evaluation strategies for the optimization of line source ... · e.g. l-acoustics soundvision...

21
Evaluation Strategies for the Optimization of Line Source Arrays Florian Straube 2 , Frank Schultz 1 , Michael Makarski 3 , Sascha Spors 1 and Stefan Weinzierl 2 1 Research Group Signal Processing and Virtual Acoustics, University of Rostock 2 Audio Communication Group, TU Berlin 3 Four Audio GmbH & Co. KG, Aachen AES 59th International Conference on Sound Reinforcement Engineering and Technology 2015-07-16 10:00-10:20 a.m. Session 11, P.2-1

Upload: others

Post on 27-Sep-2020

8 views

Category:

Documents


0 download

TRANSCRIPT

  • Evaluation Strategies for theOptimization of Line Source Arrays

    Florian Straube 2, Frank Schultz 1, Michael Makarski 3,Sascha Spors 1 and Stefan Weinzierl 21Research Group Signal Processing and Virtual Acoustics,University of Rostock2Audio Communication Group, TU Berlin3Four Audio GmbH & Co. KG, Aachen

    AES 59th International Conferenceon Sound Reinforcement Engineering and Technology2015-07-16 10:00-10:20 a.m. Session 11, P.2-1

  • Recent Trends for Line Source Array ApplicationsCurved LSA-intensity shading by curvingband-zoning/array morphing

    e.g. Meyer Sound MAPP XTe.g. L-ACOUSTICSSoundVision

    Curved LSA-curving and electronic beamforming (FIR/IIR)

    e.g. EASE Focus FIR Makere.g. Martin Audio Displaye.g. Duran Audio AXYS withDigital Directivity Synthesis(DDS)→ now with JBL

    Straight LSA-electronic beam forming (FIR)

    e.g. EAW Resolution

    Version: 0.00 2015-07-19

    Straube et al. | Line Array Optimization | Motivation 1 / 10

  • Optimization MethodComplex-Directivity Point Source Model (CDPS) [Mey84, vB00, Fei09]

    P (m, f ) =

    i=LN∑i=1

    D(i , f )︸ ︷︷ ︸FIR-Filter

    ·Hpost(β(m, i), f ) ·e−j

    2π fc|xm−x0,i|

    4π |xm − x0,i|·Λy ,LSAL︸ ︷︷ ︸

    G(m,i,f )

    .

    Least Squares Optimization / Pressure Matching (DDS like) [vB00, Col14] with-Tikhonov regularization /energy constraint on the loudspeaker weights [Bet12]

    mind(f )‖G(f )d(f )− pdes(f )‖22 subject to: ‖d(f )‖22 ≤ D2max

    Other Optimization Approaches-active noise control, personal audio, multi-zone sound field synthesis [Cho02, Bai14, Col14]-find minimum of constrained nonlinear multivariable function, Matlab: fmincon() [Tho09]-solve multiobjective goal attainment problems, Matlab: fgoalattain() [Tho11, Fei13]-near field & far field beam forming (DDC like) [vB00, Bai13]Straube et al. | Line Array Optimization | Method 2 / 10

  • Evaluation SetupLSA Cabinet Model [Mey84]height 0.372m, ideal circular / line pistons, ideal X-Over 400 Hz & 1.5 kHz

    # falias/Hz diameter/length in inch ∆y in inch dBSPL@1W,1mLF 1 461 12 (circ) 14.65 96MF 4 1844 3 (circ) 3.66 86HF 10 4610 1.2 (line) 1.46 112

    LSA Model16 cabinets, length≈6m, tilt angle +3◦, splay angles top to down: 5x2◦, 3◦, 2◦, 6x3◦, 2x4◦

    0 20 40 60−15

    −10

    −5

    0

    5

    10

    15

    29525 16325

    15124

    13062

    12063

    1000114011

    x / m

    y / m

    Straube et al. | Line Array Optimization | Method 3 / 10

  • SPL Distribution in xy-Planef = 200 Hz f = 500 Hz f = 1 kHz

    f = 5 kHz f = 10 kHz f = 16 kHz

    Straube et al. | Line Array Optimization | Results 4 / 10

  • Frequency Responses & DirectivityPosition Index Plot [Tho09, Fei13] Frequency Responses in Audience Zone

    200 1k 10k 20k30

    40

    50

    60

    70

    80

    90

    100

    110

    f / Hz

    L p /

    dBS

    PL

    Venue Setup

    0 20 40 60−15

    −10

    −5

    0

    5

    10

    15

    29525 16325

    15124

    13062

    12063

    1000114011

    x / m

    y / m

    Farfield Radiation Pattern

    Straube et al. | Line Array Optimization | Results 5 / 10

  • Technical Quality: ErrorsAbsolute errorfrequency dependent

    �abs(f ) =‖G(f )d(f )− pdes(f )‖22

    Relative errorfrequency & position dependent

    �rel(m, f ) =∣∣Pdes(m, f )− P (m, f )

    Pdes(m, f )

    ∣∣2

    200 1k 10k 20k−10

    0

    10

    20

    30

    40

    50

    f / Hz

    10 lg

    |εab

    s(f )

    / 1

    Pa2

    | / d

    B

    Straube et al. | Line Array Optimization | Results 6 / 10

  • Technical Quality: Acoustic Contrast & Error Distribution[Cho02, Bai14, Col14]

    Acoustic contrast (bright vs. dark zone)audience vs. non-audience zone

    Lp,a,na(f ) =

    10 log10

    (1Ma‖pm∈Ma(f )‖22

    1Mna‖pm∈Mna(f )‖22

    )Distribution measureq ={0.05, 0.25, 0.5, 0.75, 0.95} quantiles

    Lp,des,opt,q(f ) =

    Qqm

    [10 log10

    (|Pdes(m, f )|2

    |P (m, f )|2

    )]

    200 1k 10k 20k0

    5

    10

    15

    20

    f / Hz

    L p,a

    ,na(

    f ) /

    dBre

    l

    desiredno dist compdist comp

    200 1k 10k 20k−10

    −5

    0

    5

    10

    f / Hz

    L p,d

    es,o

    pt,q

    (f )

    / dB

    rel

    Straube et al. | Line Array Optimization | Results 7 / 10

  • FIR Filters→Driving Function Index Plots [Tho08]Magnitude in dB

    LF

    f / Hz

    i

    200 300 400

    1

    4

    8

    12

    16

    20 lg|D(i, f )| / dB

    −20

    −14−8

    −2410

    1622

    283440

    MF

    f / Hz

    i400 1k 1.5k

    1

    10

    20

    30

    40

    50

    6064

    20 lg|D(i, f )| / dB

    −20

    −14−8

    −2410

    1622

    283440

    HF

    f / Hz

    i

    1.5k 5k 10k 20k

    1

    20

    40

    60

    80

    100

    120

    140

    160

    20 lg|D(i, f )| / dB

    −50

    −44−38

    −32−26−20

    −14−8

    −2410

    Group Delay in ms

    LF

    f / Hz

    i

    200 300 400

    1

    4

    8

    12

    16

    τ / ms

    6

    14.6

    23.2

    31.8

    40.4

    49

    MF

    f / Hz

    i

    400 1k 1.5k

    1

    10

    20

    30

    40

    50

    6064

    τ / ms

    0

    5.6

    11.2

    16.8

    22.4

    28

    HF

    Straube et al. | Line Array Optimization | Results 8 / 10

  • Technical Quality: Array Effort [Cho02, Bai14, Col14]

    LB1(f ) =

    Qqi

    [|D(i , f )|2

    ]maxi[|D(i , f )|2]

    200 1k 10k 20k0

    20

    40

    60

    80

    100

    f / Hz

    LB1(

    f ) /

    %

    LB2(i) =

    Qqf

    [|D(i , f )|2

    ]maxf[|D(i , f )|2]

    LF

    1 2 4 6 8 10 12 14 160

    20

    40

    60

    80

    100

    i

    LB2(

    i) / %

    MF

    1 10 20 30 40 50 60 640

    20

    40

    60

    80

    100

    i

    LB2(

    i) / %

    HF

    1 20 40 60 80 100 120 140 1600

    20

    40

    60

    80

    100

    i

    LB2(

    i) / %

    q ={0.05, 0.25, 0.5, 0.75, 0.95} quantiles

    Straube et al. | Line Array Optimization | Results 9 / 10

  • ConclusionLS optimization above spatial aliasing frequency?

    technical error measures give further hints on R&D and optimization algorithmrequirements

    usage of smaller waveguides→ spatial aliasing shifted to higher frequenciesphase of optimized sound field?

    what sound fields are needed in terms of perception?

    slides @ http://spatialaudio.net

    Straube et al. | Line Array Optimization | Conclusion 10 / 10

    http://spatialaudio.net

  • References [Bai13, Bai14, Bet12, Cho02, Col14, Fei09, Fei13, Mey84, Tho08, Tho09, Tho11, Tho13, vB00][Bai13] Bai, M.R.; Chen, C.C. (2013): “Application of convex optimization to acoustical array signal processing.” In: J. of Snd.

    Vibr., 332(25):6596–6616.[Bai14] Bai, M.R.; Wen, J.C.; Hsu, H.; Hua, Y.H.; Hsieh, Y.H. (2014): “Investigation on the reproduction performance versus

    acoustic contrast control in sound field synthesis.” In: J. Acoust. Soc. Am., 136(4):1591–1600.[Bet12] Betlehem, T.; Withers, C. (2012): “Sound field reproduction with energy constraint on loudspeaker weights.” In: IEEE

    Trans. Audio Speech Language Process., 20(8):2388–2392.[Cho02] Choi, J.W.; Kim, Y.H. (2002): “Generation of an acoustically bright zone with an illuminated region using multiple

    sources.” In: J. Acoust. Soc. Am., 111(4):1695–1700.[Col14] Coleman, P.; Jackson, P.J.B.; Olik, M. (2014): “Personal audio with a planar bright zone.” In: J. Acoust. Soc. Am.,

    136(4):1725–1735.[Fei09] Feistel, S.; Thompson, A.; Ahnert, W. (2009): “Methods and limitations of line source simulation.” In: J. Audio Eng.

    Soc., 57(6):379–402.[Fei13] Feistel, S.; Sempf, M.; Köhler, K.; Schmalle, H. (2013): “Adapting loudspeaker array radiation to the venue using

    numerical optimization of FIR filters.” In: Proc. of 135th Audio Eng. Soc. Convention, New York, #8937.[Mey84] Meyer, D.G. (1984): “Computer simulation of loudspeaker directivity.” In: J. Audio Eng. Soc., 32(5):294–315.[Tho08] Thompson, A. (2008): “Real world line array optimisation.” In: Proc. of the Institute of Acoustics, 30(6).[Tho09] Thompson, A. (2009): “Improved methods for controlling touring loudspeaker arrays.” In: Proc. of 127th Audio Eng.

    Soc. Convention, New York, #7828.[Tho11] Thompson, A.; Baird, J.; Webb, B. (2011): “Numerically optimised touring loudspeaker arrays - Practical

    applications.” In: Proc. of 131st Audio Eng. Soc. Convention, New York, #8511.[Tho13] Thompson, A.; Luzarraga, J. (2013): “Drive granularity for straight and curved loudspeaker arrays.” In: Proc. of the

    Institute of Acoustics, 35(2).[vB00] van Beuningen, G.W.J.; Start, E.W. (2000): “Optimizing directivity properties of DSP controlled loudspeaker arrays.”

    In: Proc. of the Institute of Acoustics, 22(6).Straube et al. | Line Array Optimization | References 10 / 10

  • Optimization Parameters

    D2max

    200 1k 10k 20k10

    20

    30

    40

    50

    f / Hz

    Dm

    ax /

    dB

    regularization value λreg

    200 1k 10k 20k0

    50

    100

    150

    200

    f / Hz

    λ reg

    condition number κ

    200 1k 10k 20k1

    10

    100

    400

    f / Hz

    κ

    d(f , λreg) = [G(f )HG(f ) + λregILN ]

    −1G(f )Hpdes(f )

    Straube et al. | Line Array Optimization | Appendix A-1 / 10

  • Evaluation Setup LSA1LSA1 Cabinet Model [Mey84]height 0.372m, ideal circular / line pistons, ideal X-Over 400 Hz & 1.5 kHz

    # falias/Hz diameter/length in inch ∆y in inch dBSPL@1W,1mLF 1 461 12 (circ) 14.65 96MF 2 922 6 (circ) 7.32 94HF 1 461 12 (line) 14.65 112

    LSA Model16 cabinets, length≈6m, tilt angle +3◦, splay angles top/down: 5x2◦, 3◦, 2◦, 6x3◦, 2x4◦

    0 20 40 60−15

    −10

    −5

    0

    5

    10

    15

    29525 16325

    15124

    13062

    12063

    1000114011

    x / m

    y / m

    Straube et al. | Line Array Optimization | Appendix | Results LSA1 A-2 / 10

  • SPL Distribution in xy-Planef = 200 Hz f = 500 Hz f = 1 kHz

    f = 5 kHz f = 10 kHz f = 16 kHz

    Straube et al. | Line Array Optimization | Appendix | Results LSA1 A-3 / 10

  • Frequency Responses & DirectivityPosition Index Plot [Tho09] Frequency Responses in Audience Zone

    200 1k 10k 20k30

    40

    50

    60

    70

    80

    90

    100

    110

    f / Hz

    L p/ d

    BS

    PL

    Venue Setup

    0 20 40 60−15

    −10

    −5

    0

    5

    10

    15

    29525 16325

    15124

    13062

    12063

    1000114011

    x / m

    y / m

    Farfield Radiation Pattern

    Straube et al. | Line Array Optimization | Appendix | Results LSA1 A-4 / 10

  • FIR Filters→Driving Function Index PlotsMagnitude in dB

    LF

    f / Hz

    i

    200 300 400

    1

    4

    8

    12

    16

    20 lg|D(i, f )| / dB

    −20

    −14−8

    −2410

    1622

    283440

    MF

    f / Hz

    i400 1k 1.5k

    1

    10

    20

    32

    20 lg|D(i, f )| / dB

    −30

    −24−18

    −12−60

    612

    182430

    HF

    f / Hz

    i

    1.5k 5k 10k 20k

    1

    4

    8

    12

    16

    20 lg|D(i, f )| / dB

    −40

    −34−28

    −22−16−10

    −42

    81420

    Group Delay in ms

    LF

    f / Hz

    i

    200 300 400

    1

    4

    8

    12

    16

    τ / ms

    1

    9.6

    18.2

    26.8

    35.4

    44

    MF

    f / Hz

    i

    400 1k 1.5k

    1

    10

    20

    32

    τ / ms

    0

    4.8

    9.6

    14.4

    19.2

    24

    HF

    f / Hz

    i1.5k 5k 10k 20k

    1

    4

    8

    12

    16

    τ / ms

    13

    13.8

    14.6

    15.4

    16.2

    17

    Straube et al. | Line Array Optimization | Appendix | Results LSA1 A-5 / 10

  • Technical quality: ErrorsAbsolute errorfrequency dependent

    �abs(f ) =‖G(f )d(f )− pdes(f )‖22

    Relative errorfrequency & position dependent

    �rel(m, f ) =∣∣Pdes(m, f )− P (m, f )

    Pdes(m, f )

    ∣∣2

    200 1k 10k 20k−10

    0

    10

    20

    30

    40

    50

    f / Hz

    10 lg

    |εab

    s(f )

    / 1

    Pa2

    | / d

    B

    Straube et al. | Line Array Optimization | Appendix | Results LSA1 A-6 / 10

  • Technical quality: Acoustic Contrast[Cho02, Bai14, Col14]Acoustic contrast (bright vs. dark zone)audience vs. non-audience zone

    Lp,a,na(f ) =

    10 log10

    (1Ma‖pm∈Ma(f )‖22

    1Mna‖pm∈Mna(f )‖22

    )Distribution measureq ={0.05, 0.25, 0.5, 0.75, 0.95} quantiles

    Lp,des,opt,q(f ) =

    Qqm

    [10 log10

    (|Pdes(m, f )|2

    |P (m, f )|2

    )]

    200 1k 10k 20k0

    5

    10

    15

    20

    f / Hz

    L p,a

    ,na(

    f ) /

    dBre

    l

    desiredno dist compdist comp

    200 1k 10k 20k−10

    −5

    0

    5

    10

    f / Hz

    L p,d

    es,o

    pt,q

    (f )

    / dB

    rel

    Straube et al. | Line Array Optimization | Appendix | Results LSA1 A-7 / 10

  • Technical quality: Array Effort [Cho02, Bai14, Col14]

    LB1(f ) =

    Qqi

    [|D(i , f )|2

    ]maxi[|D(i , f )|2]

    200 1k 10k 20k0

    20

    40

    60

    80

    100

    f / Hz

    LB1(

    f ) /

    %

    5 %25 %50 %75 %95 %

    LB2(i) =

    Qqf

    [|D(i , f )|2

    ]maxf[|D(i , f )|2]

    LF

    1 2 4 6 8 10 12 14 160

    20

    40

    60

    80

    100

    i

    LB2(

    i) / %

    MF

    1 5 10 15 20 25 30 320

    20

    40

    60

    80

    100

    i

    LB2(

    i) / %

    HF

    1 2 4 6 8 10 12 14 160

    20

    40

    60

    80

    100

    i

    LB2(

    i) / %

    Straube et al. | Line Array Optimization | Appendix | Results LSA1 A-8 / 10

  • Optimization Parameters

    D2max

    200 1k 10k 20k10

    20

    30

    40

    50

    f / Hz

    Dm

    ax /

    dB

    regularization value λreg

    200 1k 10k 20k0

    20

    40

    60

    80

    100

    f / Hz

    λ reg

    condition number κ

    200 1k 10k 20k1

    10

    100

    200

    f / Hz

    κ

    Straube et al. | Line Array Optimization | Appendix | Results LSA1 A-9 / 10

    MotivationMethodResultsConclusionReferencesAppendixResults LSA1