estado de la tecnología de la captura y almacenamiento de...

108
d eEquation Chapter 1 Section 1 Trabajo Fin de Grado Grado en Ingeniería de Organización Industrial Estado de la tecnología de la captura y almacenamiento de CO2. Modelado y optimización del proceso “Calcium Looping”. Dep. Ingeniería de Sistemas y Automática Escuela Técnica Superior de Ingeniería Universidad de Sevilla Autor: Gonzalo Muñoz Romero Tutora: Ascensión Zafra Cabeza Sevilla, 2017

Upload: others

Post on 03-Aug-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

d

eEquation Chapter 1 Section 1

Trabajo Fin de Grado

Grado en Ingeniería de Organización Industrial

Estado de la tecnología de la captura y

almacenamiento de CO2. Modelado y

optimización del proceso “Calcium

Looping”.

Dep. Ingeniería de Sistemas y Automática

Escuela Técnica Superior de Ingeniería

Universidad de Sevilla

Autor: Gonzalo Muñoz Romero

Tutora: Ascensión Zafra Cabeza

Sevilla, 2017

Page 2: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA
Page 3: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

Trabajo Fin de Grado

Grado en Ingeniería de Organización Industrial

Estado de la tecnología de la captura y

almacenamiento de CO2. Modelado y

optimización del proceso “Calcium Looping”.

Autor:

Gonzalo Muñoz Romero

Tutora:

Ascensión Zafra Cabeza

Profesora titular

Dep. de Ingeniería de Sistemas y Automática

Escuela Técnica Superior de Ingeniería

Universidad de Sevilla

Sevilla, 2017

Page 4: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA
Page 5: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA DE LA CAPTURA Y ALMACENAMIENTO DE CO2.

MODELADO Y OPTIMIZACIÓN DEL PROCESO “CALCIUM LOOPING”.

Autor: Gonzalo Muñoz Romero

Tutor: Ascensión Zafra Cabeza

El tribunal nombrado para juzgar el Proyecto arriba indicado, compuesto por los siguientes miembros:

Presidente:

Vocales:

Secretario:

Acuerdan otorgarle la calificación de:

Sevilla, 2017

El Secretario del Tribunal

Page 6: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA
Page 7: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

A mi familia

A mis maestros.

Page 8: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA
Page 9: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

¿Qué mayor rechazo a aquellos que

quisieran acabar con nuestro mundo que unir nuestros mejores esfuerzos para salvarlo?

“Barack Obama’’

Page 10: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA
Page 11: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

i

Agradecimientos

Una vez llegado a este punto de mis estudios, me gustaría dar las gracias a las siguients personas por lo contribuido en estos cuatro años:

Gracias a mi familia, a todos por aguantar mis quejidos y mis tonterías en este período y darme el ánimo y las ganas para seguir que en ocasiones faltaba. Gracias a mi madre por darme el cariño que sólo ella sabe dar y a mi padre por ser el acicate que siempre es necesario.

Gracias a la familia que se elige, los amigos. Gracias por escucharme, aliviar las penas y celebrar los triunfos. Gracias por ser una influencia tan positiva en la vida y ejemplo de verdadera amistad.

Gracias a aquellos profesores que me han formado como ingeniero, alecionado sobre la vida, y hacer que hoy en día sea una persona de provecho.

Finalmente agradecer a mis tutoras María y Ascensión, por su amabilidad y estar siempre con una sonrisa cuando las necesitaba.

A todos ellos, gracias de corazón.

Gonzalo Muñoz Romero

Sevilla, 2017

Page 12: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

ii

Page 13: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

iii

Contents

Agradecimientos i

Contents iii

List of Tables vii

List of Figures ix

Resumen xi

Abstract xxiii

1 Introduction 1

1.1 Context 1

1.2 Objetive of this work 3

2 Precedent 4

3 Options for CO2 capture 7

3.1 Pre-combustion capture 8

3.1.1 Concept 8

3.1.2 Advantages & Disadvantages 9

3.2 Post-combustion capture 10

3.2.1 Concept 10

3.3 Oxyfuel combustion 10

3.3.1 Concept 10

3.3.2 Advantages & Disadvantages 11

4 Technologies for post-combustion capture 13

4.1 Absorption process 13

4.1.1 Concept 13

4.1.2 Advantages & Disadvantages 15

4.2 Adsoprtion process 16

4.2.1 Concept 16

4.2.2 Advantages & Disadvantages 16

Page 14: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

iv

4.3 Ionic liquid membranes 17

4.3.1 Concept 17

4.3.2 Advantages & Disadvantages 19

4.4 Mixed matrix membranes (MMM) 20

4.4.1 Concept 20

4.4.2 Advantages & Disadvantages 21

4.5 Enzyme based separation 22

4.5.1 Concept 22

4.5.2 Advantages & Disadvantages 22

4.6 Hydrate based separation 23

4.6.1 Concept 23

4.6.2 Advantages & Disadvantages 24

4.7 Calcium looping CO2 capture 24

4.7.1 Concept 24

4.7.2 Advantages & Disadvantages 25

4.8 Summary made in Excel of the CO2 capture processes 26

5 Model 29

5.1 Introduction 29

5.2 Description of the model 31

5.3 Inputs & Outputs 38

5.4 Economic Study 38

5.4.1 Coal & Oxygen 38

5.4.2 Costs 41

5.5 Future trends 43

5.6 Conclusions 45

6 Storage 47

6.1 Geological storage 47

6.1.1 CO2 storage mechanisms in geological formations 48

6.2.1 Risk & Environmental impact 50

6.2 Industrial CO2 utilization 52

6.2.1 Biofuel production from CO2 53

Page 15: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

v

7 Legislation 57

7.1 Subsurface 57

7.2 Kyoto Protocol 57

7.2.1 The International Emissions Trading System 58

7.3 The Paris Agreement 59

7.4 Legal main developments of geological CO2 capture in the developed countries 60

7.5 Current state of CCS policy 61

7.6 Public perception of CCS 62

8 Conclusion 63

Apendix 67

Bibliography 72

Page 16: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

vi

Page 17: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

vii

LIST OF TABLES

Table 1. Table of CO2 capture technologies. Pg. 27

Table 2. Comparation of Spanish and South African coal. Pg. 39

Table 3. Comparation of costs in both situations. Pg. 40

Table 4. Capital cost of the Ca-l model. Pg. 42

Table 5. Operation & Maintenance cost. Pg. 42

Table 6. Cost of mineralization and energy required. Pg. 50

Page 18: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

viii

Page 19: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

ix

LIST OF FIGURES

Figura 1. Emisiones de CO2 en 2015. Pg. xii

Figura 2. Opciones para la captura de CO2. Pg. xiii

Figura 3. Diagrama de la absorción química. Pg. xv

Figura 4. Funcionamiento de membranas. Pg. xv

Figura 5. Esquema captura CO2 mediante ciclos carbonatación. Pg. xvi

Figura 6. Esquema de la oxicombustión. Pg. xvii

Figura 7. Potencial mundial de almacenamiento de CO2 en cuencas sedimentarias. Pg. xix

Figura 8. Ciclo de la mineralización del CO2. Pg. xx

Figura 9. Diagrama de la conversión de CO2 en hidrocarburos. Pg. xxi

Figure 10. Evolution of energy consumption in USA. Pg. 1

Figure 11. Number of CCS related publications from 1970 to 2012. Pg. 5

Figure 12. Progess of CCS proyects capacity from 2012 to 2020Options For CO2 Capture Pg. 5

Figire 13. Options for CCS capture. Pg. 7

FIgure 14. Diagram of pre-combustion capture. Pg. 8

Figure 15. Gasification plant in USA. Pg. 9

Figure 16. Diagram of oxyfuel combustion. Pg. 11

Figure 17. Diagram of absprtion CO2 capture process. Pg. 13

Figure 18. CO2 absoprtion mechanism. Pg. 14

Figure 19. Absorption CO2 capture plant in Malasia. Pg. 15

Figure 20. Principle of gas separation membrane. Pg. 17

Figure 21. Principle of gas absoprtion membrane. Pg. 18

Figure 22. Commonly used anions and cations. Pg. 18

Figure 23. Ilustration of facilited transport of CO2 in a membrane. Pg. 19

Figure 24. Robenson upper bound correlation for CO2 CH4 separation. Pg. 21

FIgure 25. Memzyme operation diagram. Pg. 22

Figure 26. Formation of hydrates. Pg. 24

Figure 27. Diagram of calcium loopin CO2 capture. Pg. 25

Figure 28. Diagram of calcium looping looping CO2 capture. Pg. 29

Figure 29. Variaton of parameters with sulfation level. Pg. 34

Figure 30. CO2 capture efficiencyr vs. active space time for 3 different reactor sizes Pg. 35

Page 20: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

x

Figure 31. Spanish coal vs South African coal. Pg. 40

Figure 32. O2 introduced depending of the efficiency. Pg. 44

Figure 33. Integration of calcium looping in the cement industry. Pg. 44

Figure 34. Ca-L without recarbonator. Pg. 44

Figure 35. Ca-L with recarbonator. Pg. 44

Figure 36. Ca-L with three fluidized beds. Pg. 45

Figure 37. Shematic of the trapping mechanism and their evolution over a 10000 year

period, expressed as a percentage of the total trapping. Pg. 47

Figure 38. Shematic of geological storage options. Pg.49

Figure 39. Possible escape routes and possible solutions for co2 injected into saline

formations. Pg. 51

Figure 40. A shematic of CO2 movement after injection. Pg. 52

Figure 41. Diagram of the convetion of CO2 into hidrocarbons. Pg. 54

Figure 42. Projection of use of biofuel as global energy source. Pg. 55

Figure 43. Shematic of CO2 trading emissions mechanism. Pg. 59

Figure 44. Contribution of different options to mitigate Co2 for the 450 scenario. Pg. 63

Figure 45. Educating game for ilustrate a CO2 capture plant in Japan. Pg. 64

Page 21: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

xi

Resumen

El presente trabajo tiene como temática la revisión de las diferentes técnicas actuales de

captura de CO2, además de ofrecer una breve visión sobre el ámbito legal sobre este aspecto.

Además, también se presenta un apartado introductorio sobre el almacenaje del CO2

previamente obtenido con los métodos de captura a explicar. Finalmente se muestra un

pequeño modelado en el lenguaje de programación C sobre la técnica de captura denominada

‘’Calcium Looping’’. Se ha realizado un algoritmo para calcular la cantidad de masa de cal viva

(CaO) y caliza (CaCO3) necesarias para una determinada eficiencia y flujo de gases de entrada.

Además, se realizará una aproximación de los costes del proceso y las posibles mejoras del

mismo.

Desde el siglo pasado los países desarrollados de nuestra sociedad han experimentado un

crecimiento exponencial junto a un gran incremento del consumo energético. Se ha debido a

un modelo energético centrado en el uso de combustibles fósiles, llevando a un aumento

considerable de las emisiones de los gases de efecto invernadero (GEI). Esto ha conllevado a la

situación crítica actual donde el aumento de CO2 en la atmósfera, principal causante del efecto

invernadero que ha obligado a tomar iniciativas para tratar de reducir o evitar que emisiones

antropogénicas de los grandes centros de combustión alcancen la atmósfera.

Son varias las opciones tecnológicas para reducir las emisiones de GEI; reducción del consumo

de energía, uso eficaz de la energía (tanto en la utilización como en la conversión energética),

uso de combustibles con menores contenidos en carbono (como el gas natural frente al

carbón), promoción de los sumideros naturales de CO2 (como los bosques, suelos u océanos),

uso de fuentes de energía con bajos niveles de emisión de CO2 (como las energías renovables

o la nuclear) y la Captura y Almacenamiento Geológico de CO2 (CAC). Según el Informe del

Panel Intergubernamental para el Cambio Climático de Naciones Unidas (IPCC) la Captura y

Almacenamiento de CO2 contribuiría entre el 15% y el 55% al esfuerzo mundial de mitigación

acumulativo hasta el 2100, presentándose, por tanto, como una tecnología de transición que

contribuirá a mitigar el cambio climático.

El Cambio Climático es un fenómeno global que requiere una respuesta multilateral y

colaboración de todos los países. Tras la ratificación del Protocolo de Kioto, la Unión Europea

ha modificado e incluido nuevas Directivas Medio Ambientales que regulan y limitan las

emisiones de Gases de Efecto Invernadero en ciertos sectores industriales: generación de

electricidad, refino del petróleo, fabricación del cemento, vidrio, papel y cerámica (Directivas

2003/87/CE y 2004/101/CE). Recientemente se ha incluido un sector adicional, el sector del

transporte aéreo (Directivas 2009/29/CE), fijando además un nuevo objetivo europeo para

Page 22: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

xii

limitar las emisiones: reducción de un 21% en el año 2020, con respecto a los niveles notificados

del 2005.

Para hacernos una idea de como son las emisiones de CO2 en cada país, se presenta una imagen

que muestra las emisiones de CO2 en en 2015.

Figura 1. Emisiones de CO2 en 2015.

La CAC ha experimentado un expencial crecimiento desde sus inicios, especialmente en esta

última década. El primer proyecto de este tipo en realizarse fue en Estados Unidos en 1972, con

el llamado ‘’Terrell Natural Gas Processing Plant’’. Pertenecía a la industria del procesamiento

del gas, tenía una capacidad de captura de 0,4-0,5 MTPA (millones de toneladas por año) y se

almacenaba medicante la técnica EOR (Enhanced Oil Recovery). Actualmente hay más de una

decenea de proyectos en construcción, con una capacidad media de captura de 2 MTPA.

Tecnologías para la captura de CO2

En lo referente a la captura de CO2, se ha evolucionado desde las técnicas de captura en la

precombustión hasta la actual línea de investigación del oxicombustión (captura usando una

combustión con oxígeno puro).

Page 23: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

xiii

Figura 2. Opciones para la captura de CO2.

Existen diferentes técnicas de captura de CO2 dependiendo de si se produce antes o después

de la combustión del combustible que lo produce.

1. Precombustión

En los sistemas de pre-combustión, el combustible primario se transforma primero en gas

mediante su calentamiento con vapor, aire u oxígeno. Esta transformación produce un gas

compuesto esencialmente de H2 y CO2, que pueden ser fácilmente separados. El hidrógeno

puede entonces utilizarse para la producción de energía o calefacción. Un ejemplo tipo de este

mecanismo en España se encontraba en Puertollano (Castilla-La Mancha), con la central de

precombustión de la empresa ELCOGAS, la cual tuvo que cerrar por la ausencia de las ayudas

públicas al carbón, mostrando la carencia de iniciativas por parte del gobierno respecto a las

CAC.

Se pueden distinguir tres pasos principales en el aprovechamiento de combustibles primarios

con captura en precombustión:

1. Reacción de producción de gas de síntesis. Procesos que llevan a la generación de una

corriente compuesta principalmente por hidrógeno y monóxido de carbono a partir

del combustible primario. Existen dos vías

Reformado con vapor de agua

•𝐶𝑥𝐻𝑦 + 𝑥𝐻2𝑂 → 𝑥𝐶𝑂 + 𝑥 +𝑦

2𝐻2

Reacción con oxígeno

•𝐶𝑥𝐻𝑦 +𝑥

2𝑂2 → 𝑥𝐶𝑂 +

𝑦

2𝐻2

Page 24: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

xiv

2. Reacción shift para convertir el CO del gas de síntesis a CO2. Esta reacción aporta

más hidrógeno a la corriente de gases de la fase anterior. La reacción se conoce como

reacción shift de gas - agua:

𝐶𝑂 + 𝐻2𝑂 → 𝐶𝑂2 + 𝐻2

3. Separación del CO2. Existen diversos procedimientos para separar el CO2 de la

corriente CO2/H2. La concentración de CO2 en la corriente de entrada al separador

puede estar comprendida entre el 15-60% en base seca y la presión de la corriente

entre 2-7 MPa. El CO separado está disponible para su almacenamiento.

• Reformado con vapor de gas natural e hidrocarburos ligeros

Es la tecnología dominante actualmente para la producción de hidrógeno. Existen

plantas que producen hasta 480 t/día de H2. El combustible de alimentaciónsuele ser

gas natural, por lo que el proceso se conoce como reformado de metano con vapor de

agua (en inglés SMR), aunque podrían ser también hidrocarburos ligeros. Es

fundamental una previa eliminación del azufre del combustible de alimentación, ya que

es muy perjudicial para el catalizador de níquel usado.

• Centrales eléctricas de gasificación integrada en ciclo combinado (GICC)

Son un caso particular relativo a la gasificación. En el gasificador se produce la

oxidación parcial a presión del combustible, aportando la propia reacción el calor

necesario. La corriente de gas de salida del gasificador se enfría en intercambiadores

cediendo calor al vapor que alimentará a las turbinas de vapor de ciclo combinado.

2. Postcombustión

La idea principal de esta tecnología es trabajar con los gases de combustión de grandes focos

emisores de CO2, de tal forma que se aumente la concentración de CO2 en la corriente

principal de los gases, pasando de una concentración de un 12% - 15% a una concentración

próxima al 100% de CO2. El principal escollo de este tipo de tecnologías es el consumo de

energía que repercute en una pérdida de eficiencia muy relevante y en el alto coste de la

inversión requerida para separación de CO2 en comparación al resto de la planta.

• Absorción química

Este proceso es el más relevante y ampliamente usado para la separación de CO2 de un

flujo de gases, siendo una tecnología madura para la purificación de gas natural y la

Page 25: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

xv

producción de CO2 para usos industriales. La base de todos estos procesos es la

reacción de una base alcalina, normalmente aminas (MEA), en medio acuoso con un

gas ácido.

Figura 3. Diagrama de la absorción química.

• Adsorción

En estos procesos se utilizan tamices moleculares o carbón activo para adsorber el CO2.

La desorción del CO2 se realiza variando las condiciones de temperatura, pero

fundamentalmente las de presión. Se usa principalmente para la eliminación de CO2

del gas síntesis y producción de H2, aunque aún no se ha alcanzado una etapa comercial

como con la tecnología de absorción.

• Membranas

Consiste en hacer pasar por una membrana un flujo con alto contenido de CO2 y

elevada presión, absorbiendo esta el CO2 del flujo o separándolo en otra corriente de

alto contenido de CO2. Se suelen usar membranas de polímeros, pero se han mostrado

insuficientes debado a al gran consumo de energía y bajo nivel de recuperación de CO2.

Se están investigando en líneas innovadoras como el uso de líquidos iónicos para

mejorar estos parámetros.

Figura 4. Funcionamiento de membranas.

Page 26: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

xvi

• Captura con enzimas

Con esta tecnología se pretende crear rutas biosintéicas para la fijación del CO2. Existen

alternativas como el anhídrido carbónico o en enzimas parecidas a las usadas por las

plantas en su fotosíntesis.

• Captura basada en hidratación

Se basa en el uso de un gas compuesto por tetrahidrofurano y agua para capturar CO2

mediante la formación de pequeños cristales donde el CO2 queda atrapado. Permite la

captura de grandes cantidades en condiciones de baja temperatura y presión, con lo

que últimamente ha llamado mucho la atención

• Captura mediante ciclos de carbonatación

Por el interés que está generando y posible implantación el un futuro próximo, esta

tecnología será vista con mas detenimiento en el trabajo. Dicha tecnología se basa en

la reacción del CaO (cal viva) con el CO2 para formar CaCO3 (caliza) denominada

“carbonatación”, y su posterior reacción de descomposición a alta temperatura

denominada “calcinación” para liberar el CO2 capturado para su posterior

almacenamiento. Está formado por dos reactores, carbonatador y calcinador, y entre

ellos circula una corriente con CaO y CaCO3 que está recirculando constantemente. La

caliza se degrada con cada ciclo, con lo que se va añadiendo una corriente de caliza

freca para mantener la relación de recirculación constante.

Es aún una tecnología en fase de desarrollo, pero ya se están investigando nuevas líneas

de mejoras al esquema general, como su implantación en la industria cementera o la

adición de otro carbonatador.

Figura 5. Esquema captura CO2 mediante ciclos carbonatación.

3. Oxicombustión

Esta tecnología se basa esencialmente en realizar el proceso de combustión en una atmósfera

rica en O2, con el fin de obtener una corriente de gases de combustión con un alto porcentaje

de CO2 para facilitar así su captura.

Page 27: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

xvii

El principal problema asociado a la combustión con oxígeno puro es la altísima temperatura

que se alcanza, ya que la temperatura en la llama es del orden de 3000 K, haciendo inadmisible

su puesta en funcionamiento ya que no hay materiales que soporten estas temperaturas. Para

solventar este problema se hacen recircular los gases de escape o inyectando agua, de manera

que la temperatura desciende hasta los 1300-1400 ºC.

Por último, la tecnología de la oxi-combustión se usa en industrias como la del aluminio, vidrio

y acero, aunque para la implantación comercial de la tecnología en los procesos de captura de

CO2 aún se necesita bastante desarrollo.

Figura 6. Esquema de la oxicombustión.

Modelado “calcium looping’’

En la siguiente parte del trabajo se presenta el modelado del sistema de carbonatación-

calcinación. El modelo a seguir es el propuesto por Matteo C. Romano en la página 269 del

artículo ‘’Modeling the carbonator of a Ca-looping process for CO2 capture from power plant flue

gas’’.

Mediante este modelo, se pretende calcular la cantidad de materia a introducir en el sistema

para una determinada eficiencia deseada y una altura de carbonatador de 40 m. Tras la

resolución del modelo, añadimos nuevas ecuaciones para obtener una información mas

completa de este, para así poder realiar luego una aproximación de los costes de capital y de

operación (los más representativos del proceso).

Como entrada principal destacamos el volumen de CO2 que entra en el sistema y la eficiencia

deseada. Como salidas tenemos la cantidad de masa a introducir, las cenizas generadas, masa

de carbón a introducir para la combustión en el carbonatador y el oxígeno necesario para la

oxicombustón requerida. Este ultimo dato es de especial importancia ya que la separación del

oxígeno mediante un ASU (Air Separation Unit) es un proceso muy caro y tendrá relevancia

en el cálculo de los costes.

Page 28: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

xviii

Tras realizar el modelado, se presentarán unas gráficas y análisis comparativo entre el carbón

español y el sudafricano, los más habituales en las centrales térmicas españolas. Pese a ser el

carbón español mas barato, finalmente es mucho más caro que la otra opción ya que posee un

poder calorífico muy inferior al sudafricano y por consiguiente hará falta más carbón y mas

oxígeno procediente del ASU.

Con este ejercicio práctico, se intenta mostrar en líneas generales los elementos, costes y

problemas a la hora de abarcar la implantación de este proceso de captura de carbono como

alternativa a las actuales, dando unas pequeñas pinceladas de la situación y perspectiva de

futuro de esta tecnología.

Almacenamiento de CO2

Una vez capturado el CO2 mediante algunas de las técnicas anteriores, es necesario almacenar

el CO2. Este tema ha provocado incluso mayores quebraderos de cabeza que la captura del gas,

ya que además de las dificultades técnicas para su almacenaje, existen otros factores de carácter

político y social que añaden complicaciones a la hora de pensar dónde y cómo almacenar el

CO2.

Numerosas opciones para almacenarlo se han ideado, como la mineralización ex-situ, la

inyección de CO2 en las profundidades oceánicas o el almacenamiento geológico. De todas

estas, sólo la última opción es considerada factible hoy en día y además posee suficiente

capacidad para almacenar todo el CO2. Se considera que nuestro planeta tiene una capacidad

de almacenamiento total de CO2 de 236 Gt, siendo la teórica 2000 Gt, mientras que las

emisones por año en 2020 se esperan de 8-12 Gt. A continuación, se muestra un mapa global

con las zonas con mayor capacidad de almacenamiento. En las cuencas sedimentarias pueden

encontrarse formaciones salinas, yacimientos de petróleo, gas, o capas de carbón apropiados.

Page 29: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

xix

Figura 7. Potencial mundial de almacenamiento de CO2 en cuencas sedimentarias.

• Los mecanismos de almacenamiento geológico de CO2 son los siguientes :

• 700-3000m donde la roca es mucho impermeable. Mayor capacidad que otros

• Facil control y riesgo mínimo. EstabilidadAcuíferos salinos

• Bajo coste debido a la recuperación del petroleo.

• Una vez extraido el petróleo, el 75% CO2 permanece.

Recuperación mejorada del

petróleo

• Bajo coste ya que se recupera el metano adherido en los micro-poros del carbón.

• Bajo nivel de investigación aún

Recuperación de metano

Page 30: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

xx

• Mineralización

La carbonatación mineral se refiere a la fijación de CO2 mediante el uso de óxidos

alcalinos y alcalinotérreos, como el óxido de magnesio (MgO) y el óxido de calcio

(CaO), que están presentes en las rocas de silicatos de formación natural como la

serpentina y el olivino. Las reacciones químicas entre estos materiales y el CO2

producen compuestos como el carbonato de magnesio (MgCO3) y el carbonato cálcico.

La carbonatación mineral produce sílice y carbonatos que se mantienen estables

durante largos períodos de tiempo y que, por tanto, pueden eliminarse en zonas como

las minas de silicato o pueden reutilizarse con fines de construcción.

Figura 8. Ciclo de la mineralización del CO2.

• Usos industriales

Los usos industriales del CO2 comprenden los procesos químicos y biológicos en que

el CO2 actúa como reactivo, por ejemplo, los que se utilizan para la producción de urea

y metanol, así como diversas aplicaciones tecnológicas que usan directamente el CO2,

como en el sector hortícola, la refrigeración, el envasado de alimentos, la soldadura, las

bebidas y los extintores de incendios. En la actualidad, la tasa aproximada de utilización

de CO2 es de 120 Mt al año en todo el mundo.

• Conversión en biocombustibles

Mediante esta innvodaora solución, el CO2 pasa de ser de un gas dañino a una fuente

de energía energética y con valor, más aún si tenemos en cuenta el ritmo de

desaparición de los combustibles fósiles. Principalmente se pueden transformar en los

siguientes biocombustibles:

Page 31: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

xxi

Methanol 𝐶𝑂2 + 3𝐻2 ↔ 𝐶𝐻3𝑂𝐻 + 𝐻2𝑂

Dimethyl Ether Síntesis del metanol: 𝐶𝑂 + 2𝐻2 ↔ 𝐶𝐻3𝑂𝐻

Deshidratación del metanol: 2𝐶𝐻3𝑂𝐻 ↔ 𝐶𝐻3𝑂𝐶𝐻3 + 𝐻2𝑂

Figura 9. Diagrama de la conversión de CO2 en hidrocarburos

Aspectos legales

Debido a la peligrosidad e interés público, los pasos dados en materia legal se referieren

fundamentalmente al almacenamiento de CO2 no a su caputra, ya que la captura de este

apenas tiene implicaciones para la sociedad o peligrosidad alguna.

Las medidad para regular el almacenaje son muy diversas a lo largo del planeta debido a los

diferentes marcos legales, industrias predominantes del país y cultura.

Un término imprescindible es la propiedad del subsuelo, ya que mientras en la mayoría del

planeta es propiedad del estado, en Estados Unidos pertence al propietario de la superficie.

Debido a esto las leyes son muy variadas respecto al resto del planeta, ya que en este último

país el estado solo es encargado de los elementos medioambientales y de seguridad. Debido a

este marco legal, los avances en Estados Unidos, país remarcable en la captura de CO2 debido

a la cantidad de este gas que emite y proyectos llevados a cabo, se han fundamentado en el

Page 32: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

xxii

desarrollo de préstamos y condiciones favorables para la iniciativa privada, dando lugar a

numerosas líneas de investigación como la del Laboratorio Nacional de Sandia, referente en la

investigación de captura de CO2 con membranas.

Sin embargo, para conocer el origen de la regulación sobre CAC, debemos remontarnos al

Protocolo de Kioto firmado en 1997. Este es el acuerdo internacional más importante sobre el

cambio climático ya que impone obligaciones legales a los países firmantes, y establece una

reducción de los gases de efecto invernadoro de al menos un 5% desde 1990 hasta 2012. Además

establece un valor monetario sobre la atmósfera compartida por los países de Naciones Unidas

y se genera un mecanismo llamado ‘’Comercio Internacional de Emisiones’’ a través del cual se

le asgina un cupo de emisiones a cada país, existiendo la posibilidad de compra-venta de dichos

cupos.

Finalmente, la percepción de la sociedad respecto al almacenamiento de CO2 es algo que cada

vez tiene más importancia, ya que la negativa a esta tecnología es cada vez mayor, como se

puedo ver en Alemania tras la cancelación de un proyeto europeo de demostración en

Jänschwalde.

Page 33: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

xxiii

ABSTRACT

This work presents the current alternatives for the capture of carbon dioxide, which I consider

to be more important and more likely to be implanted in the next decades.

In addition, some of the current and future trends for the storage of carbon dioxide are

presented, to complement the review of different capture technologies. The diverse ways to

storage it and the possible uses for CO2 are also descripted. Ending with this part of the work,

I will write about the policy regarding the Carbon Capture and Storage (CCS) issue, focusing

in the main developments in this field and its public perception.

In the practical part I focus on the technology called ‘’Calcium Looping’’. I build an algorithm

to calculate the measures that must have the reactors and the amount of matter circulating

between them based in a desired efficiency. Also, a brief technoeconomic balance is proposed

in order to give a vision of how much could the launch of this technology cost.

I particularly chose this topic because global warming is an issue that concerns me, and I

though this project could be an excellent opportunity to delve into this topic, specifically CCS

technology, a technology field that caught my attention many time ago

Page 34: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

xxiv

Page 35: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

1

1 INTRODUCTION

1.1 Context

Rapid economic growth has contributed to today’s ever increasing demand of energy. A

consequence of this is an increase in the use of fuels, particularly fossil fuels like oil, coal and

natural gas. Since the Industrial Revolution those sources of energy have been exponentially

demanded. As proof of this the following figure represents how energy consumption has

changed in the United States since the Industrial Revolution.

Figure 10. Evolution of energy consumption in USA.

However, the excessive use of fossil fuels has become a cause of concern due to their adverse

effects on the environment, particularly related to the emission of CO2, a major antropogenic

greenhouse gas (GHG). CO2 is the major contributor for global waming, and it has the greatest

adverse impact which accounts approximately 55% of the observed global warming.

This global warming is created by the greenhouse effect. The greenhouse effect is the

phenomenom where GHGs absorb outgoing infrared radiation causing an increase of Earth’s

temperature. This phenomenom is responsible for various environmental problems like the

rise of water-level in sea, the increasing number of ocean storms, floods, etc.

Over the past century, CO2 level in the atmosphere has increased more than 39% from 280

ppm during pre-industrial time to the record level of 406 ppm in the Spring 2016, with an

Page 36: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

2

increase of global surface temperature of about 0.8 Cº. The concencration is expected to rise,

growing to as much as 600-1550 ppm, bringing disastrous consequences.

To solve this problem, one of the solutions is CO2 capture and storage (CCS). CCS is a process

consisting on the separation of CO2 from industrial and energy-related sources, transport to a

storage location and long-term isolation from the atmosphere.

When thinking about a technology for capture CO2, three factors are crucial for its

development in industry; efficiency, cost, and level of contamination. Unfortunately, most of

the investigated technologies have deficiencies in some of these factors but recently there are

new researches which bring some hope in these aspects. In terms of effiency new reactions are

being developed, bringing for example higher rates of reaction. When talking about cost new

models of Air Separation Unit (an essential element in some technologies) are being designed

with much lower costs, and also, related with level of contamination, new environmentally

friendly catalysts are being tested.

In the early 2000s, CCS emerged as a promising option to contribute to global warming

mitigation. Within a few years, from 1996 to 2004, four industrial-scale projects were initiated,

leading to an optimistic perpective about the speed and short-term impact of CCS technology.

However, that pace of deployment of new project has slowed. Although government and

private-sector investments continue to build a strong and broad foundation for it, similar

progress has not been made in the legal, social and financial dimensions of CCS.

Once we have captured CO2, we have two options; recycling it or storage it. Storage of the CO2

is envisaged either in deep geological formations, or in the form of mineral carbonates. Deep

ocean storage is not currently considered feasible due to the associated effect of ocean

acidification. Geological formations are currently considered the most promising

sequestration sites. The National Energy Technology Laboratory (NETL) reported that North

America has enough storage capacity for more than 900 years worth of carbon dioxide at

current production rates. A general problem is that long term predictions about submarine or

underground storage security are very difficult and uncertain, and there is still the risk that

CO2 might leak into the atmosphere.

Besides CO2 storage, CO2 utilization may also offer a response to mitigate CO2 in the

atmoshphere in the near to medium term, but is usually considered a different technological

category from CCS. In this category, the promising technology Bio CCS Algal Synthesis is under

deveploment but has attracted a great attention. It uses CO2 from sources like coal-fired power

station as a useful feedstock input to the production of oil-rich algae in solar membranes to

produce oil for plastics and transport fuel (including aviation fuel), and nutritious stock-feed

for farm animal production. Another potentially useful way of dealing with industrial sources

of CO2 is to convert it into hydrocarbons where it can be stored or reused as fuel or to make

plastics.

Page 37: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

3

1.2 Objetive of this work

This work will present a summary of the actual technologies for CO2 capture, wich lead to

mitigate the growth of CO2, and the most promising options of storage it. I will focus on the

concept, advantages and disadvantages of these technologies.

The main objective of this project is to know and understand the CO2 capture technologies in

deveploment, and trying to analyze the operation feasibility in the power plants. I particulary

took this work because I consider that nowadays people only think in renewable energies when

talking about mitigate climate change. Most of them don’t know about CCS, and in my

opinion, that’s one of the key issues of CCS to be solved, in order to implement and develop it,

firstly society has to know, understand and be concerned about it.

Page 38: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

4

2 PRECEDENT

Since CCS is gaining more and more importance, the number of publications related to it has

increased at the same time. Also, several institutions were founded to address the CCS topic,

giving continuous publications with a scientific and politic view of the issue. Among them

there are two international relevant institutions:

• The Intergovernmental Panel on Climate Change is the leading international body for

the assesstment of climate change and thus CCS. It was established by the United

Nations Environment Programme (UNEP) in 1988 to provide the world a clear

scientific view on the current state of climate change, its potential impacts and the

options for mitigate it.

• The Global CCS Institute was established in 2009, by the Australian Govenment. It is

an international membership organization, whose mission is to accelerate the

development, demonstration and deployment of CCS. It is the most active CCS

institution, with the largest number of publications, with special importance of the

Global Status of CCS annual publication.

In a regional level, there are two big institution with publications about CCS.

• US Agency of Energy: This National US Agency carries out research and development

activities about CCS, publicating many works per year which are of great importance

for the scientific community.

• Joint Research Centre, European Comission: Its mission is to support EU policies, and

it has a key player in the research on CCS with an investmen in knowledge and

innovation foreseen by Horizon 2020. Their workshops about CCS are the main

reference in Europe.

At the same time, the scientific community has also a great interest in CCS. The number of

publications has rapidly increased through the years, as it can be seen in the next figure.

Page 39: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

5

Figure 11. Number of CCS related publications from 1970 to 2012.

On the side of the projects and numbers of CO2 capture technogies applied, the rapid increase

is also a fact. The first technologies to be implanted were related with post-combustion

capture, specifically amine absorption and oxyfuel combustion. In Europe, the german

company “The Linde Group Company’’ is the leader in the application of this technologies, with

many projects from oxyfuel combustion to amine based CO2 capture.

The CCS technology is proven and in use around the world from 2010 to end of 2017. The

number of operational large-scale projects is set to rise from 10 to more than 20. Nowadays

there are 22 large-scale projects in operation or under construction globally. The combined

CO2 capacity of these 22 projects is around 40 million tonnes per annum. To have a detailed

vision of how the capacity has increased, the following figure represents how the capacity of

CCS proyects have progessed.

Figure 12. Progress of CCS projects capacity from 2012 to 2020

Page 40: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

6

Page 41: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

7

3 OPTIONS FOR CO2 CAPTURE

Several technological options are available for separating CO2 from a gas stream. The optimal

choice depends on the type of source, cost, and the ease of deployment. In particular, this

choice depends on CO2 composition in gas, which ranges from 3-4% for natural gas turbines

to 10-15% for pulverized coal plants and up to 40-60% for integrated gasification combined

cycle (IGCC) plants.

In order to apply the best technology, the most important factor is the energy required for CO2

capture. The minimum energy required, from a thermodynamic perspective, depends on the

concentration of CO2 and ranges from 3-6kJ/mol CO2 for coal plants to 7-9 kJ/mol CO2 for a

natural gas plant. The fact is that in practice the total energy penaly is much greater, about 5

to 10 times the minimum energy requirement. Compression of CO2 to be storage-ready at

approximately 150 bar represenst a significant cost too.

Depending upon different plant configurations, CO2 emissions from thermal power plant flue

gas can be reduced by using one of the following methods:

• Pre-combustion capture

• Post-combustion capture

• Oxyfuel combustión

Figure 13. Options for CCS capture.

Page 42: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

8

3.1 Pre-combustion capture

3.1.1 Concept

This technology refers to removing CO2 from fossil fuels before the combustion is completed.

To begin, the fossil fuel is gasified with oxygen at elevated pressures typically in the range of

30-70 atm to produce syngas predominantly CO and H2 and mainly free from other pollutant

gases. Thereafter, steam is added to syngas and passed through the bed packed with catalysts,

onto which water gas shift reaction takes place that convert CO in CO2 through this reaction:

CO2+H2 O↔H2+CO2. The separation process normally uses a physical solvent such as rectisol

or selexol, which are available at low cost.

From CO2 and H2 bearing steam, CO2 is separated and sent to the compression unit and pure

H2 is further used as an input to a combined cycle to produce electricity. Another option is to

use the H2 to power cells, raising the overall plant efficiency. In future, H2 could also be used

as a transportation fuel. The integration of this technology in Integrated Gasification

Combined Cycle (IGCC) is being a tendency due to the easy integration and low penalty loss

of the process.

Another line for pre-combustion process is the use of natural gas instead of coal. This natural

gas mainly contains CH4 and can be reformed to syngas containing H2 and CO. Natural gas

also contains Hydrogen Sulfide (H2S) which has to be removed too. After, the content of H2

can be increased by the water gas shift reaction and by dissociating H2S and the rest of the

process is similar to that described above for coal. Using natural gas, a CO2 capture efficiency

of 80% can be obtained.

The following figure gives an idea of the general process.

Figure 14. Diagram of pre-combustion capture.

Page 43: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

9

For coal-fired it has a thermal efficiency (% LHV) of 31,5, and for gas-fired plants 41,5. As

expected, a higher 𝐶𝑂2 concentration enhance sorption efficiency.

The costs for conventional coal plants range from 29 €/tn of 𝐶𝑂2 (for an advanced design

concept) to 50 €/tn of 𝐶𝑂2. The capital costs are 1820 $ per kW produced for coal-fired plants

and 1180 $ per kW produced in gas-fired plants.

3.1.2 Advantages & Disadvantages

There are 5 main advantages regarding this techonolgy:

1. High concentration of 𝐶𝑂2 in the syngas enhance sorption efficiency.

2. Utilization of physical solvent which are available at low cost and require low energy

for regeneration.

3. Separation of H2 for different uses, like power cells or fuel. Its expected to be demanded

in the future.

4. Developed technology, commercially deployed at the required scale in some industrial

sectors.

5. Oportunity for retrofit to existing plant.

However, there it has many disadvantanges which lead to investigate other options for 𝐶𝑂2

capture. These are:

1. Non-gaseous feed stocks.

2. Requirement of the cleaned gas stream, considerably raising the capital costs.

3. NOx emission control.

4. High parasitic power requirement for sorbent regeneration.

5. Bad experience due to the plants currently operating in the market.

Finally, figure 15 shows a pre-combustion CO2 capture plant. It is a gasification plant in

United States which separates 3.3 Mt of CO2 per year.

Figure 15. Gasification plant in USA.

Page 44: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

10

3.2 Post-combustion capture

3.2.1 Concept

Post-combustion capture involves removal of 𝐶𝑂2 from flue gas, which comes from the

thermal power plant combustion chamber. Regarding this technology, there are different

technologies for 𝐶𝑂2 capture:

• Absorption.

• Adsorption.

• Membranes: Ionic Liquid Membranes & Mixed Matrix Membranes.

• Enzyme based separation.

• Hydrate based separation.

• Calcium looping.

The main issue to be solved in post-combustion capture is the parasitic load. Since the CO2

level in combustion flue gas is normally low (7-14% for coal-fired plants and 4% for gas-fired),

the energy penalty and associated costs for the capture unit to reach the CO2 concentration

of 95% are elevated.

Post-combustion capture is the main line of deveploment, because of its big ease of expansion

and multiple forms that can fit with serval conditions. For each one of the post-combustion

technologies, I will make a brief summary of the most important aspects in the section

number 5.

3.3 Oxyfuel combustion

3.3.1 Concept

It is a technology that consists in modifying the combustion process so that the flue gas has

high concentration of CO2 (>95%) for easy separation.

In this process, fuel is burned in combustion chamber in the enviroment of pure O2 mixed

with recycled flue gas (RFG). A criogenic air separation unit is used to supply high purity

oxigen. This O2 is mixed with RFG because currently available materials of construction

cannot withstand at elevated temperatures resulting from coal combustion in pure oxygen.

Flue gas stream from this system contains mainly CO2 and H2O wich are easy and cheap to

remove.

The CO2 content of the flue gas varies in the range of 70-95% and the cost per tn of CO2

removed is around 36$/tn of CO2 for coal fired plants and 102$/tn of CO2 for gas fired plants.

The major units for oxyfuel combustion for power generation are the following;

• Air Separation Unit: For oxygen production.

• Boiler or Gas Turbine: For combustion of fuel & generation of heat.

Page 45: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

11

• Flue Gas Processing Unit: Flue gas cleaning or gas quality control system.

• CO2 processing Unit: Final purification of CO2 for transport & storage.

Figure 16. Diagram of oxyfuel combustion.

3.3.2 Advantages & Disadvantages

Talking abour advantages, the most significant are:

1. 60-70% NOx emission is reduced compared to air-fired combustion.

2. Less CO2 compression energy is required than conventionals methods because it has

potential to be operated at high pressure.

3. It can be used in the cement industry, which gives more economic potential.

Regarding the disadvantages, these are the most important:

1. The material of construction can not withstand at the high temperatures needed.

Currently this is one of the principal issues about oxyfuel combustion, and the available

materials are very expensive.

2. The auxiliary power consumption of a cryogenic air separation unit is high and has a

major impact on the overall efficiency of the power plant.

3. High efficiency drop and energy penalty

Page 46: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

12

Page 47: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

13

4 TECHNOLOGIES FOR POST-COMBUSTION

CAPTURE

As I mentioned above, there are different technologies for post-combustion 𝐶𝑂2 capture. Some

are emerging and being tested in laboratories as new and promising solutions and some others

have been implemented for a while. The following list represents the technologies, which from

all, membranes and calcium looping capture are the most remarkable

4.1 Absorption process

4.1.1 Concept

It is based in the reaction between the CO2 and a liquid chemical solvent, normally an amine.

Flue gas stream containing CO2 is introduced from the bottom of the column that leads

counter current contact between flue gas and solvent and selective absorption of CO2 takes

place. Then CO2 rich stream is fed to the regenerator, where desorption of CO2 occurs and the

sorbent is regenerated by heating and depressurization, for further use. Desorbed CO2 is

compressed and sent to storage.

Figure 17. Diagram of absprtion CO2 capture process.

Chemical absorption holds good results in terms of removal efficiency using MEA amine, with

a CO2 recovery of 90-98% and an energy requirement of 4-6 MJ/kg CO2. The cost is quite

elevated (52$/tn of CO2).

Recently blends of alkanolamines are preferred for absorption of CO2. The process involves

passing of gaseous CO2 through an amine solution until equilibrium is reached. The reaction

of CO2 with aqueous amine is as follows:

Page 48: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

14

1. CO2+R1+R2NH ↔ R1 R2N𝐶𝑂𝑂− + 𝐻+ Carbamate formation

2. R1R2NH + 𝐻+ ↔ R1 R2N𝐻2+ Protonated alkanolamine formation

The ecuations above represents the following steps:

• Dissolution of the gaseous CO2:

Initially, diffusion of CO2 occurs from gas to liquid phase. It’s a purely physical step and must

occur prior to further reaction of CO2 in the liquid phase.

• Formation of bicarbonate and carbonate:

The amine behaves like a base and reacts with carbonic acid formed in the previous step, with

a CO2 to amine ratio of unity, forming bicarbonate, which also exists in equilibrium with

carbonate and carbonic acid.

The second reaction is the carbamate formation. This occurs at a CO2 amine ratio of 0.5, which

means one molecule of CO2 is absorbed by two molecules of amine. The low CO2 to amine

ratio results in a lower efficiency and lower CO2 capacity than that for the acid path. Another

bad point of this reaction is the high enthalpy of reaction. This means that reversing this

reaction in the stripper requires the addition of large amount of energy, making the entire

process energy intensive Costly

Figure 18. CO2 absoprtion mechanism.

Page 49: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

15

4.1.2 Advantages & Disadvantages

Through the time, it has been revealed that this technology has more disadvantages than

advantages, making it less interesting for companies.

Advantages:

1. Suitable for retrofitting of the existing power plants.

2. Low solvent cost.

3. Most reliable option for CO2 capture.

Disadvantages:

1. Low CO2 loading capacity (0,5 mol CO2/mol amine)

2. High equipment corrosion rate.

3. High amine degradation.

4. High energy consumption during high temperatures absorbent regeneration.

In order to show how these plants are, the following image shows a post-combustion plant

in Malasia which uses absorption to separate o.2 Mt/year of CO2 from an electric power

plant.

Figure 19. Absorption CO2 capture plant in Malasia.

Page 50: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

16

4.2 Adsorption process

4.2.1 Concept

A packed column is mainly filled by spherical adsorbent and CO2 bearing steam is passed

through the column. CO2 is attracted towards the adsorbent and adheres on the surface of

adsorbent. After achieving the equilibrium, desorption takes place to get CO2 in pure form

and regenerated adsorbent can be utilized for further cycle. The adsorption process can be

carry out in different manners as I will describe.

• Pressure swing adsorption (PSA): In this process, the gas mixture flows through a bed

at elevated pressure and temperature until the adsorption of CO2 approaches to

equilibrium conditions at the exit of bed. The beds are then regenerated by stopping

the flow of the feed mixture, reducing the pressure and elutriating the adsorbed

constituents with a gas having low adsorptivity. Once regenerated, the beds are ready

for another adsorption cycle.

• Temperature swing adsorption (TSA). Firstly, the flue gas is passed over the bed. Then

selective adsorption takes place on the adsorbent until equilibrium is reached. The

desorption of gas can be done at elevated temperature by supplying additional heat.

This additional supply of heat makes this process costly.

• Electrical swing adsorption (ESA). The difference with other methods is that low voltage

electric current is passed through the adsorbent. This method has the potential to

reduce cost of CO2 capture, thus becoming more cost-effective than TSA and PSA.

In terms of efficiency, it is not as good as the other options. The CO2 recovery is around 80-

95% but it has an energy requirement of 2-3 MJ/kg CO2, with the cost around 80-150$/tn of

CO2.

It is a mature technology because solid adsorbents have been extensively used for gas

separation. The use of residues from industrial and agricultural operations to develop sorbents

for CO2 capture, has attracted significant attention to reduce the total costs of capture.

4.2.2 Advantages & Disadvantages

Advantages:

1. It has no by-product such wastewater (as it has in absorption).

2. It requires low energy compared to cryogenic and absorption.

Disadvantages:

1. Low selectivity and capacity of available adsorbent for CO2.

2. Lower removal capacity as compared to other technologies.

3. Regeneration and reusability of adsorbent.

4. Elevated pressures.

Page 51: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

17

4.3 Ionic liquid membranes

4.3.1 Concept

Nowdays, membrane separation is considered an emerging technology, with the potentital to

be more environmentally friendly and energy saving, but its not as mature as compared to the

currently technology, for example the amine absorption, wich occupies the 90% of the market,

while membranes only the 10% mainly in the natural gas sweetening and biogas upgrading

processes.

The main issue in membrane separation is the cost of separation and the operation in real scale

plants, due to the limited membrane separation performance when using conventional

membrane materials. In order to solve this problem, innovative membranes are one of the

promising alternatives to meet the challenges, providing high CO2 permeance and selectivity.

Only then will membrane become economically competive.

Before talking about the two major membrane tecnologies, Ionic liquid Membranes and

Mixmed Matrix Membranes, it is necessary a brief explanation of the two types of membrane,

the gas separation membrane and gas absorption membrane:

• Gas separation membrane: In this process the gas stream containing CO2 is introduced

at elevated pressure into the membrane separator wich consists typically in a large

number of hollow cylindrical membranes arranged in parallel. CO2 selectively

permeates through membrane and is recovered at reduced pressure on the shell side of

the separator as it is indicated in the next figure. Mixed matrix membranes are a

example of this membrane process.

FIgure 20. Principle of gas separation membrane.

Page 52: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

18

• Gas absorption membrane: It consists of micro porous solid membrane which is used

as contacting device between the gas and liquid flow. CO2 is diffused through

membrane and then is recovered by liquid sorbent by absorption. This process gives

higher removal rate than gas separation membrane due to high driving force at any

instant. Ionic liquid membranes are the best example for this membrane process.

One of the promising alternatives is the Ionic Liquid Membranes. An Ionic liquid (IL) is a salt

with an organic cation and an inorganic or organic anion. Ils have great properties such as high

CO2 solubility, low volatility and designable structure to adjust chemical/physical propierties,

which in combination increase the performance of the membrane.

The following image shows the commonly used anions and cations.

Figure 22. Commonly used anions and cations.

Figure 21. Principle of gas absoprtion membrane.

Page 53: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

19

Among the differents types of IL membranes (Poly ionic (PIL), Homo-PIL, Room Temperature

Il), and the Functionalized IL-based SILMs (Supported IL Membrane), the last one is the most

interesting.

In this membrane, a facilitated transport mechanism is also normally involved for gas

transportation. Firstly, the CO2 molecules that dissolve on the feed side can reversible react

with the facilited transport carrier (normally amino groups in TSILs), forming CO2 complexes

(bicarbonates and carbonates). Then these complexes diffuse through the membrane and

eventually CO2 is dissociated and released on the permeate side of the membrane. In this

process, it has been noted that water is needed when using amines in the IL membranes as a

facilitated transport.

However, this kind of membrane shows moderate enhancement in permeability/selectivity at

high temperatures.

Figure 23. Ilustration of facilited transport of CO2 in a membrane.

4.3.2 Advantages & Disadvantages

Advantages

1. High interfacial area per unit volume for mass transfer, especially for hollow fiber supported membranes

2. Low solvent holding (An expensive but effective liquid can be used).

3. More efficient in application over other liquid membrane techniques.

4. The combinations of cations and anions lake possible to design Ils with desired properties.

5. Simplicity in concept and operation.

Page 54: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

20

6. Low energy consumption.

7. Environmentally friendly.

Disadvantages:

1. Cost of separation higher than absorption due to the limited membrane separation capacity.

2. Over time the liquid phase evaporates or is pushed out of the membrane pores.

3. The ionic liquid is expensive.

4.4 Mixed matrix membranes (MMM)

4.4.1 Concept

Many factors have a crucial impact on gas separation membrane’s performance, but among

others membrane material and structures have the strongest effect on membrane

performance. This is what MMM plays with, in order to achieve the best membrane

composition. The materials often used have distinct propierties such as

• Different chemical structure.

• Containing a separating layer made of a continuous phase (usually a polymer).

• Embedding a second dispersed phase.

• Different selectivity and permeation flux.

Normally they are made by the implementation of inorganic material (molecular sieves) into

polymer matrices. Its efficiency is quite good, but improvements are still needed to implement

them in the industry scale.

Firstly, MMM were made all of molecular sieves. Molecular sieve membranes provide

considerable discrimination based on the size or shape of gas molecules by letting some of the

component gases to preferentially pass through, that’s why they are good for gas separation.

The properties of molecular sieve membranes such as high thermal and chemical stability,

high mechanical strength as well as their high separation performances, make them

excepcionally good for harsh operational conditions, which are the normal conditions in a

power plant. However fabricating molecular sieve membranes of large surface areas for

commercial explotation is laborious and costly.

Later academic investigators used organic polymers as asymmetric nonporous membranes

that offer many of the desired properties, including low operation cost. A drawback of this

material is that due to the trade-off relationship between selectivities and permeability, it

makes polymeric membranes undergo an upper bound limitation (different for various binary

Page 55: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

21

gas pairs) as it is shown in the next figure. This upper bound for various binary gas pairs was

first suggested by Robenson in 1991.

Figure 24. Robenson upper bound correlation for CO2 CH4 separation.

4.4.2 Advantages & Disadvantages

They are similar than ILs membranes, but if we apply an IL in a MMM, the increase of the

advantages is remarkable. These advangages are:

1. High mechanical strength.

2. High separation performances.

3. Simplicity in concept and operation. Modular design and ease of scale up.

4. Low energy consumption.

5. Environmentally friendly.

The main diference in the disadvantages is the fabrication process, because fabricating large

surface areas for commercial explotation is laborious and costly. In addition, the difficulty to

prepare a defect-free membrane is very high.

Page 56: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

22

4.5 Enzyme based separation

4.5.1 Concept

In this process, CO2 is removed from gas by naturally occurring reaction of CO2 in living

organism (enzyme). The use of carbonic anhydrase (CA) as an enzyme, in a hollow fiber with

liquid membrane has demonstrated the potential for 90% CO2 capture.

This process has been shown a little heat of absoption that reduces the energy penalty typically

associated with absorption processes. If it is optimized, it could be the best candidate to

replace current methods of CO2 capture. As an example of its performance, CA has the ability

to catalyse the hydration of 600,000 molecules of CO2 per molecule of CA per second. This

fast turnover rate minimizes the amount of enzyme required. Finally, the process must

incorporate a mechanism by which CO2 can be released from the system as a concentrated

stream, by pressure-swing desorption solid carbonate precipitation or some other means.

In 2016, Sandia National Laboratories have patented one process using CA. Its product is called

Memzyme. It has this name because it membrane’s active layer has the CA enzyme dissolved

in water. A very high efficiency was reached, making the selectivity of this membranes 10 times

more than current membranes, and a super-high flux, 100 times more than current

membranes. Also, it can withstand high temperatures typically from power plants flues.

Despite these charasteristics, it is surprising that the fabrication process is simple, and its

estimated that they could reach a cost 40$/tn CO2.

Figure 25. Memzyme operation diagram.

4.5.2 Advantages & Disadvantages

Advantages:

1 Small amount of enzyme required and life around 6 months

2 No toxic chemical is used.

3 No extra energy is used in the process.

Page 57: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

23

4 It can stand under high temperatures when placed in a power plant.

5 Highly adaptable for separating other gases. For example, methane from a mixture of gases.

The main disadvantage is the doubts of how it will behave in real industry processes, because

there is still no simulation in an industrial scale. It has also been noticed deficiencies related

to the surface loss of enzyme activity and the key role of watter in the pores, which makes the

fabrication process more difficult.

4.6 Hydrate based separation

4.6.1 Concept

Gas hydrates are crystalline composed of water and gas under suitable conditions of low

temperature and high pressure. Hydrates have the capacity to store large amount and to

separate gas mixture, thus this technology has attracted the attention for capturing CO2.

The fed gas is exposed to water under pressure to form hydrate, which capture CO2. The

hydrate is then separated and dissociated by releasing CO2 in pure form. The water has

additives like TBAB or TBAF are used to reduce the operating pressure and enhance the kinetic

rate. Also, these two additives are much more environmentally friendly than the current used

additive, THF.

The theoretical CO2 storage capacity for stoichiometric TBAB semiclathrate is 193 mg of CO2/g

of water. Giving another example of the storage capacity, upon dissociation, one volume of

CO2 hydrates can release 175 volumes of CO2 gas at standar temperature and pressure

conditions, making it usefull for CO2 separation. The efficiency of the process is driven by the

difference in the operation temperature or pressure from equilibrium condition. It is verified

that the process makes it possible to recover more than 99% of CO2 from flue gas.

Finally, it has been tested that the presence of surfactants like sodium dodecyl sulphate (SDS)

can effectively improve the hydration kinetics by reducing the water surface tension. It

improves the gas diffusion through the gas/water and gas/hydrates interfaces, leading to

enhanced inward and outward growth of hydrates as shown in figure 26.

Page 58: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

24

Figure 26. Formation of hydrates.

4.6.2 Advantages & Disadvantages

This technology has three main advantages:

1 Big storage capacity.

2 Less energy consumption than other alternatives.

3 Its capability for continuous operation, which allows large scale treatment (with the

potential to achieve 8 000 ton/day CO2).

Nevertheless, there are some important disadvantages that make this technology still not

ready to be implanted in real scale industry.

1 The current used additive contaminant the environment.

2 The hydrate formation rate is low, but with TBAB it has significantly increased.

3 Large energy penalty, 15.8%. Much higher than conventional technologies such as

amine absorption with a energy penalty of 7-10%.

4 High pressure operating condition.

4.7 Calcium looping CO2 capture

4.7.1 Concept

Since this technology will be more detailed in the next pages with a simulation case, I will give

a deeper introduction and focus more on this technology.

This technology utilizes the reversible reaction between CaO and CO2 to form calcium

carbonate in calcium looping cycle. There are two reactors, carbonator and calciner:

• Carbonator: Here is where the primary fuel combustion takes place. Temperature is

in the range of 650-700º depending on pressure of the system. CaO reacts with CO2

achieving in-situ CO2 capture throught this reaction:

𝐶𝑎𝑂(𝑠) + 𝐶𝑂2(𝑔) → 𝐶𝑎𝐶𝑂3(𝑠)

Page 59: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

25

• Calcinator: In this reactor 𝐶𝑎𝐶𝑂3 is regenerated into 𝐶𝑎𝑂 by burning a secondary fuel

such as petroleum coke. 𝐶𝑎𝐶𝑂3(𝑠) → 𝐶𝑎𝑂(𝑠) + 𝐶𝑂2(𝑔) . Once the CO2 is separated,

it is compresed and send to storage or utilization.

Figure 27. Diagram of calcium loopin CO2 capture.

The technology is quite investigated and well known, but there is still further investigation

needed. There are some implementations in real-scale plants. It needs some technical

improvements and to be more mature in the commercial scale to reduce costs. Some solutions

to reduce costs are the use of natural gas instead of coal in the calciner and selling the waste

sorbent for use in cement industry.

When talking about effiency, we can say it has good efficiency. Overall CO2 capture

efficiencies in the combustor-carbonator higher than 90% can be achieved with sufficiently

high solids circulation rates of CaO and solids inventories. The sorption capacity is very

high when compared to other processes. Under ideal conditions, the sorption capacities of

monoethanolamine MEA, silica gel and activated carbon are 60, 13.2 and 88 g of CO2/kg of

sorbent respectively.

In addition, there will be modest efficiency penalties and opportunities for a high degree

of integration in the combustion plant (for example, at atmospheric pressure the heat

required for calcination at temperatures over 900 ºC is recovered in the carbonation step

at 650 ºC).

4.7.2 Advantages & Disadvantages

In my opinion, and that’s why I’m focusing more in this technology, it has several significative

advantages that makes it attractive to be implanted in an industry-scale.

1. The sorbent (limestone) is cheap and available in the market.

2. Cost of 105$/ tn of CO2 (including transport and storage).

Page 60: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

26

3. The heat released from exothermic carbonization can be used to run steam cycle.

4. The reaction rates are sufficiently high even at low temperatures, to allow compact

reactor designs for the carbonator.

However, there are some disadvantages which need to be overcome. The two major

disadvantages are the elevated cost (especially the one associate to the air separation unit) and

the need of heat supply to the calciner.

4.8 Summary made in Excel of the CO2 capture processes

The following document attached is a table which resumes all the principal capture processes

in the market. The strucutre of the table is simple, so anyone with a quick look at it can have

an idea of how CO2 capture is clasified and the main propierties of the technologies.

Right after the table, an enumeration is presented with the bibliography of the main data of

the table .

Page 61: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

27

Table 1. Table of CO2 capture technologies.

Page 62: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

28

Page 63: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

29

5 MODEL

5.1 Introduction

In this chapter, I will model a calcium looping system with two reactors, the carbonator and

calcinator. I will follow the model published by Matteo C.Romano in the page 268 of the

publication ‘’Modeling the carbonator of a Ca-looping process for CO2 capture from power plant

flue gas’’, published in 2012 in the Chemical engineering Science (69) 257-269. I particularly

chose the calcium looping process because it has a big potential to be developed and became

a widely implanted option for CCS. Although it is still no developed in the industrial scale, it

has an enormous potential and different ways to optimize it, such as the implantation in the

cement industry, or the one-reactor model where both combustions take place in one reactor.

The goal of this algorithm is to calculate the required amount of mass in the process in order

to achieve an efficiency of CO2 capture of 90%. The mass obtained is the optimal for this

problem. Calculate the mass of solids is crucial for understand the problem and to give an idea

of its operation, because from this resoults, other crucial parameters can be calculated and

then, give an estimation of the direct & indirect costs.

The illustration of our problem is as it is shown in the figure 28.

Figure 28. Diagram of calcium looping CO2 capture.

Now, a diagram of the algorithm is presented. It represents, in a a schematic form, how the

algorith works.

Page 64: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

30

Page 65: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

31

5.2 Description of the model

Equations

• Chemical reactions in carbonator:

CaO(s) + CO2(g) ↔ CaCO3(s) ∆𝐻 = −178 𝐾𝐽/𝑚𝑜𝑙

CaO(s) + S𝑂2(g) + 1/2𝑂2(g) ⇔ CaC𝑂4(s)

• Chemical ractions in calcinator:

CaCO3(s) ↔ CaO(s) + CO2(g) ∆𝐻 = −178 𝐾𝐽/𝑚𝑜𝑙

C (s)+𝑂2(𝑔) →C𝑂2(g)

• Article’s equations:

This model is based fundamentally in 9 equations which are the following, numbered like in

the article used in the model.

Page 66: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

32

(5)

(36)

(37)

(40)

(45)

(46)

(28)

(29)

(39)

It was proposed by Grasa and Abanades (2006) to

express the sorbent capacity after a large number of

complete carbonation-calcination cycles.

Proposed by Rodríquez et al. (2010) express the fraction

𝑟𝑁𝑎𝑔𝑒 of particle which have experienced 𝑁𝑎𝑔𝑒 of

complete cycles as function of the actual 𝑓𝑐𝑎𝑟𝑏 and 𝑓𝑐𝑎𝑙𝑐

Represents the average máximum conversión of the

sorbent 𝑋𝑚𝑎𝑥,𝑎𝑣𝑒 .

Formulated to calculate the average fraction of sorbent

sulfated at each cycle.

Ecuation to calculate 𝑓𝑐𝑎𝑟𝑏 based in the terms above.

𝑛𝑠,𝑎 represents the moles of Ca and CaC𝑂3 in the

circulating fluidized bed.

Molar fraction of CaS𝑂4.

Molar fraction of ash.

Molar fraction of CaCO3

Page 67: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

33

Now i will explain how the code works. The objective of the model is to calculate the total

amount of limestone mass (CaCO3) and the CaO needed to achieve a desired efficiency of 90%.

The first part of the code is to calculate the value of the average carbonation level, 𝑓𝑐𝑎𝑟𝑏,

applying an iterative calculation solving the equations (5), (36), (37), (40) and (45). We initiate

the variable 𝑓𝑐𝑎𝑟𝑏 with a value of 0,44 (44%) and we iterate, until we reach a value of

𝑓𝑐𝑎𝑟𝑏 which only a difference of 0,05.

Then we can assume it’s a good approximation. After that, we can calculate the sulfation level

ecuation (40), obtaining the new values of k and 𝑋𝑟 through the figure 29 that shows the %

variation of parameters k and 𝑋𝑟 with sulfation level.

Page 68: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

34

Figure 29. Variaton of parameters with sulfation level.

Right after, the parameters mentioned above are used in the equations (37), (5), (36) and (45)

to check if we calculated correctly fcarb, saving the new value in the variable fcarb_nueva.

Page 69: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

35

Once we calculated fcarb, we follow with the second part of the algorithm. Here we are going

to determinate the molar composition and mass of the solids in the carbonator. That’s the goal

of the algorithm publiced in the article, but I will go further with the calculation of the fuel

required to dissociate the CaCO3 and the total volume of O2 necessary for the combustion in

the calcinatory and the sulfation in the carbonator. So as I said, we calculate the solid inventory

in the carbonator considering a single 40 m reactor and a residence time (𝜏𝑎) of 38 s, as

indicated in the figure 30 to achieve a 90% of CO2 capture.

Figure 30. CO2 capture efficiency vs. active space time for 3 different reactor sizes.

From ecuation (46) we obtain the moles of CaO and CaCO3 in the carbonator,

and with equations (28), (29) and (39) we obtain the molar fraction of CaSO4, ash and CaCO3.

Finally calculating the molar fraction of CaCO3 with the following equation;

and the moles of total solids in the carbonator, we can

obtain the composition (mol/kg) of the solid inventory.

Page 70: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

36

Once we calculate the solid inventory in the carbonator, it’s time to calculate the additional

parameters that I consider important.

➢ Heat and carbon needed to dissociate the amount of CaCO3 in the calciner.

It’s crucial for our model, because with this parameter we can estimate how much

carbon and O2 is needed. We use the thermodynamic ecuation 𝑄 = 𝑚 ∙ 𝐶𝑝 ∙ ∆𝑇 , where

Q (J/s) is the incognit, m (kg) the amount of CaCO3 to burn, ∆𝑇 (K) the difference

between temperatures and 𝐶𝑝 (J/kg) the specific heat coefficient. The model also

calculates the heat produced in the carbonator through CaO(s) + CO2(g)

↔ CaCO3(s) ∆𝐻 = −178 𝐾𝐽/𝑚𝑜𝑙 , that could be used to minimize the amount of

coal needed in the calicinator and thus the costs too. One we know the amount of heat

Page 71: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

37

needed, we can calculate the amount of coal through this ecuation. 𝑄 = 𝑚𝑓𝑢𝑒𝑙 ∙ 𝐶𝑐

where 𝐶𝑐 (KJ/kg) is the calorific power.

➢ Oxygen needed to burn the CaCO3

Now we obtain the amount of O2 needed by a mass balance in calcinator and

carbonator.

➢ Impurities

This parameter is important because depending of how much impurities our fuel and

limestone have, the efficiency in the progess will be modified. We estimate a 10% of

impurities in our Spanish coal, and a 7,6 % of impurities in the limestone, as article [11]

suggests.

Page 72: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

38

5.3 Inputs & Outputs

➢ Inputs:

1. Mole flow of ash entering in the system through the carbon fuel. 𝐹𝑎𝑠ℎ= 0.016

kmol/s.

2. Mole flow of sulfur in the flue gas entering in the system. 𝐹𝑆 = 0.0096 kmol/s.

3. Mole flow of fresh makeup limestone 𝐹0 = 0.0256 kmol/s.

4. Mole flow of CaO cycling from the calciner to the carbonator 𝐹𝑟 = 19.2 kmol/s.

5. Efficiency = 0.9

6. Mole flow of CO2 in the flue gas entering the carbonator 𝐹𝐶𝑂2 = 1.28 kmol/s

(corresponding to 700 m³/s of flue gas with 14%vol. CO2, at 650 Cº and 1 bar).

7. k = 0.52. Deactivation constant proposed by Grasa and Abanades in 2006.

8. Xr = 0.075. Residual conversion proposed by Grasa and Abanades in 2006.

➢ Outputs:

From the original model

1. Average carbonation level in the carbonator, 𝑓𝑐𝑎𝑟𝑏 = 0.7.

2. Molar composition of the solids population in the carbonator.

• Total mol = 4982,215 mol.

• X_ash = 0.38461, corresponding with 1918,65 mol.

• X_CaSO4 = 0.230769 corresponding with 1145,9 mol.

• X_CaO = 0.3615 corresponding with 1801.07 mol.

• X_CaCO3 = 0.023077 corresponding with 114,5 mol

Additional outputs

1. Required heat in calcinator to dissociate the CaCO3 = 19733598 J

2. Required coal for combustion in calcinator = 697.117 g/s

3. O2 for calcinator = 126,56 mol/s and O2 for carbonator = 1.28 mol/s.

4. Total O2 volume = 2.85 m³/s.

5. Grams per second of CaCO3 impurities coming out from calcinator = 0,1945

g/s

6. Grams per second of ash coming out from calcinator = 139 g/s

7. Total amount of impurities coming out from calcinator = 139,1945

5.4 Economic study

5.4.1 Coal & Oxygen

After obtaining the value of the characteristics of our calcium looping system, a little economic

study will be presented, to give a brief understanding of how the parameters with major impact

in the models have it effects in the economic results. Finally, some improvements are shown

Page 73: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

39

and its possible benefits on this process, making it more economic feasible. The parameters I

will focus in this part are the coal and the Air Separation Unit, in order to give a sensitivity

analysis.

1. Coal: In Spain two types of coal are used. The first one is the Spanish coal, with its

origin in Asturias and León. Its calorific power is 14183950 kJ/kg and it cost no more

than 55 €/tn, thus resulting in a bad coal for combustion. The second coal in the model

it’s the South African coal. It is used to compute the model, has a calorific power of

28307,42 kJ/kg and a price of 70.07 €/tn. Its price and calorific power compared to the

Spanish coal makes the best candidate for the model.

2. Air Separation Unit (ASU): The ASU normally represents a considerable cost when

designing a calcium looping system or some process in which is required. The

technology is still no optimized, resulting in elevated costs to separate O2 from air.

Investigating prices for ASUs in the market, I finally estimated that for obtain 4644

Nm³/h, our ASU will cost 2,35 millions €, taking as a reference an ASU which cost 30

million €, with a capacity to separate 60.000 Nm³/h of oxygen.

Firstly, let’s see the differences of Spanish coal and South African coal for a desired efficiency

of 90%.

Table 1. Comparation of Spanish and South African coal.

As I mentioned above, Spanish coal makes this process much more expensive. In addition to

the increase of cost per gram of coal, we have to include the additional cost of the ASU due to

the increment of O2 needed to combust the higher amount of coal.

Now a sensitive analysis is presented. For a number of cycles between carbonator and

calcinator of 550, a table is presented showing the amount of carbon, cost, and O2 needed for

different efficiencies compararing Spanish and South African coal. We can see the cost increase

using Spanish coal, with a coal cost increase of 55% and a increase of O2 needed of 101,95%.

CARBON COST

Origin Price (€/g) Quantity (g/s) Cost (€/s) Cost (€/h)

South Africa 0.00007074 766.82 0.0542448 195.28145

Spain 0.000055 1530.638 0.0841851 303.06632

EFFICIENCY 0.9

Page 74: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

40

Table 2. Comparation of costs in both situations.

Here is attached the graphics related to the above table:

Figure 31. Spanish coal vs South African coal.

N=550 cycles Amount of coal Amount of coal (g/s) Cost(€/h) Cost(€/h) O2 O2

Origin South Africa Spain South Africa Spain South Africa Spain

600,12 1197,69 152,82896 237,14262 1,13 2,24 Average coal cost increase

641,8 1280,86 163,443355 253,61028 1,21 2,39 55%

683,47 1364,04 174,055204 270,07992 1,29 2,55 Average increase of O2

725,15 1447,21 184,6696 286,54758 1,37 2,7

766,62 1530,638 195,230516 303,066324 1,44 2,85

Sum 870,227634 1350,44672 6,44 12,73

Dif (Spanish-Affrican) 480,21909 6,29

Toal increase 1,55183158 1,97670807

Increase 0,55183158 0,97670807

0,7

0,75

0,8

0,85

0,9

Efficiency

97,60%

400

600

800

1000

1200

1400

1600

0,6 0,65 0,7 0,75 0,8 0,85 0,9 0,95

Co

al a

mo

un

t g/

s

Efficiency

Spanish coal amount VS South African

Amount of South Africancoal

Amount of Spanish coal

Page 75: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

41

Figure 32 O2 introduced depending of the efficiency.

5.4.2 Costs

• Direct capital costs

Direct capital costs are estimated for the carbonator, calcinatory and ASU. Equipment

cost are included in these concepts. Capital cost of carbonator is estimated based on

the cost of a CFB boiler, using the plant size the scaling variable. I take as reference the

data presented in [20], 4 million 2012 USD MW power plant.

Capital cost of calciner is estimated by [21] using the boiler for a 500 MW power plant,

which costed 151700 USD. This cost is lower that the carbonator because of its smaller

size and more simplicity.

Finally, capital costs of equipment are also based in equipment cost in [20], for a power

plant size of 550 MW. Here we can see how the impurities of our fuel and limestone is

an important factor, due to the Fue gas cleanup cost and Solid waste disposal control

cost

• Indirect capital costs

Indirect capital cost are calculated as percentages of direct capital costs. These

percentages are registered in [11]. The indirect capital cost include general facilities

(10%), engineering and home office fees (7%), project contingency (22%), process

contingency (21%), and royalty fees (5%). The project and process contingency cost

00,20,40,60,8

11,21,41,61,8

22,22,42,62,8

3

0,6 0,65 0,7 0,75 0,8 0,85 0,9 0,95

of

O2

Efficiency

O2 introduced

O2 (South African)

O2 (Spanish)

Page 76: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

42

factors are in accordance with standard guidelines for cost estimation of new

technologies.

• Operation & Management costs

Here it is included cost of fuel, make-up limestone, waste disposal (ash) and labor cost.

For the last one I supposed three rounds, with two people per round (this kind of

processes are automaticed) with an avaregage annual salary of 25000 €.

Here it is shown the tables for the cost above mentioned:

Table 3. Capital cost of the Ca-l model.

Table 4. Operation & Maintenance cost.

Page 77: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

43

5.5 Future trends

As calcium looping is an innovative and promising process for CO2 capture but yet a expensive

process, many deveploments are still required. Most of these are being studied and tested.

Among them, the most remarkable are the inclusion of this process in the cement industry,

the design of a three fluidised beds combustion system, and the recarbonation process.

a) Integrating calcum looping in the cement industry

After the power sector, cement industry is one of the industrial sectors with the highest GHG

emissions globally, accounting for over than 5% of CO2 emissions worldwide. More than half

of the total direct CO2 produced during the cement manufacture process originates from the

limestone calcination, while the remaining arises from the fuel combustion that is required for

the pyro-processing of raw meal to clinker.

Substantial effort has already been paid toward reducing the emissions in the cement industry

such as utilizing alternative fuels with high biogenic content, for example the Solid Recovered

Fuel (SRF), but they have reached the top of GHGs capture level. Therefore, CO2 capture for

storage (CCS) is being considered as alternative to be end-of-pipe options for achieving a

significant CO2 reduction. Some techniques have been tested but without results. However,

calcium looping process is a promising CO2 capture technology with a relatively small

reduction of the total energy efficiency.

There is a consensus that CaL process seems to be the most appropriate technology for CO2

capture in cement industry since:

• Cement industry is already familiar with the management (handling, storage, feeding,

etc.) of CaO-bearing materials.

• It has a low cost of fresh limestone that is required for the enhancement of the

circulating solids capture ability.

• It allows for potential utilization of the purge CaO for the cement production as it is

the chemically compatible with cement raw meal.

• There is room for recovery of the waste heat that is dissipated from the CO2 capture

unit.

The key idea in this intregation is to take advantage of one of the issues in the calcium looping

process. This problem is the degradation of the solvent particules due to the decrease of

porosity in each cycle. This degradated solvent can then be used as raw material in the cement

industry.

To resume the idea, the limestone coming from the quarry is firstly used as solvent and then

for the manufacture of the clinker.

Page 78: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

44

Figure 33. Integration of calcium looping in the cement industry.

b) Recarbonation process

M. Elena Diego improved the traditional Ca-looping CO2 capture system by adding a

recarbonator after the original carbonator. Inside the recarbonator, the sorbent particles from

the original carbonator react with a high concentration CO2 gas stream in order to improve

the CO2 carrying capacity of CaO par-ticles. The recarbonator operates at a temperature

around 750-800 C. The results show that the residual activity of the CaO sorbent among all the

cycles increases from 0.07 to 0.16,

Figure 34. Ca-L without recarbonator. Figure 35. Ca-L with recarbonator.

The research made by this scientific shows that the performance of the bench-mark coal-fired

plant integrated with the Ca-looping CO2 capture system with recarbonation process is better

than that of the benchmark coal-fired plant integrated with the traditional Ca-looping CO2

capture system without recarbonation process because the recarbonation process can enhance

the CO2 capture capability of CaO sorbent in the Ca-looping cycle. The net system efficient of

recarbonation is 34.3%, and the efficiency penalty is only 7.27% compared with the benchmark

coal-fired power plant without CO2 capture. In contrast with the original process, the

efficiency penalty of recarbonation process drops around 3.7 percentage points.

Page 79: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

45

c) Three fluidised beds combustion system

This new design consists in the regenerating the sorbent using three interconnected fluidised

bed reactors operating at different temperatures. The first fluidised bed reactor will work as a

high temperature fuel combustor, the second as a limestone calciner and the third as a lime

carbonator for CO2 capture. In comparison with other Calcium looping processes, there is no

need of air separation unit neither to perform the fuel combustion, nor to regenerate the

sorbent. Essentially, this process utilises a solid stream mainly comprised of CaO and fuel ashes

as energy carrier to carry out the sorbent calcination. The absence of air separation unit and

the appropriate energy integration makes this process an efficient one compared with the

original process.

It has been proven that the energy penalty of this new system is lower than the energy penalty

in an equivalent oxy-fired system mainly because no air separation unit is needed. The energy

has to be transferred to the steam cycle in several stages, but it is possible to design an

appropriate energy integration that allows high power generation efficiencies.

Figure 36. Ca-L with three fluidized beds.

5.6 Conclusions

Based in the model’s results and the research made, the Ca-L based CO2 process capture is

much expensive than conventional CO2 capture alternatives like MEA-based capture process.

Sypplying the calciner heat requires a big amount of oxycombusted coal in the calciner. Also,

the quantity of solids waste from this process is also significant, increasing the process cost.

Nevertheless, if the technology configuration were mature at a commercial scale, the process

contingency would be much smaller, around 5%, which would bring the capital cost similar,

or even lower than current CO2 capture alternatives. A mature process would also reduce

financial risks, with a lower cost of capital than a firs-of-a-kind project. Another way to improve

Page 80: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

46

the economic feasibility of this process is by selling the waste sorbet for industry as I mentioned

above, recirculating the heat originated in the carbonator or using natural gas instead of coal.

Only then, this technology could be feasible for the commercial development.

Page 81: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

47

6 STORAGE

6.1 Geological storage

Over the years, several options for CO2 storage have been assessed, including ex situ

mineralization, ocean storage in a dissolved or liquid form, reuse in chemical industry, and

sequestration in deep geological formations. Of these options, today only storage in geological

formations is considered to have the capacity, permanence, and environmental performance

necessary for CO2 storage at the gigatonne (Gt) scale needed to materially reduce CO2

emissions.

The subsurface is the Earth’s largest carbon reservoir, where the vast majority of the world’s

carbon is held in coals, oil, gas organic-rich shales and carbonate rocks. Geological storage of

CO2 has been a natural process in the Earth’s upper crust for hundreds of millions of years

Geological reservoirs worldwide have a potential storage capacity of 236 Gt of CO2, but there

is a technical potential of at least about 2000 Gt of CO2. Global CO2 emissions range from 29

to 44 GtCO2 (8–12 Gt) per year in 2020. These numbers suggest that this technology would be

a feasible solution to mitigate the amount of greenhouse gases in the atmosphere.

The minimum depth limit is 914m where CO2 has a liquid-like density in the range of 500 to

700kg/m3. It ensures high density, low viscosity and good fluidity, minimizing the storage

volume and easily flowing within pores or fractures in rock masses.

In addition to CO2 storage via trapping below a seal, CO2 may be retained through secondary

trapping mechanisms such as solubility, residual gas trapping, and mineral trapping. They act

over decadal to millennial timescales and thus increase storage security over time.

Figure 37. Shematic of the trapping mechanism and their evolution over a 10000-year period, expressed

as a percentage of the total trapping contribution.

Page 82: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

48

6.1.1 CO2 storage mechanisms in geological formations

• Storage of CO2 in deep saline aquifers

Deep aquifers are geologic layers of porous rock that are saturated with brine and are located

at 700-3000 m below ground level. Generally, such location's top is a layer of much less

permeable caprock. The capability of an aquifer to store CO2 is controlled by the depositional

environment, structure, stratigraphy and pressure/temperature conditions. Compared with

depleted oil and gas reservoirs, deep saline aquifers possess much larger storage capacities.

They can store about 10.000 billion tons of CO2.

In order to achieve an acceptable level of security and stability, the pumping of saline water

becomes a potential solution. This type of storage is the so-called CO2 storage with deep saline

water recovery (CO2-EWR). Through this technique, pumping water with low salinity, a

process for desalination to achieve drinking-water standards as wells as industrial or

agricultural water requirement.

• Enhanced oil recovery (EOR)

Storage of CO2 with enhanced industrial production has a great potential to enable large-scale

CO2 storage at reasonable cost since it can help to reduce CO2 emissions and enhance

industrial production at the same time.

When CO2 is turned into a supercritical fluid at about 73.8 bar pressure and 31.1 C, it is soluble

in oil. The resulting solution has lower viscosity and density than the parent oil, thus enabling

production of some of the oil in place from depleted reservoirs.

After that, the produced fluids are separated on a platform with CO2 recycled in situ. In

general, 1 t of CO2 injection facilitates the extraction of 1.5 t of oil.

A relatively high percentage (around 75%) of the injected CO2 is safely stored after production

is stopped due to chemical and physical processes.

• Enhanced coalbed methane technology (ECBM)

Methane is predominantly physically adsorbed to the large internal surface area of the micro-

pores in the coal. Because CO2 is adsorbed more strongly than methane, the injection of CO2

will result in expelling methane. This results in the production of methane at the same time as

Page 83: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

49

the injection of CO2. Also, coal beds are often located in the nearby of a current or future power

plants, so CO2 transportation cost can be reduced.

However, there is still not enough research about the reactivity of CO2 injected in the coal

under situ conditions.

Figure 38. Shematic of geological storage options.

• Mineralization of CO2

It is an important technology due to its scalability for small/medium scale emitters and

offers a non-monitoring and leakage free CO2 storage option, making it very accessible and

reducing the costs. It is based in the reaction of CO2 with rocks rich in magnesium/calcium

oxide of with appropriate industrial solid wastes to produce mineral carbonates.

CO2 mineralization can be divided into below mineralization (injection of CO2 into

geological formation) and above ground mineralization. In the last one, it is fixed with

calcium or magnesium oxide and the reactions are as it follows:

𝐶𝑂2 + 2𝑁𝑎𝑂𝐻 = 𝑁𝑎2 + 𝐻2𝑂

𝑁𝑎2𝐶𝑂3 + 𝐶𝑎(𝑂𝐻)2 = 𝐶𝑎𝐶𝑂3 2𝑁𝑎𝑂𝐻

In order to reduce costs and overcome low efficiency, recyclable solvents are proposed for

the CO2 capture. Solid waste residue (SWR) generated from the large-scale industrial

Page 84: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

50

processes such as coal-fired power plant, cement plant, oil shale industry, steel are

increasing annually. This industrial SWRs contain substantial alkali and alkali earth metal,

making feasible the mineralization of CO2.

Focusing now in the costs of mineralization, four types of ores are presented in order to

build a table which represent an approximation of how does the mineralization process

cost and how energy does it requires.

Table 5. Cost of mineralization and energy required.

6.1.2 Risk & Environmental impact

This issue is critical for the development of CCS, because if it is not solved, no storage

project could be launch and as consecuence, no capture project. The risks associeated with

the escapes of CO2 can be classified in two categories: global risks and local risks.

The global risks include the release of CO2 that can contribute to climate change if there is a

leakage of the CO2 stored to the atmosphere. In addition, if there is a CO2 leakage from the

storage formation, it can become into risks to humans, ecosystems and Groundwater,

representing local hazards, but fortunately according with technical models and the

experience of actual storage formations, the The fraction retained will be 99% in the next 1000

years.

Regarding with local risks, there are two scenearies in wich a leakage is possible. The first one

is when there are failures in the injection wells or ascending leaks in abandoned wells which

could create a sudden and rapid release of CO2. It is probable that this type of release is

detected promptly and be addressed through the use of techniques available in the present for

the containment of eruptions of wells. The risks related to this type of release mainly affect

workers who are in the vicinity of those leakages when it occurs, or to those who are called to

control the rash. Its is important to know that a concentration in air of CO2 more than 7% can

be deadly for humans.

Page 85: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

51

In the second scenario, leaks can occur through faults or fractures that have not been detected,

or by means of wells with losses in which surface filtration is more gradual and diffuse. In this

case, the hazards mainly affect drinking water aquifers and ecosystems in which CO2 is

accumulated in the area between the surface and the top of the water table. In this scenario,

there may also be acidification of soils and a displacement of oxygen in soils. Leakage routes

can be identified by various techniques and by the deposit characterization. Some possible

leakage’s rotues are shown in the next figure:

Figure 39. Possible escape routes and possible solutions for co2 injected into saline formations.

In this figure, we can see that all the escape routes are produced by the difference of pressures.

This difference ends in a movement of the gas through the rock, letting it escape. In order to

prevent and solve this, some solutions are presented, but most of them consists in re-inyecting

CO2 or cleaning the aquifers, always with the aim to reduce the CO2 pressure.

So, as i mentioned above, that difference of pressure and thus, difference of dense, produce a

movement of the CO2 under the cap rock. Since the CO2 (as it is shown in the next figure in

purple) is less dense than brine, it moves upwards through the aquifer, under the cap rock. At

the bottom of the injected CO2 plume, brine displaces the CO2. This leaves behind a trail of

trapped CO2 (purple purple). CO2 also dissolves in the brine, and this denser CO2-laden brine

(pale blue) sinks slowly through the aquifer.

Page 86: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

52

Figure 40. A shematic of CO2 movement after injection.

6.2 Industrial CO2 utilization

CO2 capture through industrial processes represent an effective and promising idea to mitigate

the CO2 problem. Among them, refrigeration systems, fire extinguishers, water treatment

processes, horticulture are remarkable, but the steel and cement industry are the ones that

most CO2 requires. For example, in the iron & steel industry, due to the calcium-silicate

content, many types of steel slag like EAF and BOF is produced. These slags have potential to

react with CO2 for production of cementitious material. The main reactions of dicalcium

silicate and tricalcium silicate are:

2(2𝐶𝑎𝑂 ∙ 𝑆𝑖𝑂2) + 𝐶𝑂2 + 3𝐻2𝑂 = 3𝐶𝑎𝑂 ∙ 2𝑆𝑖𝑂2 ∙ 3𝐻2𝑂 + 𝐶𝑎𝐶𝑂3

2(2𝐶𝑎𝑂 ∙ 𝑆𝑖𝑂2) + 3𝐶𝑂2 + 3𝐻2𝑂 = 3𝐶𝑎𝑂 ∙ 2𝑆𝑖𝑂2 ∙ 3𝐻2𝑂 + 3𝐶𝑎𝐶𝑂3

Amounts of stored CO2 increase with increasing time of carbonation curing. These processes

contribute strength development greater than that in ordinary Portland cement.

In the chemical field, CO2 can be used as a feedstock for chemical engineering. In the near

future, it could mitigate 700 megatons of CO2 per year. Furthermore, high purified CO2 can

be very used, because many high added value chemicals can be synthesized for the benefit of

a wide variety of sectors of the chemical industry. At high pressure and temperature, methane

can be synthesized by reaction with CO2 and H2 using metallic catalyst (Ni), while methanol

can be synthesized by reaction of CO2 and H2 using a metallic catalyst (like copper or Al2O3).

Page 87: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

53

Another interesting applicatin in the thermochemical field s that methane with CO2 and H2

can be used to storage the solar energy. In the operating temperature of 800 Cº, the total energy

efficiency is about 70%.

6.2.1 Biofuel production from CO2

From converting CO2 to a biofuel, CO2 converts from a damaging greenhouse gas into a

valuable and renewable and nearly unlimited carbon source. Moreover, fossil fuels are

expected to disappear in the next centuries, so biofuels are becoming a priority worldwide.

There are some limitations and challenges that biofuels must overtake. Firstly, and the

principal, is the direct competitions with food production. Lands are being used for growing

crops, but not for food but for biofuels. This is controversial for a world with nearly 1000

million people with lack of food for having a healthy life. Additionally, this fields accelerate

deforestation due to the expansion of land usage for the cultivation of suitable feedstock.

Nevertheless, biofuels have great advantages. They are compatible with current combustion

engines, they are produced from renewable sources, produce low CO2 emissions in

combustion and have a positive socio-economic impact.

With all this, the ideal solution would be to produce biofuels with CO2 and this is possible.

There are several biofuel products that can be produced from CO2 including methanol

(CH3OH) and dimethyl ether (CH3OCH3). The key factor in the large-scale use of biofuel

production process is the availability of the raw materials CO2 and H2. Large amounts of CO2

can be obtained from sources such as fossil fuel-burning power plants and industrial

facilities by using CCS technology.

• Methanol

It is obtained by the catalytic hydrogenative conversion of CO2 with hydrogen.

𝐶𝑂2 + 3𝐻2 ↔ 𝐶𝐻3𝑂𝐻 + 𝐻2𝑂

This is a well-known reaction, it has been used for nearly a century by USA for methanol

production as a by-product of other processes such as fermentation. In order to increase the

efficiency of the reaction, catalysts such as Cu or ZnO have been developed.

• Dimethyl Ether

The production of Dimethyl Ether from CO2 and H2 may have a great deal of potential for use

as a clean alternative fuel for diesel engines. Dimethyl ether can be used as a clean, highly

Page 88: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

54

efficient compression ignition fuel with low NOx, SOx and particulate matter, and it can be

efficiently reformed to hydrogen at low temperatures. The production of DME usually occurs

by two consecutive reactions: methanol synthesis and the de-hydrogenation of methanol. The

first step in DME production is the conversion of the feedstock to syngas. The second step is

methanol synthesis using a copper-based catalyst and the third step is de-hydrogenation of

methanol into DME, as shown in the next equations.

➢ Methanol synthesis: 𝐶𝑂 + 2𝐻2 ↔ 𝐶𝐻3𝑂𝐻

➢ Methanol dehydration: 2𝐶𝐻3𝑂𝐻 ↔ 𝐶𝐻3𝑂𝐶𝐻3 + 𝐻2𝑂

To facilitate methanol synthesis, the CO in syngas can be converted to CO2 through the WGS

reaction to generate additional H2 and form CO2. The CO2 then reacts with hydrogen to

produce methanol

➢ WGS: 𝐶𝑂 + 𝐻2𝑂 ↔ 𝐶𝑂2 + 𝐻2

In addition, DME can also be produced through the direct conversion of syngas using an

appropriate catalyst. By applying direct conversion to DME, the processes can occur

simultaneously in one reactor and the product is the net reaction shown below. The last step

is the purification of the raw product, which may also contain some methanol and water.

➢ 3𝐻2 + 3𝐶𝑂 ↔ 𝐶𝐻3𝑂𝐶𝐻3 + 𝐶𝑂2

The next figure represents a diagram of carbon conversion cycle from source to methanol and

other hydrocarbon products:

Figure 40. Diagram of the conversion of CO2 into hydrocarbons.

Page 89: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

55

Biofuels will become important in the future because they will most likely be part of a portfolio

of solutions to address the problem of high oil prices and finite fossil fuel resources. It is

expected that due to the limited fossil fuel resources, conservation and the use of other

alternative fuels will become more important. Other advantages associated with biofuel

include equivalent rates of growth in gross domestic product (GDP) and per capita increases

of GDP. In light of the potential of biofuel, the availability of long term CO2 source needs to

be sure to make large-scale biofuel production feasible. Moreover, today's energy system is

unsustainable because of equity issues as well as environmental, economic and geopolitical

concerns that have implications far into the future.

Based on the scenario in the USA and the European Union, the International Energy Agency

indicates that near-term targets of up to 6% displacement of petroleum fuels by biofuels appear

feasible using conventional biofuels. The recent commitment by the US government to

increase bio-energy over 10 years has provided added impetus to the search for feasible

biofuels. It is expected that biofuel will provide low carbon intensity and a reduction of up to

80% of CO2 emissions in 2050 in the USA.

The next figure represents a projection of use of biofuel as a global energy source.

Figure 41. Projection of use of biofuel as global energy source.

Page 90: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

56

Page 91: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

57

7 LEGISLATION

The legal, regulatory and public perception developments around CCS are diverse across

countries around the world, due to the different legal systems, industries and culture of its

countries. In the following pages, some key concepts relative to climate change & CCS

legislation are discussed in order to give a brief understanding of the legislation level in this

area.

7.1 Subsurface

Focusing in CO2 storage, it is obligatory to talk about the ownership of the subsurface. In most

of the world, the deep underground is owned by the state, which can permit and make rules

about usage. In USA, the subsurface is owned by the surface owner, and the sate manages only

the environmental and safety elements. Furthermore, legislation for other subsurface

industrial activities, such as natural gas storage, acid gas storage, or EOR provides a framework

for regulating CO2 storage. The question of when or under which conditions liability of the

storage site is transferred to the state is a key issue, as storage operators are unlikely to invest

if the conditions of liability transfer are unclear or unfavorable and if climate liability may be

imposed to them. However, the general public and the state are unlikely to accept transfer of

liability unless safety can be warranted. This issue of transfer liability is treated differently

among countries and even among US states.

7.2 Kyoto Protocol

In the world, the most important agreement concerning climate change is the Kyoto Protocol.

It was agreed in 1997 and it main aim is to provide Contracting Parties with legally binding

obligations and targets for the reduction of their greenhouse gas emissions. It required

developed countries to reduce their emissions of greenhouse gases by at least 5% from 1990 in

the period 2008-2012.

The protocol has attached a monetary value to the earth’s shared atmosphere for the United

Nations Framework Convention on Climate Change’’ (UNFCCC) by including restrictions

upon greenhouse gas emissions. The introduction of mandatory emissions targets effectively

assigns a financial cost to greenhouse gas emissions and creates an incentive for the Parties to

the Convention to seek the most cost-effective methods for reducing them. It is this latter

element that is reflected in the creation of the flexible mechanisms which are the ‘’Joint

Page 92: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

58

Implementation’’ (JI), ’The Clean Development Mechanism’’ (CDM) and the

‘’International Emissions Trading’’.

In order to follow the lines established in the Kyoto Protocol, an annual meeting was proposed

to assess progress in dealing with climate change. The Conference of Parties (COP) serves as

the meeting of the Parties to the Protocol, which is known as the CMP. The meetings of the

CMP are timed to coincide with the meeting of the COP and its functions are similar to those

carried out by the COP. The first CMP was held in Montreal in 2005, and since then 11 more

CMP were held.

7.2.1 The International Emissions Trading

This mechanism has a special relevance due to the legal and economic implication of the

different parties and its impact in the industry development.

The International Emissions Trading is a system where parties that have exceeded their

emission reduction commitments under the Kyoto Protocol may sell excess “assigned amount

units” (AAUs). Other parties may meet their own emissions reductions by purchasing these

AAUs or offset credits from developing countries. The mechanism has resulted in several

national and regional trading schemes, including the European Union Emission Trading

Scheme (EU ETS).

In January 2005, the European Union GHG Emission Trading Scheme (EU ETS) started its

operation as the largest multi-country, multi-sector GHG trading system worldwide. Until

now, it is the world‘s most advanced emissions trading system.

The EU ETS is implemented as a cap-and-trade system. An aggregate limit (cap) on the amount

of a pollutant that can be emitted is established. The cap is represented by emission allowances

which can be transferred (traded) among installations required to hold a number of allowances

equivalent to their emissions. Installations which emit less than their individual cap allows are

able to sell their surplus emission allowances – and vice versa. Thus, the buyer is paying a

charge for polluting, while the seller is being rewarded for having reduced emissions. Plus,

emissions are reduced where it costs least. The cap is lowered over time, aiming towards the

national emissions reduction target. The EU ETS is based on the Emission Trading Directive

(Directive 2003/87/EC), which entered into force in October 2003, and is implemented at an

installation level.

This means that some 11,500 large emitters of carbon dioxide within the EU must monitor and

report their CO2 emissions annually. Furthermore, they are obliged to surrender a number of

emission allowances (EUAs) and CERs/ERUs equal to the total emissions from their

installation during the preceding calendar year by 30 April at the latest. Installations currently

covered by the ETS are collectively responsible for close to half of the EU's emissions of CO2

and 40% of its total greenhouse gas emissions.

Page 93: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

59

Since January 2008, the EU ETS not only applies to the 27 EU Member States, but also to the

other three members of the European Economic Area (EEA) – Iceland, Liechtenstein and

Norway.

Figure 42. Shematic of CO2 trading emissions mechanism.

7.3 The Paris Agreement

The Paris Agreement was signed by 144 of the 195 countries of the UNFCC in the CMP number

11 (COP 21). It focuses on climate mitigations actions after 2020 and represents a clear and

indisputable commitment from the world’s political leaders to transition to low-carbon

economy. If the ambitions of the Paris Agreement are to be achieved, CCS must enter the

mainstream climate actions to be undertaken by governments and by business. This

agreement provides cause for optimism that the future investment required to accelerate and

widespread deployment of CCS will rise, but much more needs to be done in the next years.

The agreement defines a number of climate goals, in which CCS is an important mitigation

technology.

• A short-term goal is to reach peak emissions as soon as possible.

• A longer-term goal is to limit average global warming to well below 2 degrees Celsius

(2°C) above pre-industrial times, and an aspiration to limit warming to 1.5°C.

• In the second half of this century, a balance between emissions sources and sinks (often

referred to as net-zero emissions) will be needed.

The IPCC Climate Change 2014: Synthesis Report Summary for Policymakers highlights that,

without CCS, the cost of achieving 450 parts per million (ppm) carbon dioxide equivalent by

2100 could be 138 per cent costlier (compared to scenarios that include CCS), and that only a

minority of climate model runs could successfully produce a 450-ppm scenario in the absence

of CCS.

Page 94: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

60

7.4 Legal main developments of geological CO2 capture in the developed countries

Developed countries have all started legislation on CCS. US, UE and China are the most

important countries regarding this topic, due to their levels of CO2 emissions.

• United States: Federal oversight of CO2 storage involves regulations from the US

Environmental Protection Agency (EPA) and congressional legislation surrounding

safe drinking water and well safety. As I mentioned above, pore-space ownership is

regulated at the state level, leading to different approaches in different states. In order

to enable CCS, United States has opted for funding tax and credits for research,

development, and demonstration, starting with smaller demonstrations, including

EOR.

• EU: In the European Union, a Directive on the Geological Storage of CO2 was agreed

in 2009. This Directive is the 2009/31/Ce, and it contains detailed guidance on how to

handle the contentious issues around CO2 storage, including liability transfer. The EU

Directive was criticized for not resolving all barriers and for not being fully consistent

with other EU legislation. To promote CCS, the European Union started in 2005 a

demonstration program with subsidies (often complemented by funding on the

member state level) and research programs

• China: Although China is the most polluting country, there is still no domestic

regulatory framework to provide oversight of future CCS projects. An environmental

legislation would require an interplay between local, regional and national councils and

institutions. China’s strategy to implement CCS seems set on adopting parts from both

the US and EU strategies on CCS.

• Spain: As it is part of the European Union, Spain has to follow the Directive that are

redacted and agreeded by the Union. To implement it in the spanish territory, the

40/2010 law for the CO2 geological storage was implanted. The purpose of this law is

to incorporate the provisions contained in Directive 2009/31 / EC into Spanish

legislation, adapting them to the industrial, geological and energy reality of our

country, and establishing a legal basis for the geological storage of carbon dioxide, in

safe conditions for the environment, to contribute to the fight against climate change.

Page 95: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

61

7.5 Current state of CCS policy

Despite of the first steps taken to promote CCS in the past, the present and future of CCS policy

has changed in the different countries of the world. While CCS path has dramatically slowed

in the USA, in Canada It has emerged as a key issue for the future. Here is the current state of

the principal regions of our planet.

• United Sates: The key uncertainty in the United States remains the legal action

brought by 27 states against the US EPA’s implementation of the Clean Power Plan,

which has resulted in a significant delay to the deployment of this flagship initiative.

While some states have continued to develop their state-wide approach to its

implementation, several have suspended all further work pending a decision from the

courts. Fortunately, The US DOE continues with a robust research and development

capture program and its Regional Carbon Sequestration Partnerships. Funding awards

have started to advance selected capture technologies to large pilot scale.

Canada: Canada has recently become one on the most promising countries in the

field of CCS. This country has seen the realization of its long-term policy, legal and

regulatory ambitions, with the recent entry into force of the CO2 performance

standards for coal-fired power plants, which the Federal Government adopted in 2015.

Prime Minister Trudeau recently announced a national ‘floor price’ on carbon that

would require all provinces and territories to have some form of carbon pricing by

2018. Developments at the Canadian federal level in the past year build upon the

accomplishments of the country’s provincial governments in supporting the

deployment of CCS technology.

• EU: Supranational policy development in Europe has continued to build upon

initiatives launched by the European Commission in 2015. The European Union’s

ratification of the Paris Agreement, together with the ongoing reforms to the EU

Emissions Trading System (EU-ETS) and activities under the Strategic Energy

Technology (SET) Plan process, offer a platform for developing further commitments

to CCS deployment and support. The EU approach is a complete vision of CCS, because

it focuses on carbon pricing, and its funding mechanisms, address emissions from a

variety of sectors, not just emissions from power generation where many countries have

historically tended to focus their deployment efforts.

• China: China’s joint announcements with the US, pledging action on climate change,

includes renewed commitments to carbon capture utilization and storage (CCUS).

Page 96: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

62

7.6 Public perception of CCS

In 2005, when the IPCC SRCSS (Intergovernmental Panel on Climate Change-Special Report

Emissions Scenarios) was published, the literature on the public’s perception of CCS was so

limited so there was no information about it in the document. However, a considerable

literature has emerged since them.

There are two perspectives regarding public engagement around CCS: Some consider

engagement a success when people can make more informed decisions on CCS, whereas other

consider it a success only when resistance to CCS projects is prevented or reduced.

A synthesis provided by Benson highlights lessons from projects and studies that indicate that

communicating early, honestly, transparently, responsively, inclusively, and clearly around a

potential CCS project and framing it in the context of climate change action are essential

elements of effectively engaging the public and reducing the likelihood of resistance. A key

issue is the lack of knowledge of CCS, but another is the difference in risk perception between

the lay public and experts.

Through history, it is shown that public acceptance can make or break a CCS project. The most

visible example of a project canceled because public resistance is the Barendrecht project in

the Netherlands. In Germany, the general view of CCS is quite negative. The view that CCS

diverts efforts away from renewable energy contributed to the parliamentary rejection of CCS

legislation and the canlation of one of the EU’s demonstration projects is Jänschwalde.

Nevertheless, in the United States and Australia the general attitude seems more favorably to

CCS, maybe because of a more positive view of the fossil-fuel industry (due to historical

reasons), but even in these countries resistance has emerged around several CCS projects.

Regulation also plays a role in public engagement around CO2 storage projects. Several

publications point out that the public is unclear whether governments have taken note of the

recommendations and shifted from ‘’decide, announce, defend’’ to ‘’ investigate, adapt,

engage’’.

Page 97: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

63

8 CONCLUSION

Como se ha mostrado en este trabajo, la temática de la captura y uso del CO2 es un tema que

cada vez está tomando más relevancia en nuestra sociedad. Año tras año, diferentes países

están incluyendo en su agenda el cambio climático como un problema urgente, y como

consecuencia maneras para afrontarlo. Es aquí donde CCS está apareciendo como una gran

alternativa a las dos principales vías para mitigar el aumento de los gases de efecto invernadero.

La primera de ellas es el diseño eficiente de las estructuras de nuestra sociedad, como la

remodelación de las ciudades, con la entrada en escena de las ‘’Smart Cities’’, cuya tecnología

puede disminuir notablemente las emisiones de CO2 a través de la optimización del flujo de

tráfico o la construcción de edificios eficientes con un bajo consumo energético (y por tanto

de CO2). La otra alternativa es la apuesta por las energías bajas en emisión de CO2 como la

nuclear o renovables como la fotovoltaica o eólica, que tanto han avanzado en estos últimos

años.

Sin embargo, hay un gran consenso científico en admitir que ambos métodos mencionados no

podrían cumplir por si solo el objetivo de reducción de CO2 a la atmósfera, sino que requeriría

de una apuesta por CCS para poder alcanzarlo.

La Agencia Internacional de la Energía ha venido realizando, en particular desde la cumbre del

G8 de Gleneagles, varios análisis y estudios sobre cómo lograr el objetivo de no superar en 2ºC

la temperatura media respecto a los niveles pre-industriales (año 1750), lo que resulta ser

equivalente a limitar las emisiones de CO2 a 450 ppm (escenario 450). Como mencioné

anteriormente para lograr el escenario citado de 450, son necesarias reducciones de emisiones

provenientes tanto de la eficiencia, fundamentalmente en los usos finales, como en el

desarrollo de las energías renovables, la nuclear y la captura y almacenamiento.

Figure 43. Contribution of different options to mitigate Co2 for the 450 scenario.

Page 98: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

64

Respecto a las diferentes tecnologías de captura, es amplia las diferentes posibilidades que

existen. Las primeras tecnologías en ser desarrolladas (absorción con aminas) ya se han

presentado como una alternativa ineficiente, y han dejado paso a nuevas vías como la captura

con membranas o ‘’calcium looping’’ que prometen aumentar la eficiencia de captura y reducir

los costes.

Precisamente estos costes de operación de dichas técnicas son una de las principales trabas a

la hora de considerar CCS como una via factible. La tecnología precisa aún de mucho avance

para poder ser económicamente rentable para aquellos gobiernos y compañías que deseen

aplicarlas. Por ejemplo, en el mencionado ‘’calcium loopin’’ hemos comprobado las

considerables opciones de optimización que existen. Además de esta reducción, se debe

trabajar también para la concienciación ciudadana. Esta actual carencia de sensibilidad por

CCS ralentiza su evolución, y diferentes opiniones en su contra aparecen como:

• ‘’ No hace desaparecer el CO2 de la atmosfera, sólo lo hace 'de la vista’'.

• ‘’Sigue promoviendo la adicción al carbono. Su desarrollo futuro ha sido muy

promovido por el sector del carbón, como justificación para la construcción de nuevas

centrales eléctricas con ese combustible’’.

• ‘’Dudosos beneficios y 'vampiro' de las renovables. Absorberá financiación que debería

dirigirse a renovables’’.

• ‘’Herramienta de mitigación errónea. Primero porque es imposible que pueda

comenzar a tiempo y segundo porque la CAC será ineficiente y extremadamente

costosa’’.

Como ejemplo de estas actividades necesarias para la concienciación ciudadana tenemos la

iniciativa japonesa del proyecto ‘’Tomakomai CCS’’, donde se educa a los más jóvenes con una

demostración del proyecto de captura de CO2 mediante juegos.

Figure 44. Educating game for illustrate a CO2 capture plant in Japan.

Page 99: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

65

Finalmente, debemos entender que poseer un mix equilibrado en generación eléctrica como

España posee, con renovables, gas, carbón y nuclear es un bien que aporta seguridad,

flexibilidad y competitividad, haciéndolo más estable y sostenible. Para progresar en este

camino la voluntad política es necesaria y en Europa se está comprobando que esto incrementa

el peso de la industria de un país en el PIB, genera conocimiento y empleo. Nuestro país posee

numerosos elementos para estar a la cabeza del grupo europeo, y debería acometer, reforzando

las iniciativas ya tomadas, los pasos necesarios para apoyar el CCS.

Page 100: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

66

Page 101: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

67

APENDIX

The code used in the model is was written in C, using CodeBlocks.

1 #include <stdio.h>

2 #include <stdlib.h>

3

4 void main()

5 { float n=1;

6 float f_co2=1.28;

7 float fcarb;

8 float fcarb1= 0.44; //valor inicial que suponemos

9 int seguir=1;

10 float Xr=0.075;

11 float k=0.52;

12 float fash=0.016, fs=0.0096, f0=0.0256, fr=19.2;

13 int i,j=0;

14 float eficiencia=0.70;

15

16

17 float x,xave,r,Ax;

18

19 for (i=1; i<1000 && seguir==1; i++)

20 {

21 for(n=1;n<550;n++) //

22 {

23 x=(1/((1/(1-Xr))+k*n))+Xr; // Ec. 5

24 r=((f0/fr)*pow(fcarb1,n-1))/(pow(((f0/fr)+fcarb1),n));// Ec. 36

25 xave=xave+x*r;// Ec. 37

26 }

27

28 printf(" xave es %f \n",xave);

29

30 fcarb=(f_co2*eficiencia)/(fr*xave);

31

32 if (abs(fcarb-fcarb1)>0.05) //condicion para seguir

33 {

34 fcarb1=fcarb;

35 seguir=1;

Page 102: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

68

36 x=0;

37 r=0;

38 }

39 else seguir=0;

40

41 printf("fcarb es: %f",fcarb);

42

43 }

44

45 Ax=(fs/(fr*fcarb))*100;

46 printf("\n Ax es%f",Ax);

47 // cálculo de nueva k

48

49 float k_nueva,Xr_nueva;

50 k_nueva=k*(1+0.2962*Ax);

51 printf("\n nueva k es %f",k_nueva);

52 //cálculo nueva Xr

53 if(Ax>0&&Ax<0.5)

54 {

55 Xr_nueva=Xr*(1-1.536*Ax);

56 }

57 else {

58 Xr_nueva=Xr*(1-(0.3076*Ax)-0.4230);

59 }

60 printf("\n nueva Xr es %f",Xr_nueva);

61

62 //calculamos nueva x_ave

63 float x_avenueva=0,x_nueva=0,r_nueva=0;

64 for(j=1;j<550;j++)

65 {

66 x_nueva=(1/((1/(1-Xr_nueva))+k_nueva*j))+Xr_nueva;

67 r_nueva=((f0/fr)*pow(fcarb,j-1))/(pow(((f0/fr)+fcarb),j));

68 x_avenueva=x_avenueva+(x_nueva*r_nueva);

69 }

70 printf("\n x_avenueva es %f",x_avenueva);

71

72 //calculamos de nuevo fcarb para ver si lo hemos estimado bien

73

74 float fcarb_nueva=0;

75 fcarb_nueva=(f_co2*eficiencia)/(fr*x_avenueva);

76 printf("\n nueva comprobacion fcarb %f",fcarb_nueva);

Page 103: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

69

77

78 //Calculo nsa

79

80 int tau=38;// ***¿como programamos la gráfica?

81 float n_sa;

82 n_sa=(f_co2*tau)/(((f_co2*eficiencia)/(fr))*((1/fcarb)-1));

83 printf(" moles de caliza y carb. calcico= %f \n",n_sa);

84

85 //calculamos composicion molar del CaSO4 y ceniza

86

87 float x_CaSO4;

88 float x_ash;

89

90 x_CaSO4=fs/(f0+fash);

91 x_ash=fash/(f0+fash);

92

93 printf("x_CaSO4 es %f y x_ash es %f\n",x_CaSO4,x_ash);

94

95 // calculamos composicion molar de CaCO3 y CaO

96 float x_CaCO3;

97 float x_CaO;

98

99 x_CaCO3=x_avenueva*fcarb_nueva*(1-x_CaSO4-x_ash);

100 x_CaO=1-x_CaCO3-x_CaSO4-x_ash;

101

102 printf("x_CaCO3 es %f y x_CaO es %f \n", x_CaCO3,x_CaO);

103

104 // calculamos toneladas totales solidos

105 float molar_mass=80.77;

106 float total_mol;

107 float total_mass;

108

109 total_mol=n_sa/(x_CaCO3+x_CaO);

110 total_mass=total_mol*molar_mass;

111 printf("moles totales son %f\n",total_mol);

112 printf("la masa toal a introducir es %f kg",total_mass);

113

114 //FIN ALGORITMO LIBRO

115

116 //calculamos masa y mol CaCO3 formada en carbonatador

117

Page 104: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

70

118 float Mol_formado_CaCO3, M_formado_CaCO3;

119 Mol_formado_CaCO3=(eficiencia*f_co2)*1000;

120 M_formado_CaCO3=Mol_formado_CaCO3*100.9;

121

122 printf("\n mol CaCO3 formado= %f , masa CaCO3 formada=

%f",Mol_formado_CaCO3,M_formado_CaCO3);

123

124 //calor generado para MEJORA

125 float calor_gen_carb;

126 calor_gen_carb=(Mol_formado_CaCO3*178*1000)*0.7;

127 printf("\nel calor generad para MEJORA es %f J",calor_gen_carb);

128

129 //calor necesario para quemar 1,152 kmol CaCO3 que entran en calc cada s

y cabón necesario

130

131 float Cp=0.66432;

132 float T1=923;

133 float T2=1173;

134 float Cc=14183950;

135 float Q=(M_formado_CaCO3+2583.04)*Cp*(T2-T1); //añado CaCO3 que entra en

calcinador

136 float M_carbon=((Q/Cc)*1000)*1.1;// en un 10% mas ya que tiene 10%

compuestos inertes

137 printf("\n calor necesario en calc es %f J y m_carbon es %f

g/s",Q,M_carbon);

138

139 //IMPUREZAS

140 int cenizas_carbon=((Q/Cc)*1000)*0.1;

141 float impureza_CaCO3=f0*(100-92.4);

142

143

144 printf("\n g cenizas que salen por segundo del carbon= %i",cenizas_carbon);

145 printf("\n g impurezas del CaCO3 que salen por segundo=

%f",impureza_CaCO3);

146 float impurezas_totales=cenizas_carbon+impureza_CaCO3;

147 printf("\n g impurezas totales que salen por segundo=

%f",impurezas_totales);

148

149 //cálculo O2 para el sistema

150 float O2_calc=M_carbon/12.11;

151 float O2_carbo=((1.28/0.12)*0.00024)/2*1000;

152 printf("\n O2 para calcinador %f mol y mol O2 para carb %f

",O2_calc,O2_carbo);

Page 105: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

71

153 float vol_O2_tot=(O2_calc+O2_carbo)*8.2057*pow(10,-5)*273;

154

155 printf("vol total O2=%f m3",vol_O2_tot);

156 }

Page 106: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

72

BIBLIOGRAPHY

[1] Dennis Y.C Leung, Giorgio Carmanna, M.Mercedes Maroto Valer. (2014). ''An overview of

current status of carbon dioxide capture and storage technologies''.Renewable and Sustainable

Energy Reviews.39.426-443.

[2] Ponnivalavan Babu, Weng Inn Chin, Rajnish Kumar, Praveen Linga.(2015).''A review of the

hydrate based gas separation (HBGS) process for carbon dioxide pre-combustion capture.

Energy 85.261-279.

[3] Monoj Kumar, Hemat Kumar Balsora, Prachi Varshney. (2012). ''Progress and trends in CO2

capture/separation technologies: A review. Energy. (46). 431-441.

[4] Anggit Raksajati, Minh T. Ho, Dianne E.Wiley. (2013).'' Reducing cost of CO2 capture from

flue gases using aqueous chemical absorption.Ind.Eng.Chem.Res. (52).16887-16901.

[5] Zhongde Dai, Richard D.Noble, Douglas L. Gin. Xiangping Zhan, Liyuan Deng. (2015).

''Combination of ionic liquids with membrane technology: A new approach for CO2

separation''.Journal of Membrane Science. (497).1-20.

[6] Mashallah Rezakazemi, Abtin Ebadi Amooghin, Mohammad Mehdi, Ahmad Fauzi, Takeshi

Matsuura. (2014). ''State-of-the-art membrane based CO2 separation using mixed matrix

membranes (MMMs): An overview on current status and future directions''.Pogress in Polymer

Science. (39).817-861.

[7] Ponnivalavan Babu, Weng Inn Chin, Rajnish Kumar, Praveen Linga. (2014) ''Systematic

Evaluation of Tetra-n-butyl Ammonium Bromide (TBAB) for Carbon Dioxide Capture

Employing the Clathrate Process. Industrial&Engineering Chemistry Research.Pune, India

[8] Li Shifeng, Fan Shuanshi, Wang Jinqu, Lang Xuemei, Wang Yanhong. (2010). ''Clathrate

Hydrate Capture of CO2 form Simulated Flue Gas with Cyclopentane/Water

Emulsion''.Chinese Journal of Chemical Engineering. 202-206.

Page 107: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

73

[9] J.C Abanades, M. Alonso, N. Rodriguez. (2009). ''Experimental validation of in situ CO2

capture with CaO during the low temperature combustion of biomass in a fluidized bed

reactor. Intrernational Journal of Greenhouse Gas Control. (5). 512-520.

[10] Senthoorselvan Sivalingam. (2012).'' CO2 separation by calcium looping from full and

partial fuel oxidation processes''.Doctoral Thesis. Technische Universität München.

[11] Hari C.Mantripragada, Edward S. Rubin.(2014).''Calcium looping cycle for CO2 capture:

Perfomance, cost and feasibility analysis''.Energy Procedia. (63).2199-2206.

[12] Stanley Santos.(2015).''Oxyfuel combustion for CO2 capture in power plants''. International

Journal of Greenhouse Gas Control.(40).55-125.

[13] Global CCS Insitute. (2016). ‘’The global status of CCS. Sumamary report’’

[14] Global CCS Insitute. (2011). ‘’The global status of CCS. Sumamary report’’

[15] Andrei Bocin-Dumitriu, Maria del Mar Perez Fortes, Evangelos Tzimas Thea Sveen. (2013).

‘’Carbon Capture and Utilization Workshop. Background and proceedings.’’JRC Scientific and

Policy Reports.

[16] https://share-ng.sandia.gov/news/resources/news_releases/co2_bubbles/

[17] Matteo C.Romano. (2012). ‘’Modeling the carbonator of a Ca-looping process for CO2

capture form power plant flue gas’’. Chemical Engineering Science. (2012). 257-269.

[18] http://www.indexmundi.com/es/precios-de-mercado/?mercancia=carbon-sudafricano

[19] http://www.lavozdeasturias.es/noticia/economia/2017/01/25/precio-carbon-importacion-

dispara-autoctono-gana-competitividad/00031485364673909207743.htm

Page 108: Estado de la tecnología de la captura y almacenamiento de ...bibing.us.es/proyectos/abreproy/91157/fichero/TFG+Gonzalo+Muñoz… · TRABAJO FIN DE GRADO ESTADO DE LA TECNOLOGÍA

74

[20] US DOE/NETL.2010, 401/093010. ‘’Cost and performance for lowrank pulverized coal for

oxycombustion energy plants’’.

[21] ESMAP. (2009). ‘’Study of Equipment Prices in the Power Sector’’.ESMAP Technical Paper

122/09.

[22] Liqiang Duan, Tao Feng, Shilun Jia, Xiaohui Yu. ‘’Study on performance of coal-fired power

plant integrated with Ca-looping capture with recarbonation process’’. Energy 115 (2016). 942-

953.

[23] César Bartolomé, Pedro Mora, José David Recalde. 2011. ‘’Estado del arte de las tecnologías

de captura y almacenamiento de CO2 en la industria del cemento’’. Agrupación de fabricantes

de cemento de España. 1º edición.

[24] www.realinstitutoelcano.org

[25] International Energy Agency. 2008. ‘’World energy Outlook 2008’’.

[26] www.alibaba.com

[27] European Comission. 2015. EU ETS Handbook.