eucard2 wp11 (materials for collimation) kick-off and tasks meeting 9.12.2013 marilena tomut /...

17
EuCARD2 WP11 (Materials for Collimation) kick-off and tasks meeti ng 9.12.2013 Marilena Tomut / FAIR@GSI/ BIOMAT GSI -Introduction Overview of WP8 work Planned contributions to WP11

Upload: beryl-rich

Post on 14-Jan-2016

216 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: EuCARD2 WP11 (Materials for Collimation) kick-off and tasks meeting 9.12.2013 Marilena Tomut / FAIR@GSI/ BIOMAT GSI -Introduction Overview of WP8 work

EuCARD2 WP11 (Materials for Collimation) kick-off and tasks meeting

9.12.2013

Marilena Tomut / FAIR@GSI/ BIOMAT

GSI -IntroductionOverview of WP8 work

Planned contributions to WP11

Page 2: EuCARD2 WP11 (Materials for Collimation) kick-off and tasks meeting 9.12.2013 Marilena Tomut / FAIR@GSI/ BIOMAT GSI -Introduction Overview of WP8 work

Jens Stadlmann / EuCARD Concluding Meeting 2013

Overview

• GSI Research Center for Heavy Ion Physics

• EuCARD WP 8 activities

• Planned activities in EuCARD 2 WP 11

Page 3: EuCARD2 WP11 (Materials for Collimation) kick-off and tasks meeting 9.12.2013 Marilena Tomut / FAIR@GSI/ BIOMAT GSI -Introduction Overview of WP8 work

GSI and FAIR

Around 1000x higher intensityAround 1000x higher intensity

Page 4: EuCARD2 WP11 (Materials for Collimation) kick-off and tasks meeting 9.12.2013 Marilena Tomut / FAIR@GSI/ BIOMAT GSI -Introduction Overview of WP8 work

• Atomic physics

• fundamental tests of QED

• Plasma physics

• Superheavy elements

• Nuclei far from stability

• Radiobiology• Tumor therapy

• Accelerator & detector development

• Compressed & hot nuclear matter

Materials Research

Research Fields at GSI

15%10%

50%

5%

more info: http://www.gsi.de

5

PNI PNIPNI

15%

15%

Page 5: EuCARD2 WP11 (Materials for Collimation) kick-off and tasks meeting 9.12.2013 Marilena Tomut / FAIR@GSI/ BIOMAT GSI -Introduction Overview of WP8 work

Beamlines for material research irradiation at GSI

SIS 18 beam dumpE up to 1 GeV/uRange: cm

cave AE 100- 300 MeV/uRange: mm-cmbeam spot: 4 mm2 to 25 mm2 withscanning

UNILAC beamlinesE: 3.6-11.4 MeV/uRange: 40-120 µmbeam spot area : 10x10 mm to 50x50 mm

Page 6: EuCARD2 WP11 (Materials for Collimation) kick-off and tasks meeting 9.12.2013 Marilena Tomut / FAIR@GSI/ BIOMAT GSI -Introduction Overview of WP8 work

M1

M2

M3

New M-Branch (UNILAC)New M-Branch (UNILAC)

M1Electron Microscopy

M24-circle X-Ray Diffraction

M3On-line Spectroscopy

cells

1 m 1 m

0 5 1 0 1 5 2 0 2 5 0 5 1 0 1 5 2 0 2 5 3 0

virgin

11013 cm -2

51012 cm -2

21012 cm -2

11012 cm -2

51011 cm -2

0 5 10 15 20 25

two theta (degrees)

inte

ns

ity

(a

. u

.)

G d Zr O2 2 7 G d ZrTiO2 7 G d Ti O2 2 7(a) (b) (c)

22

2

00

4

113

13

3

115

044

135

22

64

441 11

in collaboration of Univ. Darmstadt, Dresden, Göttingen, Heidelberg, Jena, Stuttgart, and HZB

IR SpectrometerLong-distanceMicroscopy

Ion Beam

MassSpectrometer

Gas Flow Controller

CurvatureMeasurement

UV/VisCryostat Fluorescence

in-situ analysis of ion-irradiated material

Page 7: EuCARD2 WP11 (Materials for Collimation) kick-off and tasks meeting 9.12.2013 Marilena Tomut / FAIR@GSI/ BIOMAT GSI -Introduction Overview of WP8 work

GSI particiption in WP 8 Tasks

• 8.1 Coordination and Communication

• 8.2 Modeling & Material Tests for Hadron Beams1. Halo studies and beam modeling 2. Energy deposition calculations and tests 3. Materials and thermal shock waves4. Radiation damage and activation studies....

• 8.3 Collimator Prototyping & Tests for Hadron Beams1. Prototyping, laboratory tests and beam tests of room-temperature collimators (LHC type)2. Prototyping of cryogenic collimators (FAIR type)3. Crystal collimation

Jens Stadlmann / EuCARD Concluding Meeting 2013

Page 8: EuCARD2 WP11 (Materials for Collimation) kick-off and tasks meeting 9.12.2013 Marilena Tomut / FAIR@GSI/ BIOMAT GSI -Introduction Overview of WP8 work

FAIR collimator prototype

FAIR cryocatcher

Cryocollimator prototype built and successfully tested in SIS 18

L. Bozyk, GSI

Page 9: EuCARD2 WP11 (Materials for Collimation) kick-off and tasks meeting 9.12.2013 Marilena Tomut / FAIR@GSI/ BIOMAT GSI -Introduction Overview of WP8 work

Halo collimation system in SIS 100

Beam direction

Location: Sector 1, straight section (SIS100 → SIS300 transfer)

Two-stage betatron collimation conceptP – primary collimatorS1 – 1. secondary collimatorS2 – 2. secondary collimator

P S1 S2

0 200 400 600 800 100010-6

10-5

10-4

10-3

10-2

10-1

100

Bea

m lo

sses

(re

lativ

e)

s [m]

Collimators SIS 100 lattice

Particle tracking: MADX code

Material interaction: FLUKA code

Statistics: 100 000 particles

Collimation efficiency (protons): ~ 99 %

Collimation efficiency (40Ar ions): ~ 85 %

Beam loss map of the proton beam

I.Strasik, GSI

Page 10: EuCARD2 WP11 (Materials for Collimation) kick-off and tasks meeting 9.12.2013 Marilena Tomut / FAIR@GSI/ BIOMAT GSI -Introduction Overview of WP8 work

Simulation of hydrodynamic tunneling I

Full impact LHC beam onsolid carbon cylinder„N.A. Tahir et al.,PRSTAB 15 (2012) 051003“

•One LHC beam, 7 TeV, protons,nominal bunch intensity = 1.15x1011,

2808 bunches, pulse length = 89 µs,beam size = 0.2 mm. •Solid carbon cylinder, L = 6 m, r = 5 cm.•Energy loss code FLUKA and 2D hydro code Big2 are run iteratively using a step of 2.5 µs. •In 15 µs the beam penetrates up to 6 m,in 89 µs the penetration depth is 25 m. •In a static model (no hydro) the beam and the shower penetrates up to only 4 m.

“Hydrodynamic Tunneling”is therefore not neglectable and important.

N.A.Tahir, GSI

Page 11: EuCARD2 WP11 (Materials for Collimation) kick-off and tasks meeting 9.12.2013 Marilena Tomut / FAIR@GSI/ BIOMAT GSI -Introduction Overview of WP8 work

Simulation of hydrodynamic tunneling II+ Experiments at HiRadMat using 440 GeV SPS protons

Simulations of hydrodynamic tunnelingexperiments at HiRadMat facilty using440 GeV SPS Protons „N.A. Tahir et al.,High Energy DensityPhys. 9 (2013) 269“

• To validate “hydrodynamic tunneling” in LHC simulations, experiments were done at the HiRadMat using th SPS 440 GeV protons[“J. Blanco Sancho et al., Proc. IPAC 2013, Shanghai”].

• Extensive simulations were done using FLUKA and BIG2 iteratively to design these experiments.

• SPS beam with 244 bunches,7.2 µs, = 0.2 mm.

• Solid copper cylinder, L = 1.5 m, r = 5 cm facial irradiation on left face.

Beam penetration in static model up to 85 cm, in dynamic case =120 cm.

“Hydrodynamic Tunneling” predicted.

N.A.Tahir, GSI

Page 12: EuCARD2 WP11 (Materials for Collimation) kick-off and tasks meeting 9.12.2013 Marilena Tomut / FAIR@GSI/ BIOMAT GSI -Introduction Overview of WP8 work

Residual activation of collimator materials

Target material: carbon-composite AC150 Beam species: 238U ionsBeam energy: 500 MeV/u

Target material: graphiteBeam species: 181Ta ionsBeam energy: 500 MeV/u

Topics:• Experiments – irradiation of the collimator materials by heavy ions, gamma spectroscopy analysis• FLUKA simulations – validation of the code using the experimental data• Depth profiles (depth distribution) of the residual activity in the targets

Identified isotopes (only gamma emitters) – 1. target-nuclei fragments (only 7Be)– 2. projectile fragments (from 46Sc to 237U)

0 10 20 30 40 50 600.0

2.0x10-10

4.0x10-10

6.0x10-10

8.0x10-10

Experiment FLUKA

Act

ivity

[B

q/io

n]

Depth [mm]

7Be

0 10 20 30 40 500.0

5.0x10-11

1.0x10-10

1.5x10-10

Experiment FLUKA

Act

ivity

[B

q/io

n]

Depth [mm]

127Xe

Page 13: EuCARD2 WP11 (Materials for Collimation) kick-off and tasks meeting 9.12.2013 Marilena Tomut / FAIR@GSI/ BIOMAT GSI -Introduction Overview of WP8 work

Experimental studies of radiation damage effects on carbon and Cu-Diamond collimator materials

• radiation-induced dimensional changes of graphite

• mechanical properties and Young’s modulus changes in

irradiated graphite and CFC

• fluence dependence of electrical resistivity of irradiated

graphite

• fatigue behaviour of irradiated graphite

• in-situ montoring of structural changes in ion-irradiated Cu-

diamond composite materials

Jens Stadlmann / EuCARD Concluding Meeting 2013

Page 14: EuCARD2 WP11 (Materials for Collimation) kick-off and tasks meeting 9.12.2013 Marilena Tomut / FAIR@GSI/ BIOMAT GSI -Introduction Overview of WP8 work

Online measurements of heavy Ion-induced electrical resistivity increase of graphite

M.Tomut, GSI

Collaboration with MSU Experimental set-up M3 / UNILAC GSI

Irradiation conditions:ions / energy: 197Au, 8.6 MeV/u beam intensity: up to 5x1010 i/cm2sdose: up to 1015 i/cm2

Direct impact model fit:

Damage cross section:

a = 6.0 10-14 cm-2

Page 15: EuCARD2 WP11 (Materials for Collimation) kick-off and tasks meeting 9.12.2013 Marilena Tomut / FAIR@GSI/ BIOMAT GSI -Introduction Overview of WP8 work

Failure of graphite exposed to pulsed 238U beam

11

Experiment

5x1014 i/cm2 1014 i/cm2 1013 i/cm2 5x1012 i/cm2

radiation damage swelling

stress waves compressionstress concentrators + fatigue crack

Graphite target /Pulse structure

Maximumcompressive stress (MPa)

Maximum tensile stress (MPa)

45 µm (single pulse)

-53.3 0.5

45 µm(double pulse)

- 56.4 0.7

FEM simulations

238U, 4,8 MeV/u

1.5 x1010 i/pulse

150 µs, 1 HzM.Tomut, GSI

Page 16: EuCARD2 WP11 (Materials for Collimation) kick-off and tasks meeting 9.12.2013 Marilena Tomut / FAIR@GSI/ BIOMAT GSI -Introduction Overview of WP8 work

M.Tomut, GSI

In situ SEM monitoring of heavy ion irradiation effects in novel copper-diamond composites

200 µm

50 µm

238U, 4.8 MeV/upristine5x1012 i/cm2

1x1013 i/cm2

5x1013 i/cm2

1.7x1014 i/cm2

Diamond

•In-situ- SEM during ion irradiation shows:-no detachment or cracks at interfaces-charge trapping at ion induced defects in diamonds

•Off-line Raman spectroscopy shows:-increasing luminescence background due to ion-induced optical active defects-thermal conductivity degradation of irr. diamonds

Page 17: EuCARD2 WP11 (Materials for Collimation) kick-off and tasks meeting 9.12.2013 Marilena Tomut / FAIR@GSI/ BIOMAT GSI -Introduction Overview of WP8 work

Jens Stadlmann / EuCARD Concluding Meeting 2013

Planned activities in WP 11Advanced collimator materialsMaterial irradiation and radiation damage characterization in situ and off-line:

•online IR monitoring (bulk and interfaces)

•fatigue studies with: Impact nanoindentation, pulsed ion beams, ns pulse laser generated proton beams

•characterization of mechanical properties degradation as a function of dose using micro- and nanoindentation: hardness, Young modulus, impact resistance, fatigue behaviour, creep

•other in situ possibilities still open

•spall strength studies of single component and model composite materials in ultrafast experiment, using the the Petawatt laser at GSI

•continuation of hydrodynamic tunneling simulations