    pada sebuah balok akibat beban lentur murni b. lentur muni pada balok dengan

    baik pada balok dengan bahan tunggal dua bahan

    maupun pada balok dengan dua bahan, c. lentur murni pada balok

    d. static test

    Dapat menghitung tegangan yang terjadi a. lentur muni pada balok elastis

    1212

    regangan pada poros akibat beban torsi Responsi

    c. regangan oleh torsi PR 3 2

    5 7 & 8 Ketepatan perhitungan kombinasi tegangan Kuliah lihat UTS

    dan ketepatan penggambaran bentuk kern Responsi

    PR 4 2

    6 9 Test 40UTS

    berbagai bentuk penampang penampang kolom

    c. kern

    Dapat mengkombinasikan tegangan-tegangan a. kombinasi tegangan pada balok

    sejenis pada penampang balok atau kolom tidak simetris

    dan dapat menggambar bentuk kern dari b. kombinasi tegangan pada

    d. tegangan oleh torsi pada poros

    non elastis

    pada poros akibat beban torsi b. tegangan geser torsi

  • 7/25/2019 ewahyuni-MekbanEnglish colour.pdf

    7/74

    09/02/2014

    Dr. Endah Wahyuni 7

    Contents1. Introduction

    2. Slicin Method

    3. Understanding of Stress

    4. Normal Stress

    5. Average Shear Stress

    6. Determine of and

    7. STATIC TEST

    8. Allowed Stress

    9. Strain1313

    10. Diagram, Normal Stress - Strain

    - HOOKE law

    - Yield Point

    - Deformation of bars from Axial loads

    - Poissons Ratio

    - Relationship of Stress, Strain and Poissons Ratio

    .

    - Shear Stress

    - Shear Strain

    1414

  • 7/25/2019 ewahyuni-MekbanEnglish colour.pdf

    8/74

    09/02/2014

    Dr. Endah Wahyuni 8

    12. Pure Bending on beams

    13. Moment of Inertia

    14. Calculating Stress on beams

    .

    16. Pure bending on non-elastic beams

    17. Shear-bending Stress

    18. Tors ion

    19. Multi le Stresses

    20. Combination of stresses on Columns

    21. KERN

    22. ..etc ETS1515

    After midsemester evaluation:After midsemester evaluation:

    1.1. Plane stress analysisPlane stress analysis

    Maximum and minimum stressMaximum and minimum stress

    MohrMohr CircleCircle

    2.2. Bar design based on stressBar design based on stress

    Based onBased on axial stressaxial stress,, flexureflexure and shear for prismaticand shear for prismatic

    barbar andand definite staticdefinite static3.3. Definite Static Beams deformationDefinite Static Beams deformation

    Equation of elastic line deformation method.Equation of elastic line deformation method.

    Area moment methodArea moment method

    4.4. Stability of Compression BarStability of Compression Bar

    Centric Load and Shear Force.Centric Load and Shear Force.

    1616

  • 7/25/2019 ewahyuni-MekbanEnglish colour.pdf

    9/74

    09/02/2014

    Dr. Endah Wahyuni 9

    ReviewsReviews::Statically Determinate MechanicsStatically Determinate Mechanics

    Determinate StructureDeterminate Structure :: If?If?

    Static Equation ??Static Equation ??

    11

    22

    33

    1717

    sendi rol

    sendi

    sendi1818

  • 7/25/2019 ewahyuni-MekbanEnglish colour.pdf

    10/74

    09/02/2014

    Dr. Endah Wahyuni 10

    sendi rol

    sendi sendi1919

    ReactionsReactions

    Simply supported beamsSimply supported beams

    Cantilever beamsCantilever beams

    TrussesTrusses

    2020

  • 7/25/2019 ewahyuni-MekbanEnglish colour.pdf

    11/74

    09/02/2014

    Dr. Endah Wahyuni 11

    LoadingsLoadings-- PointPoint LoadLoadAtAt midspanmidspan,,

    Within certain locationWithin certain location

    -- Distribution LoadsDistribution Loads Full distributed loadsFull distributed loads

    Partially distributed loadsPartially distributed loads

    -- At the end of cantileverAt the end of cantilever

    MidspanMidspan

    Within certain locationWithin certain location2121

    Modul 1Modul 1

    Tegangan dan ReganganTegangan dan Regangan

    Stress & StrainStress & Strain

    2222

  • 7/25/2019 ewahyuni-MekbanEnglish colour.pdf

    12/74

    09/02/2014

    Dr. Endah Wahyuni 12

    IntroductionIntroduction At a structure, each elements of a structureAt a structure, each elements of a structure

    should be having a dimension. The elementsshould be having a dimension. The elements

    them or maybe applied to them. To calculate thethem or maybe applied to them. To calculate thedimension of the elements, we should know thedimension of the elements, we should know themethods to analyses, which are:methods to analyses, which are:

    strengthstrength (( kekuatankekuatan),),

    stiffnessstiffness (( kekakuankekakuan)),,

    ,,The methods will be discussed in this Mechanic ofThe methods will be discussed in this Mechanic of

    Materials.Materials.

    2323

    Mechanics of materials is a subject of a very oldMechanics of materials is a subject of a very old

    age, which generally begins with Galileo in the early 17thage, which generally begins with Galileo in the early 17th

    century. The first one describes the behavior of thecentury. The first one describes the behavior of the

    structure of load rationally.structure of load rationally.

    2424

  • 7/25/2019 ewahyuni-MekbanEnglish colour.pdf

    13/74

    09/02/2014

    Dr. Endah Wahyuni 13

    The behavior of the structure to obtain the force dependsThe behavior of the structure to obtain the force dependsnot only on the fundamental laws of Newtoniannot only on the fundamental laws of Newtonianmechanics that govern force equilibrium but also to themechanics that govern force equilibrium but also to thephysical characteristics of the structural parts, which canphysical characteristics of the structural parts, which canbe obtained from the laboratory, where they are givenbe obtained from the laboratory, where they are givent e orce o act on s nown accurate y.t e orce o act on s nown accurate y.

    Mechanics of Material is a mixed knowledge from theMechanics of Material is a mixed knowledge from theexperiment and the Newtonian principals on elasticexperiment and the Newtonian principals on elasticmechanics.mechanics.

    ne o e ma n pro ems n mec an cs o ma er a s s one o e ma n pro ems n mec an cs o ma er a s s oinvestigate the resistance of an object, that is theinvestigate the resistance of an object, that is theessence of the internal forces for balancing the externalessence of the internal forces for balancing the externalforces.forces.

    2525

    APPLICATIONS Planning of a Structure

    MATERIALS

    CONTROL

    PLANNING OF THE

    DIMENSIONS

    STRENGTH /

    STRESS

    STRUCTURES: STABLE2626

  • 7/25/2019 ewahyuni-MekbanEnglish colour.pdf

    14/74

    09/02/2014

    Dr. Endah Wahyuni 14

    EXAMPLE

    TUBE TRUSSES

    2727

    EXAMPLEBUILDING FRAME

    70/70

    50/50

    2828

  • 7/25/2019 ewahyuni-MekbanEnglish colour.pdf

    15/74

    09/02/2014

    Dr. Endah Wahyuni 15

    EXAMPLE

    P1P2

    H1 H2

    B1 B2

    Because of P2 > P1, thus from stress

    analysis, dimension wil l be obtained

    where B2 > B1, H2 > H12929

    Metode Irisan

    P2P1 P2

    P1

    GAYA DALAM

    S1S2

    S3

    S1S3

    P3P4

    P3P4GAYA DALAM

    3030

  • 7/25/2019 ewahyuni-MekbanEnglish colour.pdf

    16/74

    09/02/2014

    Dr. Endah Wahyuni 16

    Tegangan (Stress)

    Tegak Lurus

    Bidang Potongan

    Sejajar Bidang

    Potongan

    DEFINISI :

    TEGANGAN ADALAH GAYA DALAM YANG

    BEKERJA PADA SUATU LUASAN KECIL

    TAK BERHINGGA DARI SUATU

    POTONGAN 3131

    Stress (Tegangan)MATHEMATICS EQUATIONS

    F=

    LimA

    V=

    A 0Lim

    A

    SHEAR STRESS

    = Normal Stress

    F

    A

    V

    = Cross-section area

    = Forces on perpendicular of cross-section

    = Forces on parralel of cross-section3232

  • 7/25/2019 ewahyuni-MekbanEnglish colour.pdf

    17/74

    09/02/2014

    Dr. Endah Wahyuni 17

    Stress (Tegangan)

    Stress symbols on elements related with

    coordinates : z

    yy

    z

    xz

    yz

    zyzx

    x

    xxy yx

    3333

    Normal Stresses

    NORMAL STRESS

    Tension

    NORMAL STRESS

    Compression

    = P/A = P/AP P

    PP 3434

  • 7/25/2019 ewahyuni-MekbanEnglish colour.pdf

    18/74

    09/02/2014

    Dr. Endah Wahyuni 18

    Average Shear Stresses

    SHEAR STRESSFORCES ACTING

    PARRALEL SECTIONCREATING

    = P Cos / ANormal

    AShear

    P

    AShear

    ANormal

    = P / AShear3535

    Average Shear Stress

    P

    P

    AShear

    = P / Total AShear

    Total Ashear=

    2 x Sectional Area of Bolts3636

  • 7/25/2019 ewahyuni-MekbanEnglish colour.pdf

    19/74

    09/02/2014

    Dr. Endah Wahyuni 19

    Calculation of

    STRESS

    Determine

    and

    NEED TO UNDERSTAND

    THE PURPOSE AND THE GOAL

    CALCULATION

    DETERMINATION OF FORCE

    CHOOSE THE EQUATION

    or

    WILL BE PROBLEM IF

    AND CROSS SECTIONALAREA

    CALCULATION RESULT

    DONT UNDERSTANDSTATICALLY

    DETERMINATED

    ENGINEERING MECHANIC

    3737

    DETERMINE FORCE VALUEUSE STATIC EQUATION:

    FX = 0 MX = 0

    FY = 0 MY = 0

    FZ = 0 MZ = 0

    Define Cross Sectional Area

    Choose the smallest AreaTo get

    The Maximum Stress

    3838

  • 7/25/2019 ewahyuni-MekbanEnglish colour.pdf

    20/74

    09/02/2014

    Dr. Endah Wahyuni 20

    Determine Cross Sectional Areaexample :

    The smallest cross

    sectional area that was

    choosen to get the

    maximum stress value

    3939

    Example 1Example 1::

    A concrete wall as shown in the figure, received distributed loads ofA concrete wall as shown in the figure, received distributed loads of 2020

    kN/mkN/m22.. Calculate the stress onCalculate the stress on 1 m1 m above the based. The gravitationabove the based. The gravitation

    load of the concrete isload of the concrete is 25 kN/m25 kN/m33

    4040

  • 7/25/2019 ewahyuni-MekbanEnglish colour.pdf

    21/74

    09/02/2014

    Dr. Endah Wahyuni 21

    Answer:Answer:

    Self weight of concrete wallSelf weight of concrete wall::W = [(0,5 + 1,5)/2] (0,5) (2) (25) = 25 kNW = [(0,5 + 1,5)/2] (0,5) (2) (25) = 25 kN

    Total loadTotal load:: P = 20 0,5 0,5 = 5 kNP = 20 0,5 0,5 = 5 kN

    FromFrom FFyy = 0,= 0, the reactionthe reaction R = W + P = 30 kNR = W + P = 30 kN

    using upper part of the wall as a free thing, thus the weightusing upper part of the wall as a free thing, thus the weight

    of the wall upper the crossof the wall upper the cross--section issection is WW11 = (0,5 + 1) (0,5)= (0,5 + 1) (0,5)

    (25/2) = 9,4 kN(25/2) = 9,4 kN

    FromFrom FFyy = 0,= 0, the Load on sectionthe Load on section :: FFaa = P + W= P + W11 = 14,4 kN= 14,4 kNNormal stress onNormal stress on aa--aa isis aa = Pa/A = 14,4/(0,5x1) = 28,8= Pa/A = 14,4/(0,5x1) = 28,8

    KN/m2KN/m2

    The stress is a compression normal stress that worked asThe stress is a compression normal stress that worked as

    FaFa on the section.on the section.4141

    StressTASK :

    If W = 10 Ton, a = 30o and cross

    sectional area of steel cable ABC = 4

    cm2, cable BD = 7 cm2, so calculate

    stress that happened in ABC and BD1.

    D

    cables.

    A W

    C If bolt diameter = 30mm, b = 200 mm, d1 =

    8 mm, d2 = 1 2 m m , P =

    2000 k so calculate

    2.

    P

    P

    d1d2

    b

    the maximum stress

    of each frame and

    shear stress of the

    bolt.

    4242

  • 7/25/2019 ewahyuni-MekbanEnglish colour.pdf

    22/74

    09/02/2014

    Dr. Endah Wahyuni 22

    Static Test

    P

    P LOAD INCREASE

    CONTINUOUSLY

    MATERIAL

    P ULTIMATE LOAD

    TESTING MATERIAL

    P ULTIMATE STRESSPUlt

    A4343

    Universal Test Machine (UTM)Universal Test Machine (UTM)

    4444

  • 7/25/2019 ewahyuni-MekbanEnglish colour.pdf

    23/74

    09/02/2014

    Dr. Endah Wahyuni 23

    FLEXURE TESTFLEXURE TEST

    4545

    STRAIN TESTING MATERIAL

    STATIC TEST LOAD

    P

    STRAINL

    -. load

    - Every Pload increasing, list deformation

    of testing material that shows in dial

    gauge.P

    4646

  • 7/25/2019 ewahyuni-MekbanEnglish colour.pdf

    24/74

    09/02/2014

    Dr. Endah Wahyuni 24

    Strain

    P (Load)

    = StrainL

    =

    Change as every

    Loading changes

    (Deformation)P Diagram

    4747

    Stress Strain Diagram

    Physical properties of every mater ial can be shownfrom their stress strain diagram relationship.

    P (load) (Stress)

    P Diagram Diagram = Strainpict. A pict. B

    4848

  • 7/25/2019 ewahyuni-MekbanEnglish colour.pdf

    25/74

    09/02/2014

    Dr. Endah Wahyuni 25

    STRESS STRAIN DIAGRAM

    - MATERIAL 1 AND MATERIAL - 2, BOTH ARE IDENTICAL

    MATERIAL

    - THE CROSS SECTIONAL AREA OF MATERIAL - 2 < MATERIAL - 1

    - THE P

    RELATIONSHIP OF MATERIAL - 1 ARE DIFFERENT

    WITH MATERIAL - 2

    - THE

    RELATIONSHIP OF MATERIAL - 1 ARE SIMILAR WITH

    MATERIAL - 2, ALTHOUGH THEY HAVE DIFFERENT CROSS

    SECTIONAL AREA

    THEREFORE, MORE SUITABLE USING PICTURE B

    TO KNOW PHYSICAL PROPERTIES OF SOME

    MATERIAL

    4949

    Stress Strain Diagram

    (Stress)(Stress)

    Proportional

    Limit

    StrainStrain

    STEEL MATERIAL CONCRETE MATERIAL

    5050

  • 7/25/2019 ewahyuni-MekbanEnglish colour.pdf

    26/74

    09/02/2014

    Dr. Endah Wahyuni 26

    HOOKE LAW

    E X= ELASTICCONDITION

    =E

    (Stress)

    DETERMINATION OF YIELD POINT

    OFF-SET METHOD

    = STRESS

    = STRAIN

    E = ELASTICITY MODULUS

    Strain

    ropor onaLimit

    5151

    HOOKEs LAW

    problem

    : In some frame with L =100 cm in length,

    Static Test was done. If P thats ivenP

    to this f rame is 4000 kg, this f rame is st il l

    in elastic condit ion, and goes on 2 mm in

    length, so calculate of s tress and strainvalue of that frame. If modulus elastici ty

    value is 2 x 106 kg/cm2 and then calculate

    the cross sectional area of that frame.L

    P 5252

  • 7/25/2019 ewahyuni-MekbanEnglish colour.pdf

    27/74

    09/02/2014

    Dr. Endah Wahyuni 27

    Bar Deformation due to

    Axial Load

    P2P3

    4

    dx

    1

    PxPx Px force to dx elemen and

    cause d deformation

    x + x

    d = dx

    Edx

    P

    E

    dxAx

    =

    5353

    Bar Deformation due to

    Axial Loadexample :

    B

    B

    L

    P = Px Px

    dx = Px / Ax . E dx

    0

    x . x x .

    A L

    = P . X / Ax . E

    L

    P P

    x

    Ax = A , Px = P

    = P . L / E . ADeformation due to P load,selfweight was ignored 5454

  • 7/25/2019 ewahyuni-MekbanEnglish colour.pdf

    28/74

    09/02/2014

    Dr. Endah Wahyuni 28

    B L

    Bar Deformation due to

    Axial LoadDEFORMATION DUE TO SELFWEIGHT IS :

    = Px . dx / Ax . E = 1 / A . E w . X . dx

    A 0

    = . W.x2 / A . E = w . L2 / 2 . A . E = WT . L / 2 . A . E

    0

    L

    DEFORMATION DUE TO P LOAD AND SELFWEIGHT IS :

    = P.L / A.E + WT.L / 2.A.E =

    = L (P + .WT) / A.E 5555

    Contoh 2Contoh 2--1:1:

    Tentukan pergeseran relatif dari titikTentukan pergeseran relatif dari titik--titik A dan D padatitik A dan D pada

    batang baja yang luas penampangnya bervariasibatang baja yang luas penampangnya bervariasi

    sepertiseperti terlihatterlihat padapada gambargambar didi

    bbawahawah bilabila diberikandiberikan empatempat gayagaya terpusatterpusat PP11,, PP22,, PP33anan 44.. m a = xm a = x mm ..

    5656

  • 7/25/2019 ewahyuni-MekbanEnglish colour.pdf

    29/74

    09/02/2014

    Dr. Endah Wahyuni 29

    Gaya dalam batang adalah :Gaya dalam batang adalah :

    Antara titik A dan B, PAntara titik A dan B, Pxx = +100 kN= +100 kNAntara titik B dan C, PAntara titik B dan C, Pxx == --150 kN150 kN

    Antara titik C dan D, PAntara titik C dan D, Pxx = +50 kN= +50 kN

    Dengan menggunakan persamaan:Dengan menggunakan persamaan:

    Dengan memasukkan hargaDengan memasukkan harga--harga numeric dari contoh,harga numeric dari contoh,

    maka diperoleh:maka diperoleh:

    5757

    BAR DEFORMATION DUE TOAXIAL LOAD

    Problem :

    C100 cm 100 cm

    If the bar diameter of AB

    and BC is 20 mm, = 30o.

    B

    DE1000 kg

    y u u

    2x106 kg/cm2, calculate

    deformation of point B.

    2.

    P1 P2

    b1

    b2

    b3

    h1

    h2

    1 2, 1 2working, the length of both bar still

    be similar, i f b1 = 50 mm, b2 = 50 mm,

    b3 = 25 mm, h1 = 500 mm, h2 = 500

    mm and thickness of both bar = 20

    mm.

    P2

    5858

  • 7/25/2019 ewahyuni-MekbanEnglish colour.pdf

    30/74

    09/02/2014

    Dr. Endah Wahyuni 30

    Poissons Ratio

    STRAIN

    AXIAL STRAIN LATERAL STRAIN

    The shape is being

    LONGER and

    SMALLER

    POISSONS RATIO ( ) =

    Lateral

    Axial

    Concrete = 0.1 0.2

    Rubber = 0.5 0.65959

    The Relationship of Poissons

    Ratio, Stress and Strain

    xzyz

    zy

    zxy

    zy

    xxy yx

    x

    6060

  • 7/25/2019 ewahyuni-MekbanEnglish colour.pdf

    31/74

    09/02/2014

    Dr. Endah Wahyuni 31

    The Relationship of Poissons

    Ratio, Stress and Strain

    y

    y

    z 6161

    The Relationship of Poissons

    Ratio, Stress and Strain

    x EE E

    x y z+ - -=

    y EE E

    x y z- + -=

    z EE E

    x y z- - +=

    6262

  • 7/25/2019 ewahyuni-MekbanEnglish colour.pdf

    32/74

    09/02/2014

    Dr. Endah Wahyuni 32

    Shear Stress and Shear Strain

    SHEAR STRESS

    A

    yz yz

    zy

    yz

    AB

    C

    /2

    /2

    C

    B

    = SHEAR STRAIN

    O O

    MO = 0 zy(dy.dx).dz - (dx.dz.).dy = 0yz

    zy yz=

    Fz = 0 yz left = yz right 6363

    Shear Stress and Shear Strain

    SHEAR STRAIN:

    SHAPE TRANSFORMATION THAT IS EXPRESSED

    CALLED SHEAR STRAIN

    HOOKE LAW for Shear stress and shear strain:= Shear Stress

    = Shear Strain

    . G=

    = Shear Modulus

    = Poissons Ratio

    G2 (1+ )

    =

    The relationship between Normal Modulus Elasticity and

    Shear Modulus

    G

    6464

  • 7/25/2019 ewahyuni-MekbanEnglish colour.pdf

    33/74

    09/02/2014

    Dr. Endah Wahyuni 33

    Modul 2Modul 2

    beam flexurebeam flexure

    (pure bending)(pure bending)

    6565

    Pure Bending in Beam

    Flexure due to

    MOMEN only

    6666

  • 7/25/2019 ewahyuni-MekbanEnglish colour.pdf

    34/74

    09/02/2014

    Dr. Endah Wahyuni 34

    Pure Bending in Beam

    Ya

    max max

    /2/2

    Initial Length

    b =

    Force Equilibrium:

    ( Y/C . max ) dA = 0

    A

    C Y . dA = 0

    A

    FX = 0

    6767

    Pure Bending in Beam

    MOMENT :

    M = ( Y/C . max ) dA . Y = max Y2 . dA

    A A

    Y2 . dA = = Inertia Moment

    M = ( max / C ) . max = M . C /

    A

    max = M . Ya /

    TOP FIBER STRESS BOTTOM FIBER STRESS

    max = M . Yb /

    6868

  • 7/25/2019 ewahyuni-MekbanEnglish colour.pdf

    35/74

    09/02/2014

    Dr. Endah Wahyuni 35

    Pure Bending in Beam

    GENERALLY:

    = M . Y /

    / Y = W (Resis tance Moment)

    / Ya = Wa

    / Y = W

    = Y 2 . dA

    A

    INERTIA MOMENT

    6969

    INERTIA MOMENTEXAMPLE :

    h/2

    x = y 2 . dAA

    = Y 2 . b . dy

    h/2

    -h/2

    h/2

    y

    h/2= 1/

    3. 1/

    4. h3. b = 1/

    12. b. h3

    1/2x = 3. 2 . d + 2 y 2 . dy

    -11/2 11/2

    = 3 . y . = 3 . 8 + 8 . .-h/2

    b

    x

    y

    2

    2

    3

    11

    -2 -11/2

    + 3.y 2 . dy11/2

    2x

    7070

  • 7/25/2019 ewahyuni-MekbanEnglish colour.pdf

    36/74

    09/02/2014

    Dr. Endah Wahyuni 36

    INERTIA MOMENTEXAMPLE :

    = 3/3 . y3

    -11/2

    + 2 . 1/3 . y3

    11/2

    + 3/3 . y3

    2

    -2 -11/2 11/2

    = (-11/2)3 (-2)3 + 2/3 . (11/2)

    3 - 2/3 . (-11/2)

    3 + 23 - (11/2)3

    = 13,75

    = 1/12 . 3 . 43 1/12 . 1 . 3

    3 = 16 2,25 = 13,75

    SHORTER CALCULATION

    7171

    STRESS CALCULATION

    OF THE BEAM

    10 cm10.000 kg

    30 cm

    10 cm30 cm

    10 cm

    400 cm

    CROSS SECTIONAL AREA :

    . . .

    INERTIA MOMENT:

    = 1/12 . 30 . 503 2 . 1/12 . 10 . 30

    3 = 267.500 cm4

    7272

  • 7/25/2019 ewahyuni-MekbanEnglish colour.pdf

    37/74

    09/02/2014

    Dr. Endah Wahyuni 37

    STRESS CALCULATIONOF THE BEAM

    RESISTANCE MOMENT:

    Wa = Wb = I/y = 267.500 / 25 = 10.700 cm3

    WORKING MOMENT (Beban Hidup Diabaikan) :

    MMax = . 10.000 . 400 = 1.000.000 kgcm.

    MAXIMUM STRESS OCCURED:

    Max = MMax / W = 1.000.000 / 10.700 = 93,46 kg/cm2

    7373

    Stress Calculation

    of BeamMax

    y1 = 20 cmyMax

    +

    -1

    Max

    = M / W1 = 1.000.000 . 20 / 267.500 = 74.77 kg/cm21

    W1 = / y17474

  • 7/25/2019 ewahyuni-MekbanEnglish colour.pdf

    38/74

    09/02/2014

    Dr. Endah Wahyuni 38

    EXERCISE MOMENT INERTIA

    30 cm

    10 cm

    Calculate Inertia

    Moment of i ts

    Sb Y

    1

    40 cm

    10 cm

    xand weak axis ( Iy )

    Sb X

    Calculate InertiaSb Y10 cm2

    Moment of itsstrong axis( Ix ) and

    weak axis ( Iy )Sb X

    10 cm

    8 cm

    10 10 10

    20 cm

    7575

    EXERCISE PURE BENDING

    1 2

    100 kg/m (include its selfweight)200 cm 80 cm

    400 cm 200 cm

    1500 kg

    30 cm

    10 cm

    - Draw its momen diagram

    - Calculate Inertia Moment of Beam

    Section

    10 cm

    10cm

    8cm

    8cm

    - Calculate edge fiber stresses of

    section - 1 and 2, then draw its

    stress diagram

    - Calculate its maximum stress

    7676

  • 7/25/2019 ewahyuni-MekbanEnglish colour.pdf

    39/74

    09/02/2014

    Dr. Endah Wahyuni 39

    ASSYMETRIC FLEXURE

    q

    q

    qCos

    qSin

    L

    Moment occurs of X-axis (MX)

    and Y-axis (MY)

    = 2 = 2 . os

    . . n

    .

    Moment that its flexure

    round X-axis

    Moment that its flexure

    round Y-axis7777

    Stress of the Section due to

    Assymetric Flexure q

    qSin

    a

    b

    d

    o a

    b

    MX . h/2

    x

    +My . b/2

    y

    = +

    MX . h/2

    x

    -My . b/2

    y

    = +

    MX . h/2 -My . b/2= -

    q

    qCos

    d

    x y

    MX . h/2

    x

    +My . b/2

    y

    = -

    MX = 1/8 . qCos

    . L2

    MY = 1/8 . qSin

    . L2 x = 1/12 . b . h

    3y = 1/12 . h . b

    37878

  • 7/25/2019 ewahyuni-MekbanEnglish colour.pdf

    40/74

    09/02/2014

    Dr. Endah Wahyuni 40

    Exercise - Stress of the Section due to

    Assymetric Flexureq

    P

    L = 300 cm, q = 100 kg/m, P= 200 kg, h = 20 cm, b = 10

    cm, = 30o

    c

    d

    L

    s n cm o s ance

    f rom B

    Calculate stress that

    occurs in the midspan a, b,

    c, d, e and f. Where point -

    e is 5 cm of distance fromf

    a

    bx-axis and 3 cm from y-axis.

    Point - f is 6 cm of distance

    from x-axis and 4 cm from

    y-axis

    e

    7979

    Problem - Iassume W = 8 Ton, =

    90o and cross section

    area of the steel cable

    ABC = 4 cm2, eaxh of BD

    frame = 6 x 3 cm2, so

    calculate stress that

    1.

    D

    occurs in ABC cable and

    maximum stress of BD

    frame.Calcu late the def lect ion

    of point - b and shear

    AB

    C

    50 cm

    B

    . .

    diameter of As.B = 20

    mm.

    Modulus Elastici ty of BD

    frame = 2x106 kg/cm2.

    W W

    8080

  • 7/25/2019 ewahyuni-MekbanEnglish colour.pdf

    41/74

    09/02/2014

    Dr. Endah Wahyuni 41

    1 2

    2000 kg/m (include its selfweight)200 cm 80 cm

    80 cm

    2.

    400 cm 200 cm

    1000 kg

    30 cm

    10 cm

    - Dram i ts moment diagram

    - Calculate Inertia Moment of Beam

    - Calculate ed e fiber stresses of25 cm

    1000 kg

    20 cm

    10cm

    8cm

    8cm

    section 1 and 2, then draw itsstress diagram.

    - Calculate Maximum stress that

    occurs in ABC beam.8181

    qP

    BAc df

    3.

    L

    L = 300 cm, q = 1000 kg/m, P = 2000 kg, = 30o, P is

    ab

    .

    Calculate stress that occurs in the midspan of poin t

    a, b, c, d, e and f.

    8282

  • 7/25/2019 ewahyuni-MekbanEnglish colour.pdf

    42/74

    09/02/2014

    Dr. Endah Wahyuni 42

    Composite Beam (2 Material)dx

    dy

    x

    1

    xE1

    e

    h

    b1

    b2

    a

    e

    2

    1

    eE1

    eE2

    DISTRIBUTION OF

    ELASTIC STRESS

    DISTRIBUTION OF

    SINGLE MATERIAL -

    STRESS

    8383

    Composite Beam (2 Material)

    b1

    . 2

    b2/n1

    b1.n1

    b1/n2

    E1 > E2, n1 = E1 / E2, n2 = E2 / E1

    Cross Section of

    Frame with 1st Material

    Cross Sestion of

    Frame with 2nd Material

    8484

  • 7/25/2019 ewahyuni-MekbanEnglish colour.pdf

    43/74

    09/02/2014

    Dr. Endah Wahyuni 43

    Exercise -Composite Beam (2 Material)

    1

    1000 kg

    A B12 cm

    a

    b

    400 cm1Concrete

    2 1200 cm36 cm

    12 1210c

    1

    1st Material = Concrete

    2nd Material = Steel

    E concrete = 200.000 kg / cm2 ; E stel = 2.000.000 kg /cm2

    Steel

    Calculate stress that occured in the section 1 1 and infibera , concrete fiber b , steel f iberb and fiber c .

    Draw its stress diagram.

    (Selfweight of the beam is ignored) 8585

    Pure Bending of

    Non-Elastic Beam

    STRESS-STRAIN DIAGRAM

    ELASTIC NON - ELASTIC

    8686

  • 7/25/2019 ewahyuni-MekbanEnglish colour.pdf

    44/74

    09/02/2014

    Dr. Endah Wahyuni 44

    Pure Bending of

    Non-Elastic Beam

    Strain

    distribution

    Elastic Strain

    distribution

    Non Elastic Strain

    distribution

    a

    bc

    d

    o

    If effect of D aob andcod are small

    8787

    Rectangular Beam that have Full Plastic Condition

    hh/4

    C

    h/4T

    Plastic moment that can be held = C . . h = T . . h

    = = bh yp

    Plastic momen of a rectangular beam is:

    Mp = yp .bh/2 .

    h/2 = yp .bh /4

    2

    8888

  • 7/25/2019 ewahyuni-MekbanEnglish colour.pdf

    45/74

    09/02/2014

    Dr. Endah Wahyuni 45

    Rectangular Beam that have Full Plastic ConditionGenerally can be written as:

    h/2

    0

    h/2

    yp . y2 . b = yp .

    bh /4

    Mp = . y dA = 2 ( yp ) . y . b . dy0

    2

    ca cu a e w e as c equa on :Myp = yp . / (

    h/2) = yp .1/12 b h

    3 / ( h/2 )

    = yp . b . h2 / 6

    8989

    Rectangular Beam that have Full Plastic Condition

    Mp / Myp = yp . b . h2 / 4

    yp . b . h2 / 6

    = ,

    Section that have Elastic Plastic condition

    yoh/2

    Minor Yield

    (Elastic-Plastic)

    Major Yield

    (Elastic-Plastic)

    Al l Yield

    (Plastic) 9090

  • 7/25/2019 ewahyuni-MekbanEnglish colour.pdf

    46/74

    09/02/2014

    Dr. Endah Wahyuni 46

    Section that have Elastic Plastic condition

    Elastic-Plastic moment that can be held with stressdistibution which have partial yield is:

    M = . y dA = 2 ( yp ) . y/yo . b . y. dy 0

    + 2 ( yp) . b . y. dy2

    yo

    yp . y3//yo . b

    o

    yo

    = 2/3

    yo

    + yp . b . y2

    h/2

    = 2/3 yp . yo2 . b + yp . bh

    2 / 4 - yp . b . yo2

    = yp . bh2 / 4 1/3 yp . b . yo

    2 = Mp 1/3 yp . b . yo2

    9191

    Modul 3Modul 3

    Shear Stress of BeamShear Stress of Beam

    9292

  • 7/25/2019 ewahyuni-MekbanEnglish colour.pdf

    47/74

    09/02/2014

    Dr. Endah Wahyuni 47

    Shear Stress - Flexure

    q (x)

    V V+dV

    dxM+dM

    dx

    M x

    S MA = 0

    (M + dM) M (V + dV) . dx + q . dx . dx/2 = 0

    M + dM M V . dx + dV . dx + . . dx2 = 0

    dM V . dx = 0

    dM = V . dx

    small small

    OR

    dM / dX = V

    9393

    dM / dx = V

    Shear Stress - FlexureThis equation is giving

    explanation that :

    IF THERE IS FLEXURE MOMENT

    DIFFERENCE AT SIDE BY SIDE

    SECTION, THERE WILL BE A SHEAR.

    Example :

    L/3 L/3 L/3M M

    Bid. D

    .

    SHEAR

    M M+dM

    9494

  • 7/25/2019 ewahyuni-MekbanEnglish colour.pdf

    48/74

    09/02/2014

    Dr. Endah Wahyuni 48

    Shear Stress - Flexure

    Shear Stress due to Flexure Loada

    b

    h

    je g

    R

    d f

    -

    FBFA

    -FB =

    Afghj

    .

    IdA

    I= Y . dA

    Afghj

    =- MB . Q

    IQ = Y . dA

    Afghj

    = Afghj . Y9595

    Shear Stress - FlexureShear Stress due to Flexure Load

    - MA

    I= Y . dA

    A

    FA =- MA . Q

    I

    FB FA = R Held up by shear connector

    =- MB . Q

    I-

    - MA . Q

    I= dF

    ( MA + dM ) . Q MA . Q dM . Q

    Troughout dx

    =I

    =I

    dF/dx = q = SHEAR FLOW

    q = dM . Q / dx . I = V . Q / I9696

  • 7/25/2019 ewahyuni-MekbanEnglish colour.pdf

    49/74

    09/02/2014

    Dr. Endah Wahyuni 49

    Shear Stress due to Flexure Load

    Example : = 50 . 200 . 25 + 50 . 200 . 15050 . 200 + 50 . 200

    = 87,5 cm200 mm

    Yc

    50 mm YcI = 200 . 503 / 12 + 50 . 200 . 62,52

    = 50 . 2003 / 12 + 50 . 200 . 62,52

    = 113.500.000 mm4 = 11.350 cm4

    Q = 50 . 200 ( 87,5 25 ) = 625.000 mm3

    = 625 cm3 or

    Y1

    . ,

    200 mm

    Y1 = 200 Yc - 200 / 2 = 62,5 mm

    Q = 50 . 200 . 62,5 = 625.000 mm3 = 625 cm350 mm

    q = V . Q / I = 30.000 x 625 / 11.350 = 1.651 kg / cm

    Nail spacing = 7000 / 1651 = 4,24 cm 9797

    200 mm

    50 mm

    Problem : Assume that top nai ls capacityis 7000 kg and bottom nails is

    5000 kg. Then calculate spacing

    of top and bottom nail, from A

    until B, so the section strength

    50 mm

    30 mm

    200 mm

    150 mm

    enough to carried on q load.

    Spacing of top and bottom nails

    was made in 3 different type ofspacing.

    q = 3000 kg/m

    600 cm

    A B

    100 100 200 100 100

    9898

  • 7/25/2019 ewahyuni-MekbanEnglish colour.pdf

    50/74

    09/02/2014

    Dr. Endah Wahyuni 50

    Shear Stress Diagram

    Longitud inal Direction:

    = dF / t .dx = ( dM / dx ) . ( A . Y / I . t ) = V . A . Y / I . t

    =.

    I . t

    t=

    Example :t = b

    h

    1/8 . V. h2

    I

    h

    dyf g yy1

    =.

    I . t

    t=

    V

    I . tY . dA

    A

    =

    9999

    Shear Stress Diagram

    V

    I= x

    Y2

    2

    h/2

    y1

    V

    I . by1

    h/2

    b . y . dy=

    ( b/2 ) 2 y12

    2 . I=

    If y1 = 0, so

    V

    2 . I=

    h2

    4x = 1/8

    V . h2

    1/12 . b .h3

    =3 . V

    2 . b. h=

    3 . V

    2 . A

    100100

  • 7/25/2019 ewahyuni-MekbanEnglish colour.pdf

    51/74

    09/02/2014

    Dr. Endah Wahyuni 51

    Problem :

    20 cm

    5 cma

    bq = 3000 kg/m

    P = 1500 kg 1200 cm

    5 cm

    3 cm

    20 cm

    15 cm

    d

    e

    600 cm

    Draw shear stress diagram of the section in support A

    and of the section - 1 that is 100 cm of dis tance from

    point B.

    101101

    Working steps:

    1. Calculate the Neutral Axis

    20 . 5 . 2,5 + 20 . 5 . 15 + 15 . 3 . 26,5

    20 . 5 + 20 . 5 + 15 . 3= = ,

    From TOP

    2. Calculate Inertia Moment

    I =1/12 . 20 . 5

    3 + 20 . 5 . 9,512 + 1/12 . 5 . 203

    + 20 . 5 . 2,952 + 1/12 . 15 . 33 + 15 . 3 . 14,492

    = 208,33 + 9044,01 + 3333,33 + 870,25 +

    33,75 + 9448,20

    = 22937,88 cm4

    102102

  • 7/25/2019 ewahyuni-MekbanEnglish colour.pdf

    52/74

    09/02/2014

    Dr. Endah Wahyuni 52

    3. Calculatie shear forces

    Ra = 3000 . 6/2 + 2/3 . 1500 = 10.000 kgRb = 3000 . 6 + 1500 - 10.000 kg = 9.500 kgVa = 10.000 kg ; V1 = - 9.500 + 3000 . 1= - 6.500 kg

    Position A y Q q = V.Q / I = q / tt

    a

    b1b2

    0

    100

    100

    12.01

    9,51

    9,51

    20

    20

    5

    0 0

    951951

    0

    In section A with 10.000 kg of shear force

    414,6

    414,6

    20,73

    82,92

    c

    d1d2e 0

    45

    45

    35.05 ,3.505

    14.49

    14.49

    15.99

    5

    5

    15

    150 0

    1073,85

    652.05

    652.05

    0

    468,16

    284,27

    284,27

    93,63

    56,854

    18,951

    103103

    Posisi A y Q q = V.Q / I = q / tt

    a 0 12.01

    200 00

    In Section 1 with 6.500 kg of shear force

    b1b2

    c

    d1d

    100

    100

    100

    45

    35.05

    9,51

    9,51

    9,513.505

    14.49

    14.49

    20

    5

    5

    5

    15

    951951

    1073,85

    652.05

    652.05

    269,49

    269,49

    304,30

    184,774

    184 774

    13,474

    53,89

    60,86

    36,955

    12 318

    e 0 15.99 150 00

    104104

  • 7/25/2019 ewahyuni-MekbanEnglish colour.pdf

    53/74

    09/02/2014

    Dr. Endah Wahyuni 53

    20 cma 0 0

    Shear Stress Diagram:

    5 cm

    3 cm

    20 cm

    5 cm b

    c

    d

    e

    13,474

    0 0

    53,89

    60,68

    36,955

    12,318

    20,73

    93,63

    56,854

    82,92

    18,951

    15 cmShear Force

    10.000 kg

    Shear Force

    6.500 kg

    105105

    Shear Flow Variation

    Shear flow variation is used to determine the SHEAR

    CENTER, so that vertical loading that works will not

    induce torsion to the section, if works in i ts SHEAR

    CENTER106106

  • 7/25/2019 ewahyuni-MekbanEnglish colour.pdf

    54/74

    09/02/2014

    Dr. Endah Wahyuni 54

    Shear Center

    P=

    F1

    eh

    F1

    e = F1 . h / P =2 . P . I . t

    b. t. h . V . Q .

    . b . t . h

    P=

    =. b . t . h

    2 . P I . t

    V . . h . b . tx =

    b2 . h2 . t

    4 . I107107

    Problem :

    P 10 cm Determine the SHEAR

    CENTER of thisV=P

    F1 F2

    10 cm

    10 15 30

    .

    Equation that is used:

    e . P + F1 . 60 = F2 . 60

    e = ( F2 . 60 F1 . 60 ) / P

    . . 17,5 . 10F1 = F2 = . 37,5 . 10 . 108108

  • 7/25/2019 ewahyuni-MekbanEnglish colour.pdf

    55/74

    09/02/2014

    Dr. Endah Wahyuni 55

    I = 1/12 . 55 . 703 - 1/12 . 40 . 50

    3 = 1.155.416,67 cm4

    P . 17,5 . 10 . . 60=

    V . Q

    I . t=

    1.155.416 67 . 10= 0,00045 . P kg/cm2

    Calculation :

    P . 37,5 . 10 . . 60= = =

    V . Q

    I . t 1.155.416,67 . 100,00097 . P kg/cm2

    F1 = 0,00045 . P . 17,5 . 10 . = 0,0394 . P

    F2 = 0,00097 . P . 37,5 . 10 . = 0,1820 . P

    e = 0,0394 . P. 60 -0,182 . P . 60 =:

    P

    8,556 cm

    In order to make frame didnt induce torsion , so the

    Pload must be placed in e = 8,556 cm ( see Picture)109109

    KERN / GALIH / INTIVariety of KERN :

    Limited with 4 oint

    Limited with 6 point

    Unlimited

    m e w po n

    110110

  • 7/25/2019 ewahyuni-MekbanEnglish colour.pdf

    56/74

    09/02/2014

    Dr. Endah Wahyuni 56

    KERN / GALIH / INTIDetermine Inertia moment of s loping axis:

    Y

    x df Cos Sin x

    x= + y

    X

    Cos Sin y

    y= - x

    2y

    =Ix

    df

    Ix

    = y2

    2

    222Cos x+ Sin - 2xy Sin Cos d

    f

    = Ix Cos + Iy Sin -2 Sxy Sin Cos 2

    111111

    2x

    =Iy

    df

    KERN / GALIH / INTIDetermine Inertia Moment of Sloping axis:

    = x2

    2

    222Cos y+ Sin +2xy Sin Cos d

    f

    = Ix Sin + Iy Cos + 2 Sxy Sin Cos 2

    112112

  • 7/25/2019 ewahyuni-MekbanEnglish colour.pdf

    57/74

    09/02/2014

    Dr. Endah Wahyuni 57

    KERN / GALIH / INTIExample of determining KERN limits :

    Determine the Neutral axis :

    +2 cm

    y

    . . . . .

    2.20 + 8.2.2==x 3,2 cm

    A = 2.20 + 8.2.2 = 72 cm

    Ix = 1/12.2.203 + 1/12.8.2

    3.2

    + 8.2.92.2 = 3936 cm42

    2

    16x

    =Wax3936

    10= 393,6 cm3

    =Wbx3936

    10= 393,6 cm3

    10

    3,2

    113113

    KERN / GALIH / INTIContoh Menentukan batas batas KERN :

    Iy = 1/12.20.23 + 1/12.2.8

    3.2

    2 2 = 4 . . , . . . , ,

    =Wkr y628,48

    3,2= 196,4 cm3

    =Wkn y 6,8= 92,42 cm3

    628,48

    W 393,6 Wkn y 92 42a x =

    A=

    72

    = 5,46 cm

    Kb x =Wax

    A=

    393,6

    72

    = 5,46 cm

    kr y = A 72=

    = 1,28 cm

    Kkny =Wkr y

    A 72=

    196,4

    = 2,72 cm114114

  • 7/25/2019 ewahyuni-MekbanEnglish colour.pdf

    58/74

    09/02/2014

    Dr. Endah Wahyuni 58

    KERN / GALIH / INTIPicture of KERN limits :

    2,72 cm1,28 cm

    2 cm

    16

    y

    x

    5,46 cm

    2

    2

    10

    3,2

    ,

    115115

    Modul 4Modul 4

    TorsiTorsionon

    116116

  • 7/25/2019 ewahyuni-MekbanEnglish colour.pdf

    59/74

    09/02/2014

    Dr. Endah Wahyuni 59

    TORSION (Puntiran )

    30 N-m

    30 N-mSection Plane

    20 N-m

    10 N-m

    10 N-m

    INNER TORSION MOMENT equal with OUTTER TORSION MOMENT

    Torsion that is learned in this Mechanics of Materials

    subject was limited in rounded section only.

    117117

    TORSION (Puntiran )

    M

    Torsion Moment at

    both end of the bar

    MM

    Torsion Moment

    distr ibuted along theM(x) bar

    118118

  • 7/25/2019 ewahyuni-MekbanEnglish colour.pdf

    60/74

    09/02/2014

    Dr. Endah Wahyuni 60

    TORSION (Puntiran )

    max

    Cmax

    Cmax . dA . = T

    A

    C

    ress

    Area

    Forces Distance

    Torsion MomentOr can be writ ten as:

    max

    C . dA = T

    2

    = IP. dA2

    = Polar Inertia Moment

    A

    A119119

    Example of Polar Inertia Moment forCIRCLE

    . dA2

    =

    A

    3 d2 =

    0

    C

    2

    4

    .

    4

    .4

    .

    0

    C

    = C

    =32

    d4

    2

    this equation:

    maxT =

    C. IP

    TORSION MOMENT

    max =.

    IPTORSION STRESS

    120120

  • 7/25/2019 ewahyuni-MekbanEnglish colour.pdf

    61/74

    09/02/2014

    Dr. Endah Wahyuni 61

    For CircleFor Circle Hollow SectionHollow Section::

    121121

    TWIST ANGLE OF CIRCULAR BARTWIST ANGLE OF CIRCULAR BAR

    122122

    With determine small angle of DAB in this followingpicture. The maximum stress of its geometry is:

  • 7/25/2019 ewahyuni-MekbanEnglish colour.pdf

    62/74

    09/02/2014

    Dr. Endah Wahyuni 62

    If :If :

    Then:Then:

    So general statement of the twist angle of a section fromSo general statement of the twist angle of a section from

    the bar with linier elastic material is:the bar with linier elastic material is:

    123123

    PROBLEM EXERCISEPROBLEM EXERCISE -- 11

    See a tiered bar that shown in this following picture, its outboard in

    the wall (point E), determine rotain of point A if torsion moment in B

    and D was given. Assume that the shear modulus (G) is 80 x 109

    N/m2.

    124124

  • 7/25/2019 ewahyuni-MekbanEnglish colour.pdf

    63/74

    09/02/2014

    Dr. Endah Wahyuni 63

    Polar Inertia MomentPolar Inertia Moment::

    BarBar AB = BCAB = BC

    BBarar CD = DECD = DE

    Considerin its left section torsion moment in ever art will be:Considerin its left section torsion moment in ever art will be:

    TTABAB = 0, T= 0, TBDBD = T= TBCBC = T= TCDCD = 150= 150 N.mN.m, T, TDEDE = 1150= 1150 N.mN.m

    125125

    To get rotation of edge A, can be done with add up everyTo get rotation of edge A, can be done with add up every

    integration limit:integration limit:

    Value ofValue of TT andand IIpp areare constant,constant, so the equation will beso the equation will be::

    126126

  • 7/25/2019 ewahyuni-MekbanEnglish colour.pdf

    64/74

    09/02/2014

    Dr. Endah Wahyuni 64

    EXERCISEEXERCISE --11

    Calculate maximum torsion shear stress of ACCalculate maximum torsion shear stress of AC bar (asbar (as

    seen in AC barseen in AC bar exercise 1)exercise 1).. Assume that bar diameterAssume that bar diameter

    from Afrom A C is 10 mm.C is 10 mm.

    AnswerAnswer::

    127127

    ExercisesExercises

    Soal 4.1Soal 4.1

    e ua poros erongga mempunyae ua poros erongga mempunya

    diameter luar 100 mm dan diameter dalamdiameter luar 100 mm dan diameter dalam

    80 mm. Bila tegangan geser ijin adalah 5580 mm. Bila tegangan geser ijin adalah 55MPa, berapakah besar momen puntir yangMPa, berapakah besar momen puntir yang

    bisa diteruskan ? Berapakah teganganbisa diteruskan ? Berapakah tegangan

    pada mukaan poros sebelah dalam bilapada mukaan poros sebelah dalam bila

    diberikan momen puntir ijin?diberikan momen puntir ijin?

    128128

  • 7/25/2019 ewahyuni-MekbanEnglish colour.pdf

    65/74

    09/02/2014

    Dr. Endah Wahyuni 65

    129129

    Sebuah poros inti berongga berdiameterSebuah poros inti berongga berdiameter

    mm pero e engan me u angmm pero e engan me u ang

    poros melingkar padat berdiameter 300poros melingkar padat berdiameter 300

    mm hingga membentuk lubang aksialmm hingga membentuk lubang aksialberdiameter 100 mm.berdiameter 100 mm. BerapakahBerapakah

    persentase kekuatan puntiran yang hilangpersentase kekuatan puntiran yang hilang

    oleh operasi ini ?oleh operasi ini ?

    130130

  • 7/25/2019 ewahyuni-MekbanEnglish colour.pdf

    66/74

    09/02/2014

    Dr. Endah Wahyuni 66

    131131

    Poros padat berbentuk silinder dengan ukuran yangPoros padat berbentuk silinder dengan ukuran yang

    bervariasi an terlihat dalam ambar di erakkan olehbervariasi an terlihat dalam ambar di erakkan oleh

    momenmomen--momen puntirmomen puntir seperti ditunjukkanseperti ditunjukkan dalamdalam

    gambargambar tersebut.tersebut. Berapakah tegangan puntirBerapakah tegangan puntir

    maksimum dalam poros tersebut, dan diantara keduamaksimum dalam poros tersebut, dan diantara keduakatrol yang ada ?katrol yang ada ?

    132132

  • 7/25/2019 ewahyuni-MekbanEnglish colour.pdf

    67/74

    09/02/2014

    Dr. Endah Wahyuni 67

    133133

    a.a. Tentukanlah tegangan geser maksimum dalam porosTentukanlah tegangan geser maksimum dalam poros

    an dihada kan ada momenan dihada kan ada momen--momen untir anmomen untir an

    diperlihatkan dalam gambar.diperlihatkan dalam gambar.

    b.b. b. Hitunglah dalam derajat sudut pelintir antara keduab. Hitunglah dalam derajat sudut pelintir antara kedua

    ujungnya. Ambillah G = 84.000 MN/m.ujungnya. Ambillah G = 84.000 MN/m.

    134134

  • 7/25/2019 ewahyuni-MekbanEnglish colour.pdf

    68/74

    09/02/2014

    Dr. Endah Wahyuni 68

    135135

    ModulModul 55

    STRESS COMBINATIONSTRESS COMBINATION

    136136

  • 7/25/2019 ewahyuni-MekbanEnglish colour.pdf

    69/74

    09/02/2014

    Dr. Endah Wahyuni 69

    EquationEquation that have learned before about linier elasticthat have learned before about linier elasticmaterial, can be simplified as:material, can be simplified as:

    NormalNormal StressStress::

    a.a. ue oue o axa oaaxa oa

    b.b. Due toDue to flexureflexure

    A

    P

    137137

    I

    Shear StressShear Stress::

    a.a. Due toDue to torsiontorsion

    I

    T

    b.b. Due toDue to shear forceshear force of beamof beam

    tI

    VQ

    Superposition of the stress, only considered inSuperposition of the stress, only considered in

    elastic problem when deformation thatelastic problem when deformation that

    happened is small.happened is small.

    138138

  • 7/25/2019 ewahyuni-MekbanEnglish colour.pdf

    70/74

    09/02/2014

    Dr. Endah Wahyuni 70

    EXERCISE:EXERCISE: A barA bar 50x75 mm50x75 mm that isthat is 1.51.5 metermeter of length, selfweight isof length, selfweight is

    not considered, was loaded as seen in this followingnot considered, was loaded as seen in this following

    picture.picture. (a).(a). Determine maximum tension andDetermine maximum tension and

    com ression stress that work e endicularl of beamcom ression stress that work e endicularl of beam

    section, assume that it is an elastic materialsection, assume that it is an elastic material..

    139139

    ANSWERANSWER Using superposition method,Using superposition method, so it can be solved in twoso it can be solved in two

    stepssteps.. In PictureIn Picture (b)(b), it shows that the bar only take axial, it shows that the bar only take axial

    load only. Then In Pictureload only. Then In Picture ((cc)), it shows that the bar only, it shows that the bar only

    take transversal load onlytake transversal load only

    140140

    ,,

    is:is:

  • 7/25/2019 ewahyuni-MekbanEnglish colour.pdf

    71/74

    09/02/2014

    Dr. Endah Wahyuni 71

    Normal stress due to tranversal load depends on flexureNormal stress due to tranversal load depends on flexure

    moment value and the maximum flexure moment is inmoment value and the maximum flexure moment is in

    force that use:force that use:

    Stress superposition woks perpendicularly of beamStress superposition woks perpendicularly of beam

    section and linearly decreased to the neutral axis assection and linearly decreased to the neutral axis asseen in picture (g)seen in picture (g)

    141141

    142142

  • 7/25/2019 ewahyuni-MekbanEnglish colour.pdf

    72/74

    09/02/2014

    Dr. Endah Wahyuni 72

    STRESS COMBINATION ON COLUMNSTRESS COMBINATION ON COLUMN

    Similar equation can be done to assymetricSimilar equation can be done to assymetric

    section:section:

    WhenWhen::

    Flexure MomentFlexure Moment MyyMyy = +P z= +P z00 that works of ythat works of y--axisaxis

    == -- --

    yy

    yy

    zz

    zzx

    I

    z

    I

    y

    A

    AA is cross section area of frameis cross section area of frame

    IzzIzz andand IyyIyy isis inertia moment of the section to each theirinertia moment of the section to each their

    principal axisprincipal axis

    Positive symbolPositive symbol (+)(+) is tension stress, andis tension stress, and NegatiNegativeve

    symbolsymbol ((--)) isis compression stress.compression stress. 143143

    ExampleExampleDetermine stress distribution of ABCD section of the

    beam as seen on this following picture. if P = 64 kN.

    Beams weight is not considered.

    144144

  • 7/25/2019 ewahyuni-MekbanEnglish colour.pdf

    73/74

    09/02/2014

    Dr. Endah Wahyuni 73

    AnswerAnswer::Forces that work inForces that work in ABCDABCD sectionsection,, on the pictureon the picture (c),(c), isis

    P =P = --6464 kNkN,,

    yyyy -- .. -- ,, .. ,,

    MMzzzz == --64 (0.075 + 0.075) =64 (0.075 + 0.075) = --9,69,6 kN.mkN.m..

    Cross section area of the beamCross section area of the beam A = (0.15)(0.3) = 0,045 m,A = (0.15)(0.3) = 0,045 m,

    And its Inertia moment isAnd its Inertia moment is::

    145145

    JadiJadi dengandengan menggunakanmenggunakan hubunganhubungan yangyang setarasetara dapatdapat

    diperolehdiperoleh tegangantegangan normalnormal majemukmajemuk untukuntuk elemenelemen--

    elemenelemen sudutsudut ::

    BilaBila tandatanda hurufhuruf tegangantegangan menandakanmenandakan letaknyaletaknya,, makamakategangantegangan normalnormal sudutsudut adalahadalah ::

    146146

  • 7/25/2019 ewahyuni-MekbanEnglish colour.pdf

    74/74

    09/02/2014

    147147

    THE END