estimating ecosystem functional features from intra-specific trait data

24
A new method for estimating functional components at taxon and community levels using intraspecific trait data Cayetano Gu#érrezCánovas 1,2 , David SánchezFernández 2 , Josefa Velasco 2 , Andrés Millán 2 & Núria Bonada 4 1: 3: 4: 2:

Upload: tano-gutierrez-canovas

Post on 02-Aug-2015

97 views

Category:

Environment


0 download

TRANSCRIPT

A new method for estimating functional components at taxon and community levels using intraspecific trait data �Cayetano  Gu#érrez-­‐Cánovas1,2,  David  Sánchez-­‐Fernández2,  

Josefa  Velasco2,  Andrés  Millán2  &  Núria  Bonada4  

1:   3:   4:  2:  

Why a new method to estimate functional diversity? �

•  Biodiversity  is  a  mul?-­‐facet  concept  

•  Ecological  studies  tradi?onally  focused  on  the  taxonomic  components  

•  Func?onal  features  related  with  environmental  filtering,  evolu#on  and  ecosystem  func#oning  

•  Recent  methodological  advances  allowed  for  calcula?ng  func?onal  components  from  mul?ple  traits  at  community  level

Key  papers:  Villéger  et  al.  (2008)  Ecology  Laliberté  &  Legendre,  (2010)  Ecology  Mouillot  et  al.  (2013)  Trends  Eco  Ev    R  packages:  ade4,  FD  (dbFD),  ca#,    

Estimation of functional components: the mean-trait approach�

Why a new method to estimate functional diversity? �

•  Community  func?onal  components  are  calculated  using  the  mean  trait  data  of  each  taxon

Taxon   Trait  a   Trait  b  Sp  1   1.2   Gills  Sp  2   2.3   Tegument  Sp  3   2.4   Tegument  Sp  4   10.2   Aerial  Sp  5   45.5   Tegument  Sp  6   0.2   Gills  

•  However,  some  traits  show  a  great  intraspecific  variability  as  body  size,  number  of  genera?ons  or  diet  

•  Considering  intraspecific  trait  varia?on  may  improve  the  accuracy  of  the  func?onal  component  es?ma?on  

Taxon   a1   a2   a3   a4   a5   a6   a7   b1   b2  

G1   0.0   0.4   0.4   0.2   0.0   0.0   0.0   1.0   0.0  

G2   0.0   0.0   0.0   0.0   0.4   0.4   0.2   0.0   1.0  

G3   0.0   0.2   0.4   0.4   0.0   0.0   0.0   0.5   0.5  

G4   0.2   0.2   0.2   0.2   0.2   0.0   0.0   0.5   0.5  

G5   0.2   0.2   0.2   0.2   0.2   0.0   0.0   0.3   0.7  

G6   0.2   0.2   0.2   0.2   0.2   0.0   0.0   0.1   0.9  

Taxa x traits matrix (Fuzzy coding)

Rows: taxa (usually, genus of aquatic organisms) Columns: categories of biological traits a and b

Aquatic trait databases: �fuzzy coding data includes intraspecific variability�

Dimensionality  reduc#on  (PCA):  building  a  Func#onal  Space  

Limita#ons:    Taxon-­‐level  metrics  Low-­‐richness  communi?es  (<  3  taxa)  Func?onal  redundancy  (poten?al  informa?on  loss)  

Taxon  1  Taxon  2  Taxon  3  Taxon  4  Taxon  5  Taxon  6  

Trait  1  

Trait  2  

Why a new method to estimate functional diversity? �

Goal:  To  develop  a  set  of  indexes  able  to  work  with  fuzzy  coding  data  to  produce  taxon  and  community  level  func?onal  indexes  based  on  intra-­‐specific  trait  data

Addi#onal  aims:    •  Showcase  of  new  features  •  To  compare  the  new  method  with  popular  approaches  

based  on  mean-­‐trait  values  

(a)  building  a  Func#onal  Space  (PCA)  

Taxon  1  Taxon  2  Taxon  3  Taxon  4  Taxon  5  Taxon  6  

Trait  category  1  

Trait  category  2  

How?    Performing   a   PCA   on   the   raw   fuzzy   coded   matrix   to   retain   the  relevant  func?onal  axis  

a1   a2   a3   a4   a5   a6   a7   b1   b2  

G1   0   0   1   0   0   0   0   1   0  

G2   0   0   0   0   0   0   1   0   1  

G3   0   1   0   0   0   0   0   0   1  

G4   0   1   0   0   0   0   0   1   0  

G5   0   1   0   0   0   0   0   1   0  

G6   0   0   0   1   0   0   0   0   1  

a1   a2   a3   a4   a5   a6   a7   b1   b2  

G1   0   1   0   0   0   0   0   1   0  

G2   0   0   0   0   0   1   0   0   1  

G3   0   0   0   1   0   0   0   0   1  

G4   0   0   1   0   0   0   0   0   1  

G5   1   0   0   0   0   0   0   0   1  

G6   0   1   0   0   0   0   0   1   0  

a1   a2   a3   a4   a5   a6   a7   b1   b2  

G1   0   1   0   0   0   0   0   1   0  

G2   0   0   0   0   1   0   0   0   1  

G3   0   1   0   0   0   0   0   0   1  

G4   0   1   0   0   0   0   0   1   0  

G5   1   0   0   0   0   0   0   0   1  

G6   1   0   0   0   0   0   0   0   1  

a1   a2   a3   a4   a5   a6   a7   b1   b2  

G1   0   1   0   0   0   0   0   1   0  

G2   0   0   0   0   0   1   0   0   1  

G3   0   0   0   1   0   0   0   1   0  

G4   1   0   0   0   0   0   0   1   0  

G5   0   0   0   0   1   0   0   1   0  

G6   0   0   0   0   1   0   0   0   1  

(b)  Randomising  trait  categories  

(c)  Projec#ng  the  randomised  trait  categories  onto  the  func#onal  space  Taxon  1  

Taxon  2  Taxon  3  Taxon  4  Taxon  5  Taxon  6  

The   clouds   of   points   of   each   taxon   represents   the   suite   of   poten#al  func#onal  variability  based  on  the  probability  of  each  trait  category  to  be  present  in  a  random  individual  belonging  to  that  taxon  

(d)  Mean  Taxon  func#onal  richness  (tRic)  Taxon  1  Taxon  2  Taxon  3  Taxon  4  Taxon  5  Taxon  6  

f

e

d

c

a b

tRic =niche_ areai

i=a

n

∑n

Taxon  1  Taxon  2  Taxon  3  Taxon  4  Taxon  5  Taxon  6  

c

ab  

bc  

FSim =

2×overlapping_ areaijniche_ areai + niche_ areaji=a, j=b

n

number _of _ pairs

(e)  Func#onal  similarity  (FSim)  

b  

a  

d  

cd  

(f)  Func#onal  richness  (FRic)  Taxon  1  Taxon  2  Taxon  3  Taxon  4  Taxon  5  Taxon  6  

Area  filled  by  the  convex  hull  

(g)  Func#onal  dispersion  (FDis)  Taxon  1  Taxon  2  Taxon  3  Taxon  4  Taxon  5  Taxon  6  

FDis =dist(i, j )

i=a, j=b

n

n

dist(x,y) = x − xc( )2 + y− yc( )2

(h)  Func#onal  redundancy  (FR)  Taxon  1  Taxon  2  Taxon  3  Taxon  4  Taxon  5  Taxon  6  

c

a

b

FR = overlaping_ areaiji=a, j=b

n

Func%ontal*axis*1*Func%o

ntal*axis*2

*

Func%ontal*axis*1*Func%o

ntal*axis*2

*

Func%ontal*axis*1*Func%o

ntal*axis*2

*

Func%ontal*axis*1*Func%o

ntal*axis*2

*

Func%ontal*axis*1*Func%o

ntal*axis*2

*

(d)$Taxon*func%onal*richness*

(e)$Func%onal*similarity*between*taxa*

(f)$Func%onal*richness*

(g)$Func%onal*dispersion*

(h)$Func%onal*redundancy*

Func%ontal*axis*1*Func%o

ntal*axis*2

*

Trait*categories*

0.2$c1$ c2$ c3$

0.8$ 0.0$T1$0.2$0.8$ 0.0$T2$0.3$0.3$ 0.4$T3$Ta

xa*

1$c1$ c2$ c3$

0$ 0$T1$0$ 1$ 0$T2$0$ 0$ 1$T3$

0$c1$ c2$ c3$

1$ 0$T1$0$ 1$ 0$T2$0$ 1$ 0$T3$

1$c1$ c2$ c3$

0$ 0$T1$0$ 1$ 0$T2$1$ 0$ 0$T3$

1$c1$ c2$ c3$

0$ 0$T1$1$ 0$ 0$T2$0$ 0$ 1$T3$

0$c1$ c2$ c3$

1$ 0$T1$0$ 1$ 0$T2$0$ 1$ 0$T3$

1$c1$ c2$ c3$

0$ 0$T1$1$ 0$ 0$T2$0$ 0$ 1$T3$

(a)$Defining*a*reduced*func%onal*

space*(PCA)*

(b)$Randomising*matrices*

(c)$Projec%ng*randomised*trait*combina%ons*into*func%onal*

space*

Let’s see some applications:�

Ecological  niche  drivers    Do  more  func+onally  generalised  organisms  occupy  a  wider  ecological  niche?    Rela#onship  between  ecological  and  func#onal  niche  widths  (Taxon  func#onal  richness)  of  stream  invertebrates,  based  on  intraspecific  biological  and  ecological  traits  (Source:  Tachet  et  al.,  2002)    

20 30 40 50

020

40

Bryozoa

Functional niche

Ecol

ogic

al n

iche

20 40 60 80 100

020

40

Turbellaria

Functional niche

Ecol

ogic

al n

iche

50 100 150

020

40

Oligochaeta

Functional niche

Ecol

ogic

al n

iche

40 80 120

020

40

Hirudinea

Functional niche

Ecol

ogic

al n

iche

50 100 150 200

020

40

Gastropoda

Functional niche

Ecol

ogic

al n

iche

50 100 150 200 250

020

40

Bivalvia

Functional niche

Ecol

ogic

al n

iche

40 60 80 100

020

40

Crustacea

Functional niche

Ecol

ogic

al n

iche

50 150 2500

2040

Ephemeroptera

Functional niche

Ecol

ogic

al n

iche

50 150 250

020

40

Plecoptera

Functional niche

Ecol

ogic

al n

iche

50 100 150 200

020

40

Odonata

Functional niche

Ecol

ogic

al n

iche

50 150 250

020

40

Heteroptera

Functional niche

Ecol

ogic

al n

iche

50 70 90

020

40

Lepidoptera

Functional nicheEc

olog

ical

nic

he

50 100 150 200 250

020

40

Coleoptera

Functional niche

Ecol

ogic

al n

iche

0 100 200 300

020

40

Trichoptera

Functional niche

Ecol

ogic

al n

iche

50 150 250

020

40Diptera

Functional niche

Ecol

ogic

al n

iche

R2=0.18

R2=0.41

R2=0.50

R2=0.18

R2=0.25 R2=0.20

Ecological and functional niche sizes �

Let’s see some applications:�

Community  assembly    Do  organisms  that  share  common  biological  features  occupy  similar  ecological  niches?    Rela#onship  between  the  rela#ve  overlap  in  ecological  and  func#onal  niches  (Func#onal  similarity)  of  stream  invertebrates,  based  on  intraspecific  biological  and  ecological  traits  (Source:  Tachet  et  al.,  2002)  

0.0 0.2 0.4 0.6

0.0

0.4

0.8

Bryozoa

Functional overlap

Ecol

ogic

al o

verla

p

0.0 0.2 0.4 0.6 0.8

0.0

0.4

0.8

Turbellaria

Functional overlap

Ecol

ogic

al o

verla

p

0.0 0.2 0.4 0.6 0.8

0.0

0.4

0.8

Oligochaeta

Functional overlap

Ecol

ogic

al o

verla

p

0.3 0.4 0.5 0.6 0.7 0.8

0.0

0.4

0.8

Hirudinea

Functional overlap

Ecol

ogic

al o

verla

p

0.0 0.2 0.4 0.6 0.8

0.0

0.4

0.8

Gastropoda

Functional overlap

Ecol

ogic

al o

verla

p

0.0 0.2 0.4 0.6

0.0

0.4

0.8

Bivalvia

Functional overlap

Ecol

ogic

al o

verla

p

0.0 0.2 0.4 0.6 0.8

0.0

0.4

0.8

Crustacea

Functional overlap

Ecol

ogic

al o

verla

p

0.0 0.2 0.4 0.6 0.8

0.0

0.4

0.8

Ephemeroptera

Functional overlap

Ecol

ogic

al o

verla

p

0.2 0.4 0.6 0.8

0.0

0.4

0.8

Plecoptera

Functional overlap

Ecol

ogic

al o

verla

p0.0 0.2 0.4 0.6 0.8

0.0

0.4

0.8

Odonata

Functional overlap

Ecol

ogic

al o

verla

p

0.0 0.2 0.4 0.6 0.8

0.0

0.4

0.8

Heteroptera

Functional overlap

Ecol

ogic

al o

verla

p

0.55 0.65 0.750.

00.

40.

8

Lepidoptera

Functional overlap

Ecol

ogic

al o

verla

p

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.4

0.8

Coleoptera

Functional overlap

Ecol

ogic

al o

verla

p

0.0 0.2 0.4 0.6 0.8

0.0

0.4

0.8

Trichoptera

Functional overlap

Ecol

ogic

al o

verla

p

0.0 0.2 0.4 0.6 0.8

0.0

0.4

0.8

Diptera

Functional overlap

Ecol

ogic

al o

verla

p

R2=0.27 R2=0.07

R2=0.04 R2=0.22

R2=0.20

R2=0.04 R2=0.12 R2=0.10

Pairwise ecological and functional niche overlap�

Let’s see some applications:�

Responses  to  environmental  change    Do  community  func+onal  features  show  non-­‐random  responses  along  stress  gradients?      

Changes  in  the  func#onal  features  of  stream  insects  (EPT  +  OCH)  along  gradients  of  stress  (salinity  and  land-­‐use):  Comparing  intra-­‐specific  trait  data  vs  mean-­‐trait  data

6 8 10 12

510

15F.

Ric

hnes

s

6 8 10 12

0.0

0.4

0.8

0 1 2 3 4

510

15

0 1 2 3 4

0.0

0.4

0.8

6 8 10 122.0

2.5

3.0

3.5

4.0

F. D

ispe

rsio

n

6 8 10 12

0.0

1.0

2.0

3.0

0 1 2 3 42.0

2.5

3.0

3.5

4.0

0 1 2 3 4

0.0

1.0

2.0

3.0

6 8 10 12

12

34

56

78

log(Conductivity)

log(

F. R

edun

danc

y)

6 8 10 12

1.0

1.5

2.0

2.5

log(Conductivity)0 1 2 3 4

12

34

56

78

log(Land−use intensity+1)0 1 2 3 4

1.0

1.5

2.0

2.5

log(Land−use intensity+1)

R2=0.65

R2=0.14

R2=0.29

R2=0.27 R2=0.53

R2=0.74

R2=0.17 R2=0.13

R2=0.15

R2=0.13

R2=0.17 R2=0.72

Salinity  dbFD   dbFD  Novel  method   Novel  method  

Land  use  

β0  ***  β1  ***  

β0  ***  β1  ***  

β0  ***  β1  ***  

β0  ***  β1  ***  

β0  ***  β1  ***  

β0  ***  Β1  ns  

β0  ***  β1  **  

β0  ***  β1  **  

β0  *  β1  **  

β0  ***  β1  ***  

β0  ***  β1  **  

β0  ***  Β1  ns  

•  The novel method provides additional features able to test fundamental ecological hypotheses

•  Multiple functional axes (different responses / functions)

•  The new method performed better in 4 out 6 comparisons (explained variance)

•  Novel method showed a better performance against

null models (all cases vs. 4 out 6)

•  This novel method may provide additional indexes in the same multidimensional space and a useful approach to analyse patterns of aquatic biodiversity

Conclusions �

Thanks for your attention! �

[email protected]  @tano_gc