evolution of dna methylation - sylvain forêt

74
Evolution of DNA Methylation Sylvain Forêt Evolution, Ecology and Genetics Research School of Biology

Upload: australian-bioinformatics-network

Post on 11-May-2015

669 views

Category:

Technology


2 download

DESCRIPTION

Epigenetic regulations are fundamental to the development and health of plants and animals. For instance DNA methylation in mammals is required for normal embryonic development and has been involved in number of diseases such as cancer and diabetes. However, different animal species have widely different DNA methylation landscapes.

TRANSCRIPT

Page 1: Evolution of DNA Methylation - Sylvain Forêt

Evolution of DNA Methylation

Sylvain ForêtEvolution, Ecology and Genetics

Research School of Biology

Page 2: Evolution of DNA Methylation - Sylvain Forêt

History

Page 3: Evolution of DNA Methylation - Sylvain Forêt

1942 1944 1953

The double helix

Watson, Crick, Wilkins

DNA is the supportof genetic information

Avery, MacLeod, McCarty

Page 4: Evolution of DNA Methylation - Sylvain Forêt

1942 1944 1953

The double helix

Watson, Crick, Wilkins

DNA is the supportof genetic information

Avery, MacLeod, McCarty

Epigenetics

Waddington

Page 5: Evolution of DNA Methylation - Sylvain Forêt
Page 6: Evolution of DNA Methylation - Sylvain Forêt

From Genomes to Cells

Page 7: Evolution of DNA Methylation - Sylvain Forêt

AATAATAACGCTATCGGTTATTGTATCATTATTGTATATATTCGTAGTCGGTTTCCGAACGCGAAACGAAACGGACGTGTTTCTCTCTGCTCTCCGAGTAAAGACTTTATCGCTGTGAATAAAATATTATAGTGTAAAAATTTATTAAATAAAATAAAAATATTGTAGCGTAAAGATTATTAACGAATTTTATAAGTCATATAATAAATTCCAATTCCAAGAAGAGGAAATTTTTTAATCTTTAAAATTTTGTAAACTTTGAATCGCTGTATCTCCGAAGATAATAGCGATACCTACGATTTTCTGATGTGATTGCGATCGGGAAACGTTGCTCTTTCGATTTAATCGTTATTCCACGTCGAGAACTATCGTTGAAATGAACGCTATCGTTTAAATATGAGAAGAATCTTTGGAATTAAACTTGTGCAAACTTTCGACTGCTGTATCTCCAAAGATACAGTAGCGATATGTACGATTTTTTGAGATAGTTGCGAGCGGGAAACATTGCTCTTTATAATGTGGAAAAGGAAAAATAAAAAACTTAACCAAATGTAAACGATTAGATCGATTTAAACTGATACTGATAATTGCAATGAAAATAACCGGAAAATTAAGAAGATAAACGAAAGAAATCTTTGAATCTTTTTTTACGCGTCTTATAAATTAATAATAATGAAAAAAAAATTAAAAAAAATTAATTATCGAAAATATTATCGATAAAAAAAAATTAAATCATTAAATTTTAAAGAAACGAAAAATAACGAAACGAATCTAACGGAGTAATATATTAACGAGTGATAAAATGTAAAAATAAAATGAAAATTAATAATACCTTATGAATATTATAGTGAATAAAATAGCGAACGTAAATCGTGTCGATTGGTATTGTATACGTCTCGGTTAAACGTACTCGTTTTCCAAATACGAAACGAAACACGTGTTCCTTCCATTGTATTTATATACGTATAGACTAAACGTAGTCGGTTTTCGAACACGGAACGGGACGGACGTATTCCTTTCCGCTCTCTCGATAAAAATTTTATCGATATACGATATATTAATATTAAAATATAAATAATTGTTAAATAAATAAAATATGGAAGTGTAAGAATATCGAGTGTAATCATCATTAATACGTAAATCGATAAAAAGAAGAATTAAATATTTATCGAATACGAGGATAAAATGAAGAACGAAACGAGCCGAAACGTAAAAAAAAATAATCCTTTAACCGATAAATACTTAGAAATTAAAAAAAAATAATATAATAATTAAAATCGATAAATAAAATAAAAAATTCGAATTATTCGATTCTTTTCTTTTATTTCATTTTCAATTTACATATATTTTTTCTTTTTCTCTTACATTTTAAATATTAAAATATGTATTATCGTATTAAA

Page 8: Evolution of DNA Methylation - Sylvain Forêt

AATAATAACGCTATCGGTTATTGTATCATTATTGTATATATTCGTAGTCGGTTTCCGAACGCGAAACGAAACGGACGTGTTTCTCTCTGCTCTCCGAGTAAAGACTTTATCGCTGTGAATAAAATATTATAGTGTAAAAATTTATTAAATAAAATAAAAATATTGTAGCGTAAAGATTATTAACGAATTTTATAAGTCATATAATAAATTCCAATTCCAAGAAGAGGAAATTTTTTAATCTTTAAAATTTTGTAAACTTTGAATCGCTGTATCTCCGAAGATAATAGCGATACCTACGATTTTCTGATGTGATTGCGATCGGGAAACGTTGCTCTTTCGATTTAATCGTTATTCCACGTCGAGAACTATCGTTGAAATGAACGCTATCGTTTAAATATGAGAAGAATCTTTGGAATTAAACTTGTGCAAACTTTCGACTGCTGTATCTCCAAAGATACAGTAGCGATATGTACGATTTTTTGAGATAGTTGCGAGCGGGAAACATTGCTCTTTATAATGTGGAAAAGGAAAAATAAAAAACTTAACCAAATGTAAACGATTAGATCGATTTAAACTGATACTGATAATTGCAATGAAAATAACCGGAAAATTAAGAAGATAAACGAAAGAAATCTTTGAATCTTTTTTTACGCGTCTTATAAATTAATAATAATGAAAAAAAAATTAAAAAAAATTAATTATCGAAAATATTATCGATAAAAAAAAATTAAATCATTAAATTTTAAAGAAACGAAAAATAACGAAACGAATCTAACGGAGTAATATATTAACGAGTGATAAAATGTAAAAATAAAATGAAAATTAATAATACCTTATGAATATTATAGTGAATAAAATAGCGAACGTAAATCGTGTCGATTGGTATTGTATACGTCTCGGTTAAACGTACTCGTTTTCCAAATACGAAACGAAACACGTGTTCCTTCCATTGTATTTATATACGTATAGACTAAACGTAGTCGGTTTTCGAACACGGAACGGGACGGACGTATTCCTTTCCGCTCTCTCGATAAAAATTTTATCGATATACGATATATTAATATTAAAATATAAATAATTGTTAAATAAATAAAATATGGAAGTGTAAGAATATCGAGTGTAATCATCATTAATACGTAAATCGATAAAAAGAAGAATTAAATATTTATCGAATACGAGGATAAAATGAAGAACGAAACGAGCCGAAACGTAAAAAAAAATAATCCTTTAACCGATAAATACTTAGAAATTAAAAAAAAATAATATAATAATTAAAATCGATAAATAAAATAAAAAATTCGAATTATTCGATTCTTTTCTTTTATTTCATTTTCAATTTACATATATTTTTTCTTTTTCTCTTACATTTTAAATATTAAAATATGTATTATCGTATTAAA

AATAATAACGCTATCGGTTATTGTATCATTATTGTATATATTCGTAGTCGGTTTCCGAACGCGAAACGAAACGGACGTGTTTCTCTCTGCTCTCCGAGTAAAGACTTTATCGCTGTGAATAAAATATTATAGTGTAAAAATTTATTAAATAAAATAAAAATATTGTAGCGTAAAGATTATTAACGAATTTTATAAGTCATATAATAAATTCCAATTCCAAGAAGAGGAAATTTTTTAATCTTTAAAATTTTGTAAACTTTGAATCGCTGTATCTCCGAAGATAATAGCGATACCTACGATTTTCTGATGTGATTGCGATCGGGAAACGTTGCTCTTTCGATTTAATCGTTATTCCACGTCGAGAACTATCGTTGAAATGAACGCTATCGTTTAAATATGAGAAGAATCTTTGGAATTAAACTTGTGCAAACTTTCGACTGCTGTATCTCCAAAGATACAGTAGCGATATGTACGATTTTTTGAGATAGTTGCGAGCGGGAAACATTGCTCTTTATAATGTGGAAAAGGAAAAATAAAAAACTTAACCAAATGTAAACGATTAGATCGATTTAAACTGATACTGATAATTGCAATGAAAATAACCGGAAAATTAAGAAGATAAACGAAAGAAATCTTTGAATCTTTTTTTACGCGTCTTATAAATTAATAATAATGAAAAAAAAATTAAAAAAAATTAATTATCGAAAATATTATCGATAAAAAAAAATTAAATCATTAAATTTTAAAGAAACGAAAAATAACGAAACGAATCTAACGGAGTAATATATTAACGAGTGATAAAATGTAAAAATAAAATGAAAATTAATAATACCTTATGAATATTATAGTGAATAAAATAGCGAACGTAAATCGTGTCGATTGGTATTGTATACGTCTCGGTTAAACGTACTCGTTTTCCAAATACGAAACGAAACACGTGTTCCTTCCATTGTATTTATATACGTATAGACTAAACGTAGTCGGTTTTCGAACACGGAACGGGACGGACGTATTCCTTTCCGCTCTCTCGATAAAAATTTTATCGATATACGATATATTAATATTAAAATATAAATAATTGTTAAATAAATAAAATATGGAAGTGTAAGAATATCGAGTGTAATCATCATTAATACGTAAATCGATAAAAAGAAGAATTAAATATTTATCGAATACGAGGATAAAATGAAGAACGAAACGAGCCGAAACGTAAAAAAAAATAATCCTTTAACCGATAAATACTTAGAAATTAAAAAAAAATAATATAATAATTAAAATCGATAAATAAAATAAAAAATTCGAATTATTCGATTCTTTTCTTTTATTTCATTTTCAATTTACATATATTTTTTCTTTTTCTCTTACATTTTAAATATTAAAATATGTATTATCGTATTAAA

Page 9: Evolution of DNA Methylation - Sylvain Forêt

AATAATAACGCTATCGGTTATTGTATCATTATTGTATATATTCGTAGTCGGTTTCCGAACGCGAAACGAAACGGACGTGTTTCTCTCTGCTCTCCGAGTAAAGACTTTATCGCTGTGAATAAAATATTATAGTGTAAAAATTTATTAAATAAAATAAAAATATTGTAGCGTAAAGATTATTAACGAATTTTATAAGTCATATAATAAATTCCAATTCCAAGAAGAGGAAATTTTTTAATCTTTAAAATTTTGTAAACTTTGAATCGCTGTATCTCCGAAGATAATAGCGATACCTACGATTTTCTGATGTGATTGCGATCGGGAAACGTTGCTCTTTCGATTTAATCGTTATTCCACGTCGAGAACTATCGTTGAAATGAACGCTATCGTTTAAATATGAGAAGAATCTTTGGAATTAAACTTGTGCAAACTTTCGACTGCTGTATCTCCAAAGATACAGTAGCGATATGTACGATTTTTTGAGATAGTTGCGAGCGGGAAACATTGCTCTTTATAATGTGGAAAAGGAAAAATAAAAAACTTAACCAAATGTAAACGATTAGATCGATTTAAACTGATACTGATAATTGCAATGAAAATAACCGGAAAATTAAGAAGATAAACGAAAGAAATCTTTGAATCTTTTTTTACGCGTCTTATAAATTAATAATAATGAAAAAAAAATTAAAAAAAATTAATTATCGAAAATATTATCGATAAAAAAAAATTAAATCATTAAATTTTAAAGAAACGAAAAATAACGAAACGAATCTAACGGAGTAATATATTAACGAGTGATAAAATGTAAAAATAAAATGAAAATTAATAATACCTTATGAATATTATAGTGAATAAAATAGCGAACGTAAATCGTGTCGATTGGTATTGTATACGTCTCGGTTAAACGTACTCGTTTTCCAAATACGAAACGAAACACGTGTTCCTTCCATTGTATTTATATACGTATAGACTAAACGTAGTCGGTTTTCGAACACGGAACGGGACGGACGTATTCCTTTCCGCTCTCTCGATAAAAATTTTATCGATATACGATATATTAATATTAAAATATAAATAATTGTTAAATAAATAAAATATGGAAGTGTAAGAATATCGAGTGTAATCATCATTAATACGTAAATCGATAAAAAGAAGAATTAAATATTTATCGAATACGAGGATAAAATGAAGAACGAAACGAGCCGAAACGTAAAAAAAAATAATCCTTTAACCGATAAATACTTAGAAATTAAAAAAAAATAATATAATAATTAAAATCGATAAATAAAATAAAAAATTCGAATTATTCGATTCTTTTCTTTTATTTCATTTTCAATTTACATATATTTTTTCTTTTTCTCTTACATTTTAAATATTAAAATATGTATTATCGTATTAAA

AATAATAACGCTATCGGTTATTGTATCATTATTGTATATATTCGTAGTCGGTTTCCGAACGCGAAACGAAACGGACGTGTTTCTCTCTGCTCTCCGAGTAAAGACTTTATCGCTGTGAATAAAATATTATAGTGTAAAAATTTATTAAATAAAATAAAAATATTGTAGCGTAAAGATTATTAACGAATTTTATAAGTCATATAATAAATTCCAATTCCAAGAAGAGGAAATTTTTTAATCTTTAAAATTTTGTAAACTTTGAATCGCTGTATCTCCGAAGATAATAGCGATACCTACGATTTTCTGATGTGATTGCGATCGGGAAACGTTGCTCTTTCGATTTAATCGTTATTCCACGTCGAGAACTATCGTTGAAATGAACGCTATCGTTTAAATATGAGAAGAATCTTTGGAATTAAACTTGTGCAAACTTTCGACTGCTGTATCTCCAAAGATACAGTAGCGATATGTACGATTTTTTGAGATAGTTGCGAGCGGGAAACATTGCTCTTTATAATGTGGAAAAGGAAAAATAAAAAACTTAACCAAATGTAAACGATTAGATCGATTTAAACTGATACTGATAATTGCAATGAAAATAACCGGAAAATTAAGAAGATAAACGAAAGAAATCTTTGAATCTTTTTTTACGCGTCTTATAAATTAATAATAATGAAAAAAAAATTAAAAAAAATTAATTATCGAAAATATTATCGATAAAAAAAAATTAAATCATTAAATTTTAAAGAAACGAAAAATAACGAAACGAATCTAACGGAGTAATATATTAACGAGTGATAAAATGTAAAAATAAAATGAAAATTAATAATACCTTATGAATATTATAGTGAATAAAATAGCGAACGTAAATCGTGTCGATTGGTATTGTATACGTCTCGGTTAAACGTACTCGTTTTCCAAATACGAAACGAAACACGTGTTCCTTCCATTGTATTTATATACGTATAGACTAAACGTAGTCGGTTTTCGAACACGGAACGGGACGGACGTATTCCTTTCCGCTCTCTCGATAAAAATTTTATCGATATACGATATATTAATATTAAAATATAAATAATTGTTAAATAAATAAAATATGGAAGTGTAAGAATATCGAGTGTAATCATCATTAATACGTAAATCGATAAAAAGAAGAATTAAATATTTATCGAATACGAGGATAAAATGAAGAACGAAACGAGCCGAAACGTAAAAAAAAATAATCCTTTAACCGATAAATACTTAGAAATTAAAAAAAAATAATATAATAATTAAAATCGATAAATAAAATAAAAAATTCGAATTATTCGATTCTTTTCTTTTATTTCATTTTCAATTTACATATATTTTTTCTTTTTCTCTTACATTTTAAATATTAAAATATGTATTATCGTATTAAA

Page 10: Evolution of DNA Methylation - Sylvain Forêt
Page 11: Evolution of DNA Methylation - Sylvain Forêt

From Genomes to Organisms

Page 12: Evolution of DNA Methylation - Sylvain Forêt
Page 13: Evolution of DNA Methylation - Sylvain Forêt

FixedSimple structureVegetative reproductionImmortal

MotileComplex nervous systemComplex sensory structuresSexual reproductionShort lifespan

Page 14: Evolution of DNA Methylation - Sylvain Forêt
Page 15: Evolution of DNA Methylation - Sylvain Forêt

`

One per hiveLong-livedReproductive

Thousands per hiveShort-livedNon-reproductive

Page 16: Evolution of DNA Methylation - Sylvain Forêt
Page 17: Evolution of DNA Methylation - Sylvain Forêt
Page 18: Evolution of DNA Methylation - Sylvain Forêt
Page 19: Evolution of DNA Methylation - Sylvain Forêt

● These epigenetic changes are induced by environmental clues

● link between genome and environment● Epigenetic regulations are context dependent

interpretations of the genome:● conditional phenotypes

Page 20: Evolution of DNA Methylation - Sylvain Forêt

A Wide Variety of Roles

● Cellular differentiation during development● Differentiation between morphs● Many medical implications

– Cancer● Silencing of DNA repair and apoptosis genes● Activation of “proliferation” genes

– Other complex diseases● Diabetes, obesity

Page 21: Evolution of DNA Methylation - Sylvain Forêt

Histone modifications

DNA methylation

Epigenomics

Page 22: Evolution of DNA Methylation - Sylvain Forêt

DNA Methylation

Page 23: Evolution of DNA Methylation - Sylvain Forêt

DNA Methylation

● Addition of a methyl group onto a cytosine● Typically in the CG context (CpG)● Sometimes in CHH or CHG contexts

(especially in plants)

Page 24: Evolution of DNA Methylation - Sylvain Forêt

DNA Methylases

Some environmental / developmental signal

Cellular integration of the signal

Methylation of target sequences DNMT3 (de novo methylase)

Page 25: Evolution of DNA Methylation - Sylvain Forêt

A T C G T C T AT A G C A G A T

Symmetricallymethylated DNA

Page 26: Evolution of DNA Methylation - Sylvain Forêt

A T C G T C T AT A G C A G A T

Replication

A T C G T C T AT A G C A G A T

A T C G T C T AT A G C A G A T

Symmetricallymethylated DNA

Hemi-methylated DNA

Page 27: Evolution of DNA Methylation - Sylvain Forêt

A T C G T C T AT A G C A G A T

Replication

A T C G T C T AT A G C A G A T

A T C G T C T AT A G C A G A T

Symmetricallymethylated DNA

Hemi-methylated DNA

A T C G T C T AT A G C A G A T

A T C G T C T AT A G C A G A T

Symmetricallymethylated DNA

DNMT1 (maintenance methylase)

Page 28: Evolution of DNA Methylation - Sylvain Forêt

Maintenance

RNA

De-Novo

xx

Page 29: Evolution of DNA Methylation - Sylvain Forêt

A Computational Approach

Page 30: Evolution of DNA Methylation - Sylvain Forêt

Methylation and Genome Composition

CpG CpGM

TpG

Methylation resultsin CpG under-representation

Page 31: Evolution of DNA Methylation - Sylvain Forêt

CpG Bias=GpG observedCpG expected

=nATGC×nCpGnC×nG

Page 32: Evolution of DNA Methylation - Sylvain Forêt
Page 33: Evolution of DNA Methylation - Sylvain Forêt

Microarray Meta-Analysis:Presence / Absence Calls

Page 34: Evolution of DNA Methylation - Sylvain Forêt

Presence / Absence in Body Parts

Page 35: Evolution of DNA Methylation - Sylvain Forêt
Page 36: Evolution of DNA Methylation - Sylvain Forêt
Page 37: Evolution of DNA Methylation - Sylvain Forêt

Acropora millepora

Page 38: Evolution of DNA Methylation - Sylvain Forêt

Credits: Eldon Ball

Page 39: Evolution of DNA Methylation - Sylvain Forêt

● Stage-specific libraries● Mapping onto genome● Counts per transcript● Tissue-specificity index

– N: Number of conditions– Xi: Counts in condition i– Xmax: Max count

Page 40: Evolution of DNA Methylation - Sylvain Forêt

Ubiquitous Specific

Page 41: Evolution of DNA Methylation - Sylvain Forêt

DNA Methylation:Molecular Methods

Page 42: Evolution of DNA Methylation - Sylvain Forêt

Capture-Based Methods

● MeDIP: Methylated DNA Immuno-Precipitation● MethylCap: uses Methyl-Binding Domain

(MBD) of the MeCP2 protein● Followed by

– Tiling array – Sequencing (MeDIP-seq, MethylCap-seq)

Page 43: Evolution of DNA Methylation - Sylvain Forêt
Page 44: Evolution of DNA Methylation - Sylvain Forêt

Bisulfite Convertion

Methylation

BisulfiteConversion

Page 45: Evolution of DNA Methylation - Sylvain Forêt

A T C A T C T C A C G A T C G A T

A T T A T T T T A C G A T T G A T

M

Sodium Bisulfite

Page 46: Evolution of DNA Methylation - Sylvain Forêt

Array-Based Methods

● Illumina Infinium

Page 47: Evolution of DNA Methylation - Sylvain Forêt

Array-Based Methods

● Illumina Infinium– Pros

● Cheap● “Small” data size (~ ½ million CpGs)

– Cons● Only covers a small proportion of all CpGs● Focuses mainly on CpG Islands● Only exists for Human

Page 48: Evolution of DNA Methylation - Sylvain Forêt

Bock et al, Nature Biotechnologies, 2010

Page 49: Evolution of DNA Methylation - Sylvain Forêt

Bisulfite Sequencing

Page 50: Evolution of DNA Methylation - Sylvain Forêt

A T C A T C T C A C G A T C G A T

A T T A T T T T A C G A T T G A T

M

Sodium Bisulfite

Page 51: Evolution of DNA Methylation - Sylvain Forêt

Whole Genome Bisulfite Sequencing

● Bisulfite conversion directly followed by sequencing

● Large amount of data:– Single base pair resolution– Single strand resolution

A T A C G T A AT A T G C A T T

A T A C G T A AT A T G C A T T

Methylated Hemi-methylated

Page 52: Evolution of DNA Methylation - Sylvain Forêt

Conversion Breaks Complementarity

A C A C G T G AT G T G C A C T

A T A C G T G A

T G T G C A T T

Bisulfite Conversion

Watson (+)

Crick (-)

(+)

(-)

A T A C G T G AT A T G C A C T

A C T G C A A TT G T G C A T T

(++)

(+-)

(--)

(-+)

Page 53: Evolution of DNA Methylation - Sylvain Forêt

Mapping

● Convert genome (C to T)– Genome– Reverse complement

● Convert reads– Forward reads (++ and -+ strands): C to T– Reverse reads (+- and – strands): G to A

● Map (three letter space)● Convert the alignments back to the original

sequences

Page 54: Evolution of DNA Methylation - Sylvain Forêt
Page 55: Evolution of DNA Methylation - Sylvain Forêt

Calling Methylated Bases

● Bisulfite conversion is only a partial reaction (between 99% and 99.9%)

● With large amount of data, small artifacts can become highly significant

Page 56: Evolution of DNA Methylation - Sylvain Forêt

Calling Methylated Bases

CpGs 30,000,000

mCpGs 25,000,000

Cs 1,000,000,000 (both strands)

Conversion rate 99.9%

Coverage per strand 10

Change of spurious mC 1%

Inferred mC 20,000,000

Homo sapiens

Page 57: Evolution of DNA Methylation - Sylvain Forêt

Calling Methylated Bases

CpGs 5,000,000

mCpGs 50,000

Cs 50,000,000 (both strands)

Conversion rate 99.9%5

Coverage per strand 10

Change of spurious mC 1%

Inferred mC 500,000

Apis mellifera

Page 58: Evolution of DNA Methylation - Sylvain Forêt

The Null Hypothesis

C

C T

99.9%0.1%

Page 59: Evolution of DNA Methylation - Sylvain Forêt

The Null Hypothesis

C

C T

99.9%0.1%

Bernoulli process with probability “p”

N Bernoulli trials: Binomial process (N, p)

Page 60: Evolution of DNA Methylation - Sylvain Forêt

The Null Hypothesis

C

C T

99.9%0.1%

Bernoulli process with probability “p”

N Bernoulli trials: Binomial process (N, p)

Many p-values: adjust for multiple testing

Page 61: Evolution of DNA Methylation - Sylvain Forêt

ubiquitous specific

Forêt et al, 2009

Page 62: Evolution of DNA Methylation - Sylvain Forêt

CpG depletedmethylatedubiquitous

normal CpG contentnon-methylated

condition-specific

Lyko, Forêt et al, 2010

Page 63: Evolution of DNA Methylation - Sylvain Forêt

Vertebrates

Invertebrates

Feng et al, PNAS, 2010

Page 64: Evolution of DNA Methylation - Sylvain Forêt

Position-Dependent Effect

Portela and Esteller, Nature Biotechnologies, 2010

Page 65: Evolution of DNA Methylation - Sylvain Forêt

Summary

● Probable ancestral animal methylation landscape● Gene body (introns and exons), transposons

● Dense methylation landscapes are a vertebrate innovation

● Honey bee: lack of transposon methylation and scarce intronic methylation are also apomorphic

● Despite these differences in methylation levels, the targets of gene body methylation are broadly conserved

Page 66: Evolution of DNA Methylation - Sylvain Forêt

Other Important Topics

● D ifferential methylation● Dealing with complex samples

Page 67: Evolution of DNA Methylation - Sylvain Forêt

Concluding Thoughts

Page 68: Evolution of DNA Methylation - Sylvain Forêt

Major Transitions in Evolution

● Cavalier-Smith and Szathmary (1995)

Page 69: Evolution of DNA Methylation - Sylvain Forêt

1) from rep licating mo lecu les to popu lations of mo lecu les in compartments (protocells);

2) from independent genes to chromosomes;

3) from RNA as both an information carrier and enzyme to DNA as the carrier of information and proteins as the enzymes;

4) from prokaryotes to eukaryotes;

5) from asexual clones to sexual populations;

6) from single-cell eukaryotes to multicellular organisms with differentiated cells;

7) from solitary individuals to colonies with non- reproductive castes

Page 70: Evolution of DNA Methylation - Sylvain Forêt

Major Transitions in Evolution

● Cavalier-Smith and Szathmary (1995)– Focussed on genetic elements

Page 71: Evolution of DNA Methylation - Sylvain Forêt

Major Transitions in Evolution

● Cavalier-Smith and Szathmary (1995)– Focussed on genetic elements

● Other non-genetic heritable changes (Jablonka (1994), Jablonka & Lamb (2006))– Membranes

– Prions

– Self-sustaining metabolic cycles– Modified DNA bases– Other molecular marks attached to DNA

Page 72: Evolution of DNA Methylation - Sylvain Forêt

Role of non-genetic heritable changes

● Emergence of cells / chromosomes.– Transmission of epigenetic memory from the parent

to the daughter cells / chromosomes to put these in a state suitable for the environment.

Page 73: Evolution of DNA Methylation - Sylvain Forêt

Role of non-genetic heritable changes

● Transition to multicellularity.– Co-option of mechanisms to transmit information

about structure, state, and activity to daughter cells.– In order to maintain a coherent organism:

● Prevent de-differentiation● Early segregation of germ line

Page 74: Evolution of DNA Methylation - Sylvain Forêt

● Transition to social / colonial systems with division of labour or polyphenism– Phenotypic differentiation at the level of the whole

organism– Co-option of epigenetic mechanisms involved in

cellular differentiation

Role of non-genetic heritable changes