eutrophication: a reality that is threatening coastal areas

21
Eutrophica+on: a reality that is threatening coastal areas by Iván Loaiza Alamo Course: Integrated Ecosystem Management and Ecological Engineering Prof. Patrick Meire

Upload: ivan-loaiza-alamo

Post on 17-Jul-2016

10 views

Category:

Documents


0 download

DESCRIPTION

Presentation for the Course: Integrated Ecosystem Management and Ecological Engineering. Oceans & Lakes programme, 2013-I.

TRANSCRIPT

Page 1: Eutrophication: a reality that is threatening coastal areas

Eutrophica+on:    a  reality  that  is  threatening  

coastal  areas  

by  Iván  Loaiza  Alamo    

Course:  Integrated  Ecosystem  Management  and  Ecological  Engineering  

Prof.  Patrick  Meire  

Page 2: Eutrophication: a reality that is threatening coastal areas

Present  status  

Eutrophication  -­‐>  an  increase  in  the  rate  of  supply  of  organic  matter  to  an  ecosystem,  either  by  natural  or  human-­‐driven,  hence,  the  eutrophication  is  not  a  trophic  state,  is  the  process.  

oligotrophic  (<100)  

mesotrophic  (100-­‐300)  

eutrophic  (301-­‐500)    

hyperthophic  (>500)  

in  gC  m-­‐1y-­‐1*    

Page 3: Eutrophication: a reality that is threatening coastal areas

Past  status  

Source

:  Nixon

,  199

5    

Page 4: Eutrophication: a reality that is threatening coastal areas

Present  status  

Source

:  WRI,  20

13    

Eutrophic   Hypoxia  

Page 5: Eutrophication: a reality that is threatening coastal areas

Eutrophication  

Useful  to  differentiate  the  NUTRIENTS  FORM:  

Dissolved  organic  nutrients  -­‐>  high  concentrations  -­‐>  not  bioavailable  for  organisms    

Dissolved  inorganic  nutrients  -­‐>  highly  bioavailable  -­‐>  converted  in  particulate  organic  matter  (detritus,  bacteria,  phytoplankton,  and  marine  snow).    

Particulate  inorganic  nutrients  -­‐>  suspended  sediment  

*Benthic  and  pelagic  convertors  -­‐>  dissolved  to  particulate,  or  organic  to  inorganic  

Page 6: Eutrophication: a reality that is threatening coastal areas

Eutrophication  

Coastal  waters  of  the  western  Aegean  Sea  (E.  Mediterranean)  -­‐>  no  Alexandrium  minutum  -­‐>  low  support  of  N:  P  ratio  requirements  -­‐>  diatoms  domination  

Aegean  Sea,  Dodecanese  Islands,  Rhodes  -­‐  Greece      

©  Iván

 Loa

iza  

South  Pacific  Ocean,  Piura  Region,  Sechura  Bay  –  Peru  

©  Iván

 Loa

iza  

Page 7: Eutrophication: a reality that is threatening coastal areas

Coastal  Ecosystems  –  Goods  and  services  

Coral  reefs   Sea-­‐grasses   Salt  marshes  

Seafood,  pharmaceutical  industry,  ornamental  products,  coastal  protection,  aesthetic  and  cultural.    i.e.  substances  with  anticancer,  AIDS-­‐inhibiting,  antimicrobial,  anti-­‐inflammatory  and  anti-­‐coagulating      Ornamental  species:  

Direct  and  indirectly  -­‐>  nutrient  cycling,  climate  regulation,  coastal  protection,  sediment  stabilization  and  nursery  and  habitat  services.    40  000  fish  and  50  million  of  marine  small  invertebrates      Traditional  and  local  communities  use  as:      

Coastal  protection,  nursery  area  for  fish  and  breeding  sites  for  birds.    Ecosystem  engineer  with  relevant  functions  in  nutrient  recycling  and  sediment  accretion.    

Page 8: Eutrophication: a reality that is threatening coastal areas

Nursery  areas  

Page 9: Eutrophication: a reality that is threatening coastal areas

Interconnection  among  ecosystems    

Interconnected  mosaic  Sentinels  

Source:  Modified  from  the  Global  change  and  coastal  hazard  mitigation  course,  2012    

Page 10: Eutrophication: a reality that is threatening coastal areas

Eutrophication  impacts  

Ê  CORAL  REEFS  -­‐>  alteration  of  trophic  structures,  reduction  of  coral  recruitment  and  diversity,  replacement  of  corals  by  macroalgae  and  appearance  of  opportunist  coral-­‐eating  crown-­‐of-­‐thorns  starfish.  

Ê  SEA-­‐GRASSES  -­‐>  a  shift  in  community,  from  perennial  seagrasses  to  phytoplankton,  fast  growing  of  opportunistic  macroalgae,  change  of  benthic  and  pelagic  species  composition  and  impairment  of  the  system’s  ability  to  store  and  cycle  nutrients.    

Ê  SALT  MARSHES  -­‐>  a  decline  in  soil  organic  accumulation  and  consequential  reduction  of  root  and  alteration  in  their  long-­‐term  stability,  related  with  the  tidal  range  occupied,  climate,  sulfide  accumulation,  soil  respiration,  root  physiology  and  soil  quality.  

Page 11: Eutrophication: a reality that is threatening coastal areas

Nutrient  enrichment  

CORAL  REEFS  -­‐>  reduction  of  calcification  and  higher  concentrations  of  photopigments  and  diseases  ≠  uptake  by  bacteria,  phytoplankton  and  benthos  -­‐>  organic  matter  in  plankton  and  sediments.    Particulate  organic  matter  (POM)  -­‐>    é  food  availability,  tissue  thickness,  photosynthetic  pigment  concentration  and  calcification  but  threshold  -­‐>  light  attenuation.      

SEA-­‐GRASSES  -­‐>  oxygen  depletion,  hypoxia  in  column  water  and  anoxia  in  sediments  -­‐>  lethal  conditions  for  sea-­‐grass  and  surrounding  species  communities.      Shifts  -­‐>  red  macroalgae  and  unicellular  diatoms  to  annual  green  and  brown  macroalgae  and  cyanobacteria    *changing  the  pathway  and  turnover  of  carbon  and  nitrogen  through  benthic  and  pelagic  food  webs,  potentially  reducing  ecosystem  stability.    

SALT  MARSHES-­‐>  biomass  belowground  decreases  and  varies  disproportionately  with  changes  in  aboveground  biomass.    Belowground  live  biomass  -­‐>  no  decreases  at  a  threshold  level  (about  400  g  m–2  at  the  end  of  the  growing  season).      Nutrient-­‐poor  systems  have  the  greatest  amount  of  belowground  biomass,  which  reduces  with  an  increase  in  nutrient  availability.  

Page 12: Eutrophication: a reality that is threatening coastal areas

Light  attenuation  

Ê  CORAL  REEFS-­‐>  slower  calcification,  thinner  tissues  and  limited  suitable  areas  for  development  -­‐>  affected  by  nutrient  deposition  and  phytoplankton  productivity.  Toleration  less  than  about  4%  of  surface  irradiance,  at  40  m  in  clear  water  or  at  4  m  in  turbid  water.  

Ê  SEA-­‐GRASSES-­‐>  high  phytoplankton  amounts,  suspended  solids  and  epiphytic  algae  on  blades,  and  drift  of  macroalgal  blooms  +  mixed  +  ammonia  toxicity,  low  oxygen  concentration,  increased  sediment  sulfides  and  anoxia  =    

Page 13: Eutrophication: a reality that is threatening coastal areas

Sedimentation  

Ê  Small  sizes  particles  -­‐>  more  damage  than  large  particles  -­‐>  rich  organic  matter  and  contaminants  (i.e.  pesticides)  and  high  capacity  in  light  absorbing.    

Levels  of  ~12  mg  cm−2  day−1  can  kill  newly  settled  corals  with  <48  h  exposure  if  sediments  are  rich  in  organic  contents,  but  such  levels  can  be  tolerated  if  the  organic  content  is  low.  

Ê  The  duration  and  amount  of  sediment  exposure  play  an  important  role  in  the  negative  impacts  and  possible  stress  effects.  High  sedimentation  rates  (up  to  >100  mg  dry  weight  cm−2)  can  kill  exposed  coral  tissue  within  a  few  days,  whereas  lower  rates  reduce  photosynthetic  yields  in  corals  within  ~24  h  

Page 14: Eutrophication: a reality that is threatening coastal areas

Sedimentation  

Ê  Sedimentation  exposure  rates  of  10  mg  cm−2  day−1  are  considered  as  threshold,  causing  harshly  damaged  in  coral  reefs.  

Ê  High  sedimentation  rates  and  burial  conditions  -­‐>50%  of  mortality  of  sea-­‐grasses.  Levels  of  2-­‐4  cm  were  enough  to  lead  this  level  of  mortality  -­‐>  f  (plant  sizes)  

Ê  Leaf  size  and  the  rhizome  diameter  are  the  best  predictors  of  the  capacity  of  sea-­‐grasses  to  withstand  burial.  Sea-­‐grasses  were  also  vulnerable  to  sediment  erosion.  

Page 15: Eutrophication: a reality that is threatening coastal areas

Management  approach  and  measurements:  Sea-­‐grass  study  cases  

Restoration  of  degraded  and  impacted  coastal  ecosystems  –>  few  successes  

Ê  Dutch  Wadden  Sea  -­‐>  Zostera  marina  in  the  early  1930s  -­‐  then  many  restoration  attempts  –  high  turbidity    

Ê  Looking  for  the  positive  feedback  -­‐>  water  quality,  hydrodynamics  and  substrate  =  equilibrium  stage  in  sea-­‐grass  ecosystems    

Ê  Small  scales  (<1ha)  transplantations  

Page 16: Eutrophication: a reality that is threatening coastal areas

Management  approach  and  measurements:  Sea-­‐grass  study  cases  

Ê  Holmer  et  al.  (2007)  -­‐>  no  variation  of  sediment  nutrients  among  sea-­‐grasses  (Cymodocea  rotundata  and  Thalassia  hemprichii)  and  bare  areas    

Ê  HOWEVER  -­‐>  releasing  of  oxygen  (roots)  -­‐  éoxygen  availability  mineralization  of  organic  matter  nutrient  availability    

Ê  Sea-­‐grass  individuals  of  C.  rotundata  showed  higher  rate  of  photosynthesis  and  shoot  density  than  T.  hemprichii    

Ê  The  nutrient  concentrations  in  the  plant  tissues  were  generally  highest  in  the  aboveground  parts  in  both  sea-­‐grasses    

Page 17: Eutrophication: a reality that is threatening coastal areas

Management  approach  and  measurements:  Sea-­‐grass  study  cases  

Ê  High  nutrient  content  1.5–2.0%  DW  N  and  0.18–0.20%  DW  P  -­‐>    low  organic  content  in  sediments  -­‐>  important  role  in  uptake  nutrients  from  the  water  column  and  nutrient  cycling  

Ê  SEA-­‐GRASSES-­‐>  uptake  of  nutrients  (roots  &  leaves)  -­‐>  êeutrophic  conditions  –  avoid  ratios  shift  of  N:  P:  SI,  and  concurrently  food  web  changes    

Ê  Phototropic  species  -­‐>  increasing  of  oxygen  in  sediment  and  along  the  column  water  -­‐>  enhancing  the  conditions  for  nutrient  availability  process  -­‐>  reduction  of  hypoxia  and  anoxia  levels  

Page 18: Eutrophication: a reality that is threatening coastal areas

Management  approach  and  measurements:  Salt  marsh  study  cases  

Ê  Salt  marshes  are  minimizing  the  eutrophication  in  transitional  water,  mainly  through  sedimentation  processes  such  as  nitrogen  accumulation  at  high  rate  levels.    

Ê  The  Oldest  Spartina  Maritima  salt  marshes  -­‐>  high  annual  belowground  biomass  and  N  productions  /  young  marshes  at  aboveground  level.  

Ê  Ibañez  et  al.,  2000  -­‐>  role  in  nutrients  transformation  and  cycling  (either  functioning  as  sinks  and/or  sources)  

*f  (tidal  marsh  age,  tidal  energy,  salinity,  assimilatory  nutrient  uptake,  N-­‐fixation,  oxygen  release,  nutrient  production  and  losses)  

Page 19: Eutrophication: a reality that is threatening coastal areas

Management  approach  and  measurements:  Salt  marsh  study  cases  

Ê  Corroios  salt  marsh  is  an  old  marsh  that  is  exposed  to  high  sediment  salinities  and  urban  pollution  -­‐>N  retained  2-­‐to  3-­‐fold  higher  than  the  other  salt  marshes  -­‐>  reducing  the  aboveground  production  and  investing  in  development  a  strong  and  resistant  belowground  material.    

Ê  Pancas  younger  marsh  -­‐>  higher  percentage  aboveground  biomass  than  Corroio,  salt  marsh  sediment  -­‐>  0.3%  is  inorganic  N  and  more  than  99%  is  organic  N.    

Page 20: Eutrophication: a reality that is threatening coastal areas

Management  approach  and  measurements:  Salt  marsh  study  cases  

Ê  Caçador,  1999  cited  by  Sousa  et  al.,  2008  mentioned  that  competition  for  nutrients  is  low  in  young  marshes  -­‐>  reduced  amount  of  belowground  material  for  living;  this  explains  the  higher  aboveground  biomass  production  in  the  youngest  salt  marshes.  

  Salt  marshes  have  a  crucial  role  on  eutrophication  reduction  by  taking  up  dissolved  inorganic  nitrogen  for  growth  purposes,  by  enhancing  N  cycling  through  denitrification,  and  N  retention  through  sedimentation  processes  -­‐>  f  (biotic  and  abiotic  characteristics  and  environmental  parameters)  

Page 21: Eutrophication: a reality that is threatening coastal areas

Conclusions  

Ê  Eutrophication  of  coast  areas  has  been  increasing  and  widespread  along  the  time,  and  apparently  seems  to  be  an  irreversible  pattern  since  1980s.  

Ê  Coral  reefs,  sea-­‐grasses  and  salt  marshes  possess  a  broad  type  of  ecosystem  goods  and  services:  coastal  protection,  sea  and  pharmaceutical  products  supply,  ecosystem  engineering  (by  their  role  in  chemical,  physical  and  biological  processes),  etc.  

Ê  Mitigation  and  remediation  of  eutrophic  ecosystems  or  ecosystems  in  eutrophication  can  be  addressed  by  the  development  of  a  management  approach  using  coastal  ecosystems,  as  long  as  all  the  following  factors:  transplantation  scale,  water  quality,  turbidity,  climate,  currents,  tide  fluctuation,  substrate,  etc  are  considered.