evolution of rechargeable lithium ion battery - isaac ra

17
Isaac Ra CEO of Eco Plus Int’l Workshop Energy Storage Technologies and Application, ADB April 3, 2013,

Upload: energy-for-all

Post on 07-Nov-2014

140 views

Category:

Documents


6 download

DESCRIPTION

Presentations from the International Workshop on Energy Storage Technologies and Applications, April 2013, ADB Headquarters, Manila

TRANSCRIPT

Page 1: Evolution of Rechargeable Lithium Ion Battery - Isaac Ra

Isaac Ra

CEO of Eco Plus

Intrsquol Workshop Energy Storage

Technologies and Application ADB

April 3 2013

Market Megatrends of Rechargeable Battery

[MWh] [kWh] [Wh]

Tablet PC PT

e-scooter

PHEV

EV

HEV

Hybrid FLift

Locomotive

Home

CES

FR

Wind farm

Flexible

Wireless cleaner

Smart phone

UPS Uninterruptible Power Supply

FR Frequency Regulation

CES Community Energy Storage

UPS

Mobile IT devices

Transportation Power storage

Energy

Life Change by Rechargeable Li-ion battery

1800

Volta

battery

1859

Lead-acid

battery

Power source

for automobile

1888

Alkaline

battery

Portable power

source in WAR

1970

Ni-Cd

battery

Power tool

Walkman

1991

Commercialization

of lithium-ion battery (Sony)

Mobile IT

devices

2000

Mass production

of LIB in Korea

(LG Chem

Samsung SDI)

Evolution

History

2009

Mass production of LIB

for HEV

(Hyundai Motor LG Chem)

1997

HEV with Ni-MH

battery

(Toyota Honda)

History of Rechargeable battery

Turning

Point

Hybrid Electric

Vehicle(HEV)

Plug-in Hybrid

Electric Vehicle

(PHEV)

Engine + Motor

Engine + Motor

Pure Electric Vehicle

(FCEV BEV) Motor

CO2 emission

Types of Electric Vehicles

Toyota Prius

GM Volt

Nissan Leaf

1 Global warming by GHG(Green House Gas)

2 Oil crisis

Why EV

Source IEA (Intrsquol Energy Agency)

gt 500km (60kWh)

32 km

64km

gt 250km (30kWh)

HEV

PHEV20

PHEV40

EV

2kWh

8kWh

16kWh

30kWh

60kWh

E-driving range CO2 emission

123gkm

60gkm

49gkm

[Fuel economy]

[16kml]

[25kml]

[32kml]

[gt 70kml]

20Ah 37V = 64Wh

310

1250

2500

4680

9370

Current(Ampere) Voltage = Power(Watt)

Power(Watt) time(Hour) = Energy(Wh)

Battery and EV

Toyota Prius

GM Volt

Nissan Leaf

of batteries

Toyota Prius PHEV

Ref 2012 Hiedge Report IIT Report

EV Battery Market

from httpberclblgovvenkatRagone-constructionpps

Why LIB

1 Most light metal

2 Most active metal

highest voltage amp energy

Why Lithium

37 V 12 V

90

110

130

150

170

190

200 300 400 500 600 700 800 900

Gra

vim

etr

ic E

nerg

y D

en

sit

y (

Wh

kg

)

Volumetric Energy Density(Whl)

Typ1250mAh

Typ1370mAh

Typ1420mAh

Typ1700mAh

Typ1900mAh

Typ2000mAh

Typ2200mAhTyp2400mAh

Typ2600mAhTyp2800mAh

Typ3000mAh

1994

1995

1996

1998

2000

2001

2002

20032005

20072008

Typ3600mAh

Typ860mAh (1st LIB by SONY)

Map of energy density for cylindrical LIB

Under development

Cylindrical LIB Capacity-up history

03V

40V

LiCoO2(145mAhg)

Li[NiCoMn]O2(145~170mAhg)

LiMn2O4(100mAhg)

Graphite(360mAhg)

LiNiO2(200mAhg)

48V

37V

38V

34V LiFePO4(160mAhg)

32V

Li4Ti5O12(160mAhg)

Electrolyte

Stable

window

LiNi05Mn15O4(110mAhg)

16V

~90 of cathode materials

Electrode materials and voltage

LCO

[LiCoO2]

High V(gt43V)

High capacity

Metal-doped LCO

[Mg Ti Al]

OLO(over-lithiated oxide)

[xLi2MnO3(1-x)LiMeO2]

bull Power

bull Cycle life

bull Safety

Low cost NCM

[LiNi13Co13Mn13O2]

NCA

[LiNi08Co015Al005O2]

[LiNi05Co02Mn03O2

LiNi06Co02Mn02O2 ]

[LiNi05Mn05O2]

bull Safety

bull Power

Low cost

safety

4V-spinel

[LiMn2O4]

5V-spinel

[LiNi05Mn15O4] bull Electrolyte

Safety

Low cost

LFP olivine

[LiFePO4]

LMP olivine

[LiMnPO4]

bull Mn dissolution

bull Electrolyte

Cathode materials for LIBrsquos

High safety but extremely low energy density

Currently used

Volume expansion when lithiated (~300 vs 10 graphite)

Mechanical degradation electrical isolation

Cell expansion amp capacity loss during chargedischarge

cycle-life

ldquoElectrode and cell expansionrdquo

ldquoCracking amp electrical isolationrdquo

Li-insertion

After cycle

14

Anode materials for LIBrsquos

100 -

200 -

300 -

400 -

500 -

Gra

vim

etr

ic e

nerg

y d

ensity(W

hk

g)

Current

LIB

Advanced

LIB

CarbonLiFePO4

Si-carbon composite

Li2MnO3-NCM

CarbonLiMnPO4

Lithium-sulfur

Lithium-air battery

All Solid State Battery

Present Near future Future

Carbon

[NCM+LiMn2O4]

Technical Trend for EV

Next generation

Battery

Advanced LIB

- E-mail hjna0805ecoplus9com

- Mobile Phone ++82-10-8966-5407

Page 2: Evolution of Rechargeable Lithium Ion Battery - Isaac Ra

Market Megatrends of Rechargeable Battery

[MWh] [kWh] [Wh]

Tablet PC PT

e-scooter

PHEV

EV

HEV

Hybrid FLift

Locomotive

Home

CES

FR

Wind farm

Flexible

Wireless cleaner

Smart phone

UPS Uninterruptible Power Supply

FR Frequency Regulation

CES Community Energy Storage

UPS

Mobile IT devices

Transportation Power storage

Energy

Life Change by Rechargeable Li-ion battery

1800

Volta

battery

1859

Lead-acid

battery

Power source

for automobile

1888

Alkaline

battery

Portable power

source in WAR

1970

Ni-Cd

battery

Power tool

Walkman

1991

Commercialization

of lithium-ion battery (Sony)

Mobile IT

devices

2000

Mass production

of LIB in Korea

(LG Chem

Samsung SDI)

Evolution

History

2009

Mass production of LIB

for HEV

(Hyundai Motor LG Chem)

1997

HEV with Ni-MH

battery

(Toyota Honda)

History of Rechargeable battery

Turning

Point

Hybrid Electric

Vehicle(HEV)

Plug-in Hybrid

Electric Vehicle

(PHEV)

Engine + Motor

Engine + Motor

Pure Electric Vehicle

(FCEV BEV) Motor

CO2 emission

Types of Electric Vehicles

Toyota Prius

GM Volt

Nissan Leaf

1 Global warming by GHG(Green House Gas)

2 Oil crisis

Why EV

Source IEA (Intrsquol Energy Agency)

gt 500km (60kWh)

32 km

64km

gt 250km (30kWh)

HEV

PHEV20

PHEV40

EV

2kWh

8kWh

16kWh

30kWh

60kWh

E-driving range CO2 emission

123gkm

60gkm

49gkm

[Fuel economy]

[16kml]

[25kml]

[32kml]

[gt 70kml]

20Ah 37V = 64Wh

310

1250

2500

4680

9370

Current(Ampere) Voltage = Power(Watt)

Power(Watt) time(Hour) = Energy(Wh)

Battery and EV

Toyota Prius

GM Volt

Nissan Leaf

of batteries

Toyota Prius PHEV

Ref 2012 Hiedge Report IIT Report

EV Battery Market

from httpberclblgovvenkatRagone-constructionpps

Why LIB

1 Most light metal

2 Most active metal

highest voltage amp energy

Why Lithium

37 V 12 V

90

110

130

150

170

190

200 300 400 500 600 700 800 900

Gra

vim

etr

ic E

nerg

y D

en

sit

y (

Wh

kg

)

Volumetric Energy Density(Whl)

Typ1250mAh

Typ1370mAh

Typ1420mAh

Typ1700mAh

Typ1900mAh

Typ2000mAh

Typ2200mAhTyp2400mAh

Typ2600mAhTyp2800mAh

Typ3000mAh

1994

1995

1996

1998

2000

2001

2002

20032005

20072008

Typ3600mAh

Typ860mAh (1st LIB by SONY)

Map of energy density for cylindrical LIB

Under development

Cylindrical LIB Capacity-up history

03V

40V

LiCoO2(145mAhg)

Li[NiCoMn]O2(145~170mAhg)

LiMn2O4(100mAhg)

Graphite(360mAhg)

LiNiO2(200mAhg)

48V

37V

38V

34V LiFePO4(160mAhg)

32V

Li4Ti5O12(160mAhg)

Electrolyte

Stable

window

LiNi05Mn15O4(110mAhg)

16V

~90 of cathode materials

Electrode materials and voltage

LCO

[LiCoO2]

High V(gt43V)

High capacity

Metal-doped LCO

[Mg Ti Al]

OLO(over-lithiated oxide)

[xLi2MnO3(1-x)LiMeO2]

bull Power

bull Cycle life

bull Safety

Low cost NCM

[LiNi13Co13Mn13O2]

NCA

[LiNi08Co015Al005O2]

[LiNi05Co02Mn03O2

LiNi06Co02Mn02O2 ]

[LiNi05Mn05O2]

bull Safety

bull Power

Low cost

safety

4V-spinel

[LiMn2O4]

5V-spinel

[LiNi05Mn15O4] bull Electrolyte

Safety

Low cost

LFP olivine

[LiFePO4]

LMP olivine

[LiMnPO4]

bull Mn dissolution

bull Electrolyte

Cathode materials for LIBrsquos

High safety but extremely low energy density

Currently used

Volume expansion when lithiated (~300 vs 10 graphite)

Mechanical degradation electrical isolation

Cell expansion amp capacity loss during chargedischarge

cycle-life

ldquoElectrode and cell expansionrdquo

ldquoCracking amp electrical isolationrdquo

Li-insertion

After cycle

14

Anode materials for LIBrsquos

100 -

200 -

300 -

400 -

500 -

Gra

vim

etr

ic e

nerg

y d

ensity(W

hk

g)

Current

LIB

Advanced

LIB

CarbonLiFePO4

Si-carbon composite

Li2MnO3-NCM

CarbonLiMnPO4

Lithium-sulfur

Lithium-air battery

All Solid State Battery

Present Near future Future

Carbon

[NCM+LiMn2O4]

Technical Trend for EV

Next generation

Battery

Advanced LIB

- E-mail hjna0805ecoplus9com

- Mobile Phone ++82-10-8966-5407

Page 3: Evolution of Rechargeable Lithium Ion Battery - Isaac Ra

Life Change by Rechargeable Li-ion battery

1800

Volta

battery

1859

Lead-acid

battery

Power source

for automobile

1888

Alkaline

battery

Portable power

source in WAR

1970

Ni-Cd

battery

Power tool

Walkman

1991

Commercialization

of lithium-ion battery (Sony)

Mobile IT

devices

2000

Mass production

of LIB in Korea

(LG Chem

Samsung SDI)

Evolution

History

2009

Mass production of LIB

for HEV

(Hyundai Motor LG Chem)

1997

HEV with Ni-MH

battery

(Toyota Honda)

History of Rechargeable battery

Turning

Point

Hybrid Electric

Vehicle(HEV)

Plug-in Hybrid

Electric Vehicle

(PHEV)

Engine + Motor

Engine + Motor

Pure Electric Vehicle

(FCEV BEV) Motor

CO2 emission

Types of Electric Vehicles

Toyota Prius

GM Volt

Nissan Leaf

1 Global warming by GHG(Green House Gas)

2 Oil crisis

Why EV

Source IEA (Intrsquol Energy Agency)

gt 500km (60kWh)

32 km

64km

gt 250km (30kWh)

HEV

PHEV20

PHEV40

EV

2kWh

8kWh

16kWh

30kWh

60kWh

E-driving range CO2 emission

123gkm

60gkm

49gkm

[Fuel economy]

[16kml]

[25kml]

[32kml]

[gt 70kml]

20Ah 37V = 64Wh

310

1250

2500

4680

9370

Current(Ampere) Voltage = Power(Watt)

Power(Watt) time(Hour) = Energy(Wh)

Battery and EV

Toyota Prius

GM Volt

Nissan Leaf

of batteries

Toyota Prius PHEV

Ref 2012 Hiedge Report IIT Report

EV Battery Market

from httpberclblgovvenkatRagone-constructionpps

Why LIB

1 Most light metal

2 Most active metal

highest voltage amp energy

Why Lithium

37 V 12 V

90

110

130

150

170

190

200 300 400 500 600 700 800 900

Gra

vim

etr

ic E

nerg

y D

en

sit

y (

Wh

kg

)

Volumetric Energy Density(Whl)

Typ1250mAh

Typ1370mAh

Typ1420mAh

Typ1700mAh

Typ1900mAh

Typ2000mAh

Typ2200mAhTyp2400mAh

Typ2600mAhTyp2800mAh

Typ3000mAh

1994

1995

1996

1998

2000

2001

2002

20032005

20072008

Typ3600mAh

Typ860mAh (1st LIB by SONY)

Map of energy density for cylindrical LIB

Under development

Cylindrical LIB Capacity-up history

03V

40V

LiCoO2(145mAhg)

Li[NiCoMn]O2(145~170mAhg)

LiMn2O4(100mAhg)

Graphite(360mAhg)

LiNiO2(200mAhg)

48V

37V

38V

34V LiFePO4(160mAhg)

32V

Li4Ti5O12(160mAhg)

Electrolyte

Stable

window

LiNi05Mn15O4(110mAhg)

16V

~90 of cathode materials

Electrode materials and voltage

LCO

[LiCoO2]

High V(gt43V)

High capacity

Metal-doped LCO

[Mg Ti Al]

OLO(over-lithiated oxide)

[xLi2MnO3(1-x)LiMeO2]

bull Power

bull Cycle life

bull Safety

Low cost NCM

[LiNi13Co13Mn13O2]

NCA

[LiNi08Co015Al005O2]

[LiNi05Co02Mn03O2

LiNi06Co02Mn02O2 ]

[LiNi05Mn05O2]

bull Safety

bull Power

Low cost

safety

4V-spinel

[LiMn2O4]

5V-spinel

[LiNi05Mn15O4] bull Electrolyte

Safety

Low cost

LFP olivine

[LiFePO4]

LMP olivine

[LiMnPO4]

bull Mn dissolution

bull Electrolyte

Cathode materials for LIBrsquos

High safety but extremely low energy density

Currently used

Volume expansion when lithiated (~300 vs 10 graphite)

Mechanical degradation electrical isolation

Cell expansion amp capacity loss during chargedischarge

cycle-life

ldquoElectrode and cell expansionrdquo

ldquoCracking amp electrical isolationrdquo

Li-insertion

After cycle

14

Anode materials for LIBrsquos

100 -

200 -

300 -

400 -

500 -

Gra

vim

etr

ic e

nerg

y d

ensity(W

hk

g)

Current

LIB

Advanced

LIB

CarbonLiFePO4

Si-carbon composite

Li2MnO3-NCM

CarbonLiMnPO4

Lithium-sulfur

Lithium-air battery

All Solid State Battery

Present Near future Future

Carbon

[NCM+LiMn2O4]

Technical Trend for EV

Next generation

Battery

Advanced LIB

- E-mail hjna0805ecoplus9com

- Mobile Phone ++82-10-8966-5407

Page 4: Evolution of Rechargeable Lithium Ion Battery - Isaac Ra

1800

Volta

battery

1859

Lead-acid

battery

Power source

for automobile

1888

Alkaline

battery

Portable power

source in WAR

1970

Ni-Cd

battery

Power tool

Walkman

1991

Commercialization

of lithium-ion battery (Sony)

Mobile IT

devices

2000

Mass production

of LIB in Korea

(LG Chem

Samsung SDI)

Evolution

History

2009

Mass production of LIB

for HEV

(Hyundai Motor LG Chem)

1997

HEV with Ni-MH

battery

(Toyota Honda)

History of Rechargeable battery

Turning

Point

Hybrid Electric

Vehicle(HEV)

Plug-in Hybrid

Electric Vehicle

(PHEV)

Engine + Motor

Engine + Motor

Pure Electric Vehicle

(FCEV BEV) Motor

CO2 emission

Types of Electric Vehicles

Toyota Prius

GM Volt

Nissan Leaf

1 Global warming by GHG(Green House Gas)

2 Oil crisis

Why EV

Source IEA (Intrsquol Energy Agency)

gt 500km (60kWh)

32 km

64km

gt 250km (30kWh)

HEV

PHEV20

PHEV40

EV

2kWh

8kWh

16kWh

30kWh

60kWh

E-driving range CO2 emission

123gkm

60gkm

49gkm

[Fuel economy]

[16kml]

[25kml]

[32kml]

[gt 70kml]

20Ah 37V = 64Wh

310

1250

2500

4680

9370

Current(Ampere) Voltage = Power(Watt)

Power(Watt) time(Hour) = Energy(Wh)

Battery and EV

Toyota Prius

GM Volt

Nissan Leaf

of batteries

Toyota Prius PHEV

Ref 2012 Hiedge Report IIT Report

EV Battery Market

from httpberclblgovvenkatRagone-constructionpps

Why LIB

1 Most light metal

2 Most active metal

highest voltage amp energy

Why Lithium

37 V 12 V

90

110

130

150

170

190

200 300 400 500 600 700 800 900

Gra

vim

etr

ic E

nerg

y D

en

sit

y (

Wh

kg

)

Volumetric Energy Density(Whl)

Typ1250mAh

Typ1370mAh

Typ1420mAh

Typ1700mAh

Typ1900mAh

Typ2000mAh

Typ2200mAhTyp2400mAh

Typ2600mAhTyp2800mAh

Typ3000mAh

1994

1995

1996

1998

2000

2001

2002

20032005

20072008

Typ3600mAh

Typ860mAh (1st LIB by SONY)

Map of energy density for cylindrical LIB

Under development

Cylindrical LIB Capacity-up history

03V

40V

LiCoO2(145mAhg)

Li[NiCoMn]O2(145~170mAhg)

LiMn2O4(100mAhg)

Graphite(360mAhg)

LiNiO2(200mAhg)

48V

37V

38V

34V LiFePO4(160mAhg)

32V

Li4Ti5O12(160mAhg)

Electrolyte

Stable

window

LiNi05Mn15O4(110mAhg)

16V

~90 of cathode materials

Electrode materials and voltage

LCO

[LiCoO2]

High V(gt43V)

High capacity

Metal-doped LCO

[Mg Ti Al]

OLO(over-lithiated oxide)

[xLi2MnO3(1-x)LiMeO2]

bull Power

bull Cycle life

bull Safety

Low cost NCM

[LiNi13Co13Mn13O2]

NCA

[LiNi08Co015Al005O2]

[LiNi05Co02Mn03O2

LiNi06Co02Mn02O2 ]

[LiNi05Mn05O2]

bull Safety

bull Power

Low cost

safety

4V-spinel

[LiMn2O4]

5V-spinel

[LiNi05Mn15O4] bull Electrolyte

Safety

Low cost

LFP olivine

[LiFePO4]

LMP olivine

[LiMnPO4]

bull Mn dissolution

bull Electrolyte

Cathode materials for LIBrsquos

High safety but extremely low energy density

Currently used

Volume expansion when lithiated (~300 vs 10 graphite)

Mechanical degradation electrical isolation

Cell expansion amp capacity loss during chargedischarge

cycle-life

ldquoElectrode and cell expansionrdquo

ldquoCracking amp electrical isolationrdquo

Li-insertion

After cycle

14

Anode materials for LIBrsquos

100 -

200 -

300 -

400 -

500 -

Gra

vim

etr

ic e

nerg

y d

ensity(W

hk

g)

Current

LIB

Advanced

LIB

CarbonLiFePO4

Si-carbon composite

Li2MnO3-NCM

CarbonLiMnPO4

Lithium-sulfur

Lithium-air battery

All Solid State Battery

Present Near future Future

Carbon

[NCM+LiMn2O4]

Technical Trend for EV

Next generation

Battery

Advanced LIB

- E-mail hjna0805ecoplus9com

- Mobile Phone ++82-10-8966-5407

Page 5: Evolution of Rechargeable Lithium Ion Battery - Isaac Ra

Hybrid Electric

Vehicle(HEV)

Plug-in Hybrid

Electric Vehicle

(PHEV)

Engine + Motor

Engine + Motor

Pure Electric Vehicle

(FCEV BEV) Motor

CO2 emission

Types of Electric Vehicles

Toyota Prius

GM Volt

Nissan Leaf

1 Global warming by GHG(Green House Gas)

2 Oil crisis

Why EV

Source IEA (Intrsquol Energy Agency)

gt 500km (60kWh)

32 km

64km

gt 250km (30kWh)

HEV

PHEV20

PHEV40

EV

2kWh

8kWh

16kWh

30kWh

60kWh

E-driving range CO2 emission

123gkm

60gkm

49gkm

[Fuel economy]

[16kml]

[25kml]

[32kml]

[gt 70kml]

20Ah 37V = 64Wh

310

1250

2500

4680

9370

Current(Ampere) Voltage = Power(Watt)

Power(Watt) time(Hour) = Energy(Wh)

Battery and EV

Toyota Prius

GM Volt

Nissan Leaf

of batteries

Toyota Prius PHEV

Ref 2012 Hiedge Report IIT Report

EV Battery Market

from httpberclblgovvenkatRagone-constructionpps

Why LIB

1 Most light metal

2 Most active metal

highest voltage amp energy

Why Lithium

37 V 12 V

90

110

130

150

170

190

200 300 400 500 600 700 800 900

Gra

vim

etr

ic E

nerg

y D

en

sit

y (

Wh

kg

)

Volumetric Energy Density(Whl)

Typ1250mAh

Typ1370mAh

Typ1420mAh

Typ1700mAh

Typ1900mAh

Typ2000mAh

Typ2200mAhTyp2400mAh

Typ2600mAhTyp2800mAh

Typ3000mAh

1994

1995

1996

1998

2000

2001

2002

20032005

20072008

Typ3600mAh

Typ860mAh (1st LIB by SONY)

Map of energy density for cylindrical LIB

Under development

Cylindrical LIB Capacity-up history

03V

40V

LiCoO2(145mAhg)

Li[NiCoMn]O2(145~170mAhg)

LiMn2O4(100mAhg)

Graphite(360mAhg)

LiNiO2(200mAhg)

48V

37V

38V

34V LiFePO4(160mAhg)

32V

Li4Ti5O12(160mAhg)

Electrolyte

Stable

window

LiNi05Mn15O4(110mAhg)

16V

~90 of cathode materials

Electrode materials and voltage

LCO

[LiCoO2]

High V(gt43V)

High capacity

Metal-doped LCO

[Mg Ti Al]

OLO(over-lithiated oxide)

[xLi2MnO3(1-x)LiMeO2]

bull Power

bull Cycle life

bull Safety

Low cost NCM

[LiNi13Co13Mn13O2]

NCA

[LiNi08Co015Al005O2]

[LiNi05Co02Mn03O2

LiNi06Co02Mn02O2 ]

[LiNi05Mn05O2]

bull Safety

bull Power

Low cost

safety

4V-spinel

[LiMn2O4]

5V-spinel

[LiNi05Mn15O4] bull Electrolyte

Safety

Low cost

LFP olivine

[LiFePO4]

LMP olivine

[LiMnPO4]

bull Mn dissolution

bull Electrolyte

Cathode materials for LIBrsquos

High safety but extremely low energy density

Currently used

Volume expansion when lithiated (~300 vs 10 graphite)

Mechanical degradation electrical isolation

Cell expansion amp capacity loss during chargedischarge

cycle-life

ldquoElectrode and cell expansionrdquo

ldquoCracking amp electrical isolationrdquo

Li-insertion

After cycle

14

Anode materials for LIBrsquos

100 -

200 -

300 -

400 -

500 -

Gra

vim

etr

ic e

nerg

y d

ensity(W

hk

g)

Current

LIB

Advanced

LIB

CarbonLiFePO4

Si-carbon composite

Li2MnO3-NCM

CarbonLiMnPO4

Lithium-sulfur

Lithium-air battery

All Solid State Battery

Present Near future Future

Carbon

[NCM+LiMn2O4]

Technical Trend for EV

Next generation

Battery

Advanced LIB

- E-mail hjna0805ecoplus9com

- Mobile Phone ++82-10-8966-5407

Page 6: Evolution of Rechargeable Lithium Ion Battery - Isaac Ra

1 Global warming by GHG(Green House Gas)

2 Oil crisis

Why EV

Source IEA (Intrsquol Energy Agency)

gt 500km (60kWh)

32 km

64km

gt 250km (30kWh)

HEV

PHEV20

PHEV40

EV

2kWh

8kWh

16kWh

30kWh

60kWh

E-driving range CO2 emission

123gkm

60gkm

49gkm

[Fuel economy]

[16kml]

[25kml]

[32kml]

[gt 70kml]

20Ah 37V = 64Wh

310

1250

2500

4680

9370

Current(Ampere) Voltage = Power(Watt)

Power(Watt) time(Hour) = Energy(Wh)

Battery and EV

Toyota Prius

GM Volt

Nissan Leaf

of batteries

Toyota Prius PHEV

Ref 2012 Hiedge Report IIT Report

EV Battery Market

from httpberclblgovvenkatRagone-constructionpps

Why LIB

1 Most light metal

2 Most active metal

highest voltage amp energy

Why Lithium

37 V 12 V

90

110

130

150

170

190

200 300 400 500 600 700 800 900

Gra

vim

etr

ic E

nerg

y D

en

sit

y (

Wh

kg

)

Volumetric Energy Density(Whl)

Typ1250mAh

Typ1370mAh

Typ1420mAh

Typ1700mAh

Typ1900mAh

Typ2000mAh

Typ2200mAhTyp2400mAh

Typ2600mAhTyp2800mAh

Typ3000mAh

1994

1995

1996

1998

2000

2001

2002

20032005

20072008

Typ3600mAh

Typ860mAh (1st LIB by SONY)

Map of energy density for cylindrical LIB

Under development

Cylindrical LIB Capacity-up history

03V

40V

LiCoO2(145mAhg)

Li[NiCoMn]O2(145~170mAhg)

LiMn2O4(100mAhg)

Graphite(360mAhg)

LiNiO2(200mAhg)

48V

37V

38V

34V LiFePO4(160mAhg)

32V

Li4Ti5O12(160mAhg)

Electrolyte

Stable

window

LiNi05Mn15O4(110mAhg)

16V

~90 of cathode materials

Electrode materials and voltage

LCO

[LiCoO2]

High V(gt43V)

High capacity

Metal-doped LCO

[Mg Ti Al]

OLO(over-lithiated oxide)

[xLi2MnO3(1-x)LiMeO2]

bull Power

bull Cycle life

bull Safety

Low cost NCM

[LiNi13Co13Mn13O2]

NCA

[LiNi08Co015Al005O2]

[LiNi05Co02Mn03O2

LiNi06Co02Mn02O2 ]

[LiNi05Mn05O2]

bull Safety

bull Power

Low cost

safety

4V-spinel

[LiMn2O4]

5V-spinel

[LiNi05Mn15O4] bull Electrolyte

Safety

Low cost

LFP olivine

[LiFePO4]

LMP olivine

[LiMnPO4]

bull Mn dissolution

bull Electrolyte

Cathode materials for LIBrsquos

High safety but extremely low energy density

Currently used

Volume expansion when lithiated (~300 vs 10 graphite)

Mechanical degradation electrical isolation

Cell expansion amp capacity loss during chargedischarge

cycle-life

ldquoElectrode and cell expansionrdquo

ldquoCracking amp electrical isolationrdquo

Li-insertion

After cycle

14

Anode materials for LIBrsquos

100 -

200 -

300 -

400 -

500 -

Gra

vim

etr

ic e

nerg

y d

ensity(W

hk

g)

Current

LIB

Advanced

LIB

CarbonLiFePO4

Si-carbon composite

Li2MnO3-NCM

CarbonLiMnPO4

Lithium-sulfur

Lithium-air battery

All Solid State Battery

Present Near future Future

Carbon

[NCM+LiMn2O4]

Technical Trend for EV

Next generation

Battery

Advanced LIB

- E-mail hjna0805ecoplus9com

- Mobile Phone ++82-10-8966-5407

Page 7: Evolution of Rechargeable Lithium Ion Battery - Isaac Ra

gt 500km (60kWh)

32 km

64km

gt 250km (30kWh)

HEV

PHEV20

PHEV40

EV

2kWh

8kWh

16kWh

30kWh

60kWh

E-driving range CO2 emission

123gkm

60gkm

49gkm

[Fuel economy]

[16kml]

[25kml]

[32kml]

[gt 70kml]

20Ah 37V = 64Wh

310

1250

2500

4680

9370

Current(Ampere) Voltage = Power(Watt)

Power(Watt) time(Hour) = Energy(Wh)

Battery and EV

Toyota Prius

GM Volt

Nissan Leaf

of batteries

Toyota Prius PHEV

Ref 2012 Hiedge Report IIT Report

EV Battery Market

from httpberclblgovvenkatRagone-constructionpps

Why LIB

1 Most light metal

2 Most active metal

highest voltage amp energy

Why Lithium

37 V 12 V

90

110

130

150

170

190

200 300 400 500 600 700 800 900

Gra

vim

etr

ic E

nerg

y D

en

sit

y (

Wh

kg

)

Volumetric Energy Density(Whl)

Typ1250mAh

Typ1370mAh

Typ1420mAh

Typ1700mAh

Typ1900mAh

Typ2000mAh

Typ2200mAhTyp2400mAh

Typ2600mAhTyp2800mAh

Typ3000mAh

1994

1995

1996

1998

2000

2001

2002

20032005

20072008

Typ3600mAh

Typ860mAh (1st LIB by SONY)

Map of energy density for cylindrical LIB

Under development

Cylindrical LIB Capacity-up history

03V

40V

LiCoO2(145mAhg)

Li[NiCoMn]O2(145~170mAhg)

LiMn2O4(100mAhg)

Graphite(360mAhg)

LiNiO2(200mAhg)

48V

37V

38V

34V LiFePO4(160mAhg)

32V

Li4Ti5O12(160mAhg)

Electrolyte

Stable

window

LiNi05Mn15O4(110mAhg)

16V

~90 of cathode materials

Electrode materials and voltage

LCO

[LiCoO2]

High V(gt43V)

High capacity

Metal-doped LCO

[Mg Ti Al]

OLO(over-lithiated oxide)

[xLi2MnO3(1-x)LiMeO2]

bull Power

bull Cycle life

bull Safety

Low cost NCM

[LiNi13Co13Mn13O2]

NCA

[LiNi08Co015Al005O2]

[LiNi05Co02Mn03O2

LiNi06Co02Mn02O2 ]

[LiNi05Mn05O2]

bull Safety

bull Power

Low cost

safety

4V-spinel

[LiMn2O4]

5V-spinel

[LiNi05Mn15O4] bull Electrolyte

Safety

Low cost

LFP olivine

[LiFePO4]

LMP olivine

[LiMnPO4]

bull Mn dissolution

bull Electrolyte

Cathode materials for LIBrsquos

High safety but extremely low energy density

Currently used

Volume expansion when lithiated (~300 vs 10 graphite)

Mechanical degradation electrical isolation

Cell expansion amp capacity loss during chargedischarge

cycle-life

ldquoElectrode and cell expansionrdquo

ldquoCracking amp electrical isolationrdquo

Li-insertion

After cycle

14

Anode materials for LIBrsquos

100 -

200 -

300 -

400 -

500 -

Gra

vim

etr

ic e

nerg

y d

ensity(W

hk

g)

Current

LIB

Advanced

LIB

CarbonLiFePO4

Si-carbon composite

Li2MnO3-NCM

CarbonLiMnPO4

Lithium-sulfur

Lithium-air battery

All Solid State Battery

Present Near future Future

Carbon

[NCM+LiMn2O4]

Technical Trend for EV

Next generation

Battery

Advanced LIB

- E-mail hjna0805ecoplus9com

- Mobile Phone ++82-10-8966-5407

Page 8: Evolution of Rechargeable Lithium Ion Battery - Isaac Ra

Ref 2012 Hiedge Report IIT Report

EV Battery Market

from httpberclblgovvenkatRagone-constructionpps

Why LIB

1 Most light metal

2 Most active metal

highest voltage amp energy

Why Lithium

37 V 12 V

90

110

130

150

170

190

200 300 400 500 600 700 800 900

Gra

vim

etr

ic E

nerg

y D

en

sit

y (

Wh

kg

)

Volumetric Energy Density(Whl)

Typ1250mAh

Typ1370mAh

Typ1420mAh

Typ1700mAh

Typ1900mAh

Typ2000mAh

Typ2200mAhTyp2400mAh

Typ2600mAhTyp2800mAh

Typ3000mAh

1994

1995

1996

1998

2000

2001

2002

20032005

20072008

Typ3600mAh

Typ860mAh (1st LIB by SONY)

Map of energy density for cylindrical LIB

Under development

Cylindrical LIB Capacity-up history

03V

40V

LiCoO2(145mAhg)

Li[NiCoMn]O2(145~170mAhg)

LiMn2O4(100mAhg)

Graphite(360mAhg)

LiNiO2(200mAhg)

48V

37V

38V

34V LiFePO4(160mAhg)

32V

Li4Ti5O12(160mAhg)

Electrolyte

Stable

window

LiNi05Mn15O4(110mAhg)

16V

~90 of cathode materials

Electrode materials and voltage

LCO

[LiCoO2]

High V(gt43V)

High capacity

Metal-doped LCO

[Mg Ti Al]

OLO(over-lithiated oxide)

[xLi2MnO3(1-x)LiMeO2]

bull Power

bull Cycle life

bull Safety

Low cost NCM

[LiNi13Co13Mn13O2]

NCA

[LiNi08Co015Al005O2]

[LiNi05Co02Mn03O2

LiNi06Co02Mn02O2 ]

[LiNi05Mn05O2]

bull Safety

bull Power

Low cost

safety

4V-spinel

[LiMn2O4]

5V-spinel

[LiNi05Mn15O4] bull Electrolyte

Safety

Low cost

LFP olivine

[LiFePO4]

LMP olivine

[LiMnPO4]

bull Mn dissolution

bull Electrolyte

Cathode materials for LIBrsquos

High safety but extremely low energy density

Currently used

Volume expansion when lithiated (~300 vs 10 graphite)

Mechanical degradation electrical isolation

Cell expansion amp capacity loss during chargedischarge

cycle-life

ldquoElectrode and cell expansionrdquo

ldquoCracking amp electrical isolationrdquo

Li-insertion

After cycle

14

Anode materials for LIBrsquos

100 -

200 -

300 -

400 -

500 -

Gra

vim

etr

ic e

nerg

y d

ensity(W

hk

g)

Current

LIB

Advanced

LIB

CarbonLiFePO4

Si-carbon composite

Li2MnO3-NCM

CarbonLiMnPO4

Lithium-sulfur

Lithium-air battery

All Solid State Battery

Present Near future Future

Carbon

[NCM+LiMn2O4]

Technical Trend for EV

Next generation

Battery

Advanced LIB

- E-mail hjna0805ecoplus9com

- Mobile Phone ++82-10-8966-5407

Page 9: Evolution of Rechargeable Lithium Ion Battery - Isaac Ra

from httpberclblgovvenkatRagone-constructionpps

Why LIB

1 Most light metal

2 Most active metal

highest voltage amp energy

Why Lithium

37 V 12 V

90

110

130

150

170

190

200 300 400 500 600 700 800 900

Gra

vim

etr

ic E

nerg

y D

en

sit

y (

Wh

kg

)

Volumetric Energy Density(Whl)

Typ1250mAh

Typ1370mAh

Typ1420mAh

Typ1700mAh

Typ1900mAh

Typ2000mAh

Typ2200mAhTyp2400mAh

Typ2600mAhTyp2800mAh

Typ3000mAh

1994

1995

1996

1998

2000

2001

2002

20032005

20072008

Typ3600mAh

Typ860mAh (1st LIB by SONY)

Map of energy density for cylindrical LIB

Under development

Cylindrical LIB Capacity-up history

03V

40V

LiCoO2(145mAhg)

Li[NiCoMn]O2(145~170mAhg)

LiMn2O4(100mAhg)

Graphite(360mAhg)

LiNiO2(200mAhg)

48V

37V

38V

34V LiFePO4(160mAhg)

32V

Li4Ti5O12(160mAhg)

Electrolyte

Stable

window

LiNi05Mn15O4(110mAhg)

16V

~90 of cathode materials

Electrode materials and voltage

LCO

[LiCoO2]

High V(gt43V)

High capacity

Metal-doped LCO

[Mg Ti Al]

OLO(over-lithiated oxide)

[xLi2MnO3(1-x)LiMeO2]

bull Power

bull Cycle life

bull Safety

Low cost NCM

[LiNi13Co13Mn13O2]

NCA

[LiNi08Co015Al005O2]

[LiNi05Co02Mn03O2

LiNi06Co02Mn02O2 ]

[LiNi05Mn05O2]

bull Safety

bull Power

Low cost

safety

4V-spinel

[LiMn2O4]

5V-spinel

[LiNi05Mn15O4] bull Electrolyte

Safety

Low cost

LFP olivine

[LiFePO4]

LMP olivine

[LiMnPO4]

bull Mn dissolution

bull Electrolyte

Cathode materials for LIBrsquos

High safety but extremely low energy density

Currently used

Volume expansion when lithiated (~300 vs 10 graphite)

Mechanical degradation electrical isolation

Cell expansion amp capacity loss during chargedischarge

cycle-life

ldquoElectrode and cell expansionrdquo

ldquoCracking amp electrical isolationrdquo

Li-insertion

After cycle

14

Anode materials for LIBrsquos

100 -

200 -

300 -

400 -

500 -

Gra

vim

etr

ic e

nerg

y d

ensity(W

hk

g)

Current

LIB

Advanced

LIB

CarbonLiFePO4

Si-carbon composite

Li2MnO3-NCM

CarbonLiMnPO4

Lithium-sulfur

Lithium-air battery

All Solid State Battery

Present Near future Future

Carbon

[NCM+LiMn2O4]

Technical Trend for EV

Next generation

Battery

Advanced LIB

- E-mail hjna0805ecoplus9com

- Mobile Phone ++82-10-8966-5407

Page 10: Evolution of Rechargeable Lithium Ion Battery - Isaac Ra

1 Most light metal

2 Most active metal

highest voltage amp energy

Why Lithium

37 V 12 V

90

110

130

150

170

190

200 300 400 500 600 700 800 900

Gra

vim

etr

ic E

nerg

y D

en

sit

y (

Wh

kg

)

Volumetric Energy Density(Whl)

Typ1250mAh

Typ1370mAh

Typ1420mAh

Typ1700mAh

Typ1900mAh

Typ2000mAh

Typ2200mAhTyp2400mAh

Typ2600mAhTyp2800mAh

Typ3000mAh

1994

1995

1996

1998

2000

2001

2002

20032005

20072008

Typ3600mAh

Typ860mAh (1st LIB by SONY)

Map of energy density for cylindrical LIB

Under development

Cylindrical LIB Capacity-up history

03V

40V

LiCoO2(145mAhg)

Li[NiCoMn]O2(145~170mAhg)

LiMn2O4(100mAhg)

Graphite(360mAhg)

LiNiO2(200mAhg)

48V

37V

38V

34V LiFePO4(160mAhg)

32V

Li4Ti5O12(160mAhg)

Electrolyte

Stable

window

LiNi05Mn15O4(110mAhg)

16V

~90 of cathode materials

Electrode materials and voltage

LCO

[LiCoO2]

High V(gt43V)

High capacity

Metal-doped LCO

[Mg Ti Al]

OLO(over-lithiated oxide)

[xLi2MnO3(1-x)LiMeO2]

bull Power

bull Cycle life

bull Safety

Low cost NCM

[LiNi13Co13Mn13O2]

NCA

[LiNi08Co015Al005O2]

[LiNi05Co02Mn03O2

LiNi06Co02Mn02O2 ]

[LiNi05Mn05O2]

bull Safety

bull Power

Low cost

safety

4V-spinel

[LiMn2O4]

5V-spinel

[LiNi05Mn15O4] bull Electrolyte

Safety

Low cost

LFP olivine

[LiFePO4]

LMP olivine

[LiMnPO4]

bull Mn dissolution

bull Electrolyte

Cathode materials for LIBrsquos

High safety but extremely low energy density

Currently used

Volume expansion when lithiated (~300 vs 10 graphite)

Mechanical degradation electrical isolation

Cell expansion amp capacity loss during chargedischarge

cycle-life

ldquoElectrode and cell expansionrdquo

ldquoCracking amp electrical isolationrdquo

Li-insertion

After cycle

14

Anode materials for LIBrsquos

100 -

200 -

300 -

400 -

500 -

Gra

vim

etr

ic e

nerg

y d

ensity(W

hk

g)

Current

LIB

Advanced

LIB

CarbonLiFePO4

Si-carbon composite

Li2MnO3-NCM

CarbonLiMnPO4

Lithium-sulfur

Lithium-air battery

All Solid State Battery

Present Near future Future

Carbon

[NCM+LiMn2O4]

Technical Trend for EV

Next generation

Battery

Advanced LIB

- E-mail hjna0805ecoplus9com

- Mobile Phone ++82-10-8966-5407

Page 11: Evolution of Rechargeable Lithium Ion Battery - Isaac Ra

90

110

130

150

170

190

200 300 400 500 600 700 800 900

Gra

vim

etr

ic E

nerg

y D

en

sit

y (

Wh

kg

)

Volumetric Energy Density(Whl)

Typ1250mAh

Typ1370mAh

Typ1420mAh

Typ1700mAh

Typ1900mAh

Typ2000mAh

Typ2200mAhTyp2400mAh

Typ2600mAhTyp2800mAh

Typ3000mAh

1994

1995

1996

1998

2000

2001

2002

20032005

20072008

Typ3600mAh

Typ860mAh (1st LIB by SONY)

Map of energy density for cylindrical LIB

Under development

Cylindrical LIB Capacity-up history

03V

40V

LiCoO2(145mAhg)

Li[NiCoMn]O2(145~170mAhg)

LiMn2O4(100mAhg)

Graphite(360mAhg)

LiNiO2(200mAhg)

48V

37V

38V

34V LiFePO4(160mAhg)

32V

Li4Ti5O12(160mAhg)

Electrolyte

Stable

window

LiNi05Mn15O4(110mAhg)

16V

~90 of cathode materials

Electrode materials and voltage

LCO

[LiCoO2]

High V(gt43V)

High capacity

Metal-doped LCO

[Mg Ti Al]

OLO(over-lithiated oxide)

[xLi2MnO3(1-x)LiMeO2]

bull Power

bull Cycle life

bull Safety

Low cost NCM

[LiNi13Co13Mn13O2]

NCA

[LiNi08Co015Al005O2]

[LiNi05Co02Mn03O2

LiNi06Co02Mn02O2 ]

[LiNi05Mn05O2]

bull Safety

bull Power

Low cost

safety

4V-spinel

[LiMn2O4]

5V-spinel

[LiNi05Mn15O4] bull Electrolyte

Safety

Low cost

LFP olivine

[LiFePO4]

LMP olivine

[LiMnPO4]

bull Mn dissolution

bull Electrolyte

Cathode materials for LIBrsquos

High safety but extremely low energy density

Currently used

Volume expansion when lithiated (~300 vs 10 graphite)

Mechanical degradation electrical isolation

Cell expansion amp capacity loss during chargedischarge

cycle-life

ldquoElectrode and cell expansionrdquo

ldquoCracking amp electrical isolationrdquo

Li-insertion

After cycle

14

Anode materials for LIBrsquos

100 -

200 -

300 -

400 -

500 -

Gra

vim

etr

ic e

nerg

y d

ensity(W

hk

g)

Current

LIB

Advanced

LIB

CarbonLiFePO4

Si-carbon composite

Li2MnO3-NCM

CarbonLiMnPO4

Lithium-sulfur

Lithium-air battery

All Solid State Battery

Present Near future Future

Carbon

[NCM+LiMn2O4]

Technical Trend for EV

Next generation

Battery

Advanced LIB

- E-mail hjna0805ecoplus9com

- Mobile Phone ++82-10-8966-5407

Page 12: Evolution of Rechargeable Lithium Ion Battery - Isaac Ra

03V

40V

LiCoO2(145mAhg)

Li[NiCoMn]O2(145~170mAhg)

LiMn2O4(100mAhg)

Graphite(360mAhg)

LiNiO2(200mAhg)

48V

37V

38V

34V LiFePO4(160mAhg)

32V

Li4Ti5O12(160mAhg)

Electrolyte

Stable

window

LiNi05Mn15O4(110mAhg)

16V

~90 of cathode materials

Electrode materials and voltage

LCO

[LiCoO2]

High V(gt43V)

High capacity

Metal-doped LCO

[Mg Ti Al]

OLO(over-lithiated oxide)

[xLi2MnO3(1-x)LiMeO2]

bull Power

bull Cycle life

bull Safety

Low cost NCM

[LiNi13Co13Mn13O2]

NCA

[LiNi08Co015Al005O2]

[LiNi05Co02Mn03O2

LiNi06Co02Mn02O2 ]

[LiNi05Mn05O2]

bull Safety

bull Power

Low cost

safety

4V-spinel

[LiMn2O4]

5V-spinel

[LiNi05Mn15O4] bull Electrolyte

Safety

Low cost

LFP olivine

[LiFePO4]

LMP olivine

[LiMnPO4]

bull Mn dissolution

bull Electrolyte

Cathode materials for LIBrsquos

High safety but extremely low energy density

Currently used

Volume expansion when lithiated (~300 vs 10 graphite)

Mechanical degradation electrical isolation

Cell expansion amp capacity loss during chargedischarge

cycle-life

ldquoElectrode and cell expansionrdquo

ldquoCracking amp electrical isolationrdquo

Li-insertion

After cycle

14

Anode materials for LIBrsquos

100 -

200 -

300 -

400 -

500 -

Gra

vim

etr

ic e

nerg

y d

ensity(W

hk

g)

Current

LIB

Advanced

LIB

CarbonLiFePO4

Si-carbon composite

Li2MnO3-NCM

CarbonLiMnPO4

Lithium-sulfur

Lithium-air battery

All Solid State Battery

Present Near future Future

Carbon

[NCM+LiMn2O4]

Technical Trend for EV

Next generation

Battery

Advanced LIB

- E-mail hjna0805ecoplus9com

- Mobile Phone ++82-10-8966-5407

Page 13: Evolution of Rechargeable Lithium Ion Battery - Isaac Ra

LCO

[LiCoO2]

High V(gt43V)

High capacity

Metal-doped LCO

[Mg Ti Al]

OLO(over-lithiated oxide)

[xLi2MnO3(1-x)LiMeO2]

bull Power

bull Cycle life

bull Safety

Low cost NCM

[LiNi13Co13Mn13O2]

NCA

[LiNi08Co015Al005O2]

[LiNi05Co02Mn03O2

LiNi06Co02Mn02O2 ]

[LiNi05Mn05O2]

bull Safety

bull Power

Low cost

safety

4V-spinel

[LiMn2O4]

5V-spinel

[LiNi05Mn15O4] bull Electrolyte

Safety

Low cost

LFP olivine

[LiFePO4]

LMP olivine

[LiMnPO4]

bull Mn dissolution

bull Electrolyte

Cathode materials for LIBrsquos

High safety but extremely low energy density

Currently used

Volume expansion when lithiated (~300 vs 10 graphite)

Mechanical degradation electrical isolation

Cell expansion amp capacity loss during chargedischarge

cycle-life

ldquoElectrode and cell expansionrdquo

ldquoCracking amp electrical isolationrdquo

Li-insertion

After cycle

14

Anode materials for LIBrsquos

100 -

200 -

300 -

400 -

500 -

Gra

vim

etr

ic e

nerg

y d

ensity(W

hk

g)

Current

LIB

Advanced

LIB

CarbonLiFePO4

Si-carbon composite

Li2MnO3-NCM

CarbonLiMnPO4

Lithium-sulfur

Lithium-air battery

All Solid State Battery

Present Near future Future

Carbon

[NCM+LiMn2O4]

Technical Trend for EV

Next generation

Battery

Advanced LIB

- E-mail hjna0805ecoplus9com

- Mobile Phone ++82-10-8966-5407

Page 14: Evolution of Rechargeable Lithium Ion Battery - Isaac Ra

High safety but extremely low energy density

Currently used

Volume expansion when lithiated (~300 vs 10 graphite)

Mechanical degradation electrical isolation

Cell expansion amp capacity loss during chargedischarge

cycle-life

ldquoElectrode and cell expansionrdquo

ldquoCracking amp electrical isolationrdquo

Li-insertion

After cycle

14

Anode materials for LIBrsquos

100 -

200 -

300 -

400 -

500 -

Gra

vim

etr

ic e

nerg

y d

ensity(W

hk

g)

Current

LIB

Advanced

LIB

CarbonLiFePO4

Si-carbon composite

Li2MnO3-NCM

CarbonLiMnPO4

Lithium-sulfur

Lithium-air battery

All Solid State Battery

Present Near future Future

Carbon

[NCM+LiMn2O4]

Technical Trend for EV

Next generation

Battery

Advanced LIB

- E-mail hjna0805ecoplus9com

- Mobile Phone ++82-10-8966-5407

Page 15: Evolution of Rechargeable Lithium Ion Battery - Isaac Ra

100 -

200 -

300 -

400 -

500 -

Gra

vim

etr

ic e

nerg

y d

ensity(W

hk

g)

Current

LIB

Advanced

LIB

CarbonLiFePO4

Si-carbon composite

Li2MnO3-NCM

CarbonLiMnPO4

Lithium-sulfur

Lithium-air battery

All Solid State Battery

Present Near future Future

Carbon

[NCM+LiMn2O4]

Technical Trend for EV

Next generation

Battery

Advanced LIB

- E-mail hjna0805ecoplus9com

- Mobile Phone ++82-10-8966-5407

Page 16: Evolution of Rechargeable Lithium Ion Battery - Isaac Ra

Advanced LIB

- E-mail hjna0805ecoplus9com

- Mobile Phone ++82-10-8966-5407

Page 17: Evolution of Rechargeable Lithium Ion Battery - Isaac Ra

- E-mail hjna0805ecoplus9com

- Mobile Phone ++82-10-8966-5407