eso's compact laser guide star unit ottobeuren, germany ... · introduction characteristics...

28
Introduction Characteristics 1 Beam optics ESO's Compact Laser Guide Star Unit Ottobeuren, Germany www.eso.org

Upload: trinhmien

Post on 09-Sep-2018

227 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: ESO's Compact Laser Guide Star Unit Ottobeuren, Germany ... · Introduction Characteristics ABCD matrices 1 Beam optics! ESO's Compact Laser Guide Star Unit Ottobeuren, Germany

Introduction Characteristics ABCD matrices

1

Beam optics!

ESO's Compact Laser Guide Star Unit Ottobeuren, Germany www.eso.org

Page 2: ESO's Compact Laser Guide Star Unit Ottobeuren, Germany ... · Introduction Characteristics ABCD matrices 1 Beam optics! ESO's Compact Laser Guide Star Unit Ottobeuren, Germany

Introduction Characteristics ABCD matrices

2

Background!A paraxial wave has wavefronts whose normals are paraxial rays.!!Complex amplitude U(r) satisfies Helmholtz equation: complex envelope A(r) must satisfy the paraxial Helmholtz equation.!!A simple solution of the paraxial Helmholtz equation is the paraboloidal wave:!!Today we are going to study another very important solution: the Gaussian beam.!

U(r) = A(r)exp(−ikz )

∇T2A − i2k ∂A

∂z= 0

∇T2 = ∂2 / ∂x 2 + ∂2 / ∂y 2

A(r) ≈ A1zexp −ik ρ2

2z⎡

⎣⎢

⎦⎥

ρ2 = x 2 + y 2

Page 3: ESO's Compact Laser Guide Star Unit Ottobeuren, Germany ... · Introduction Characteristics ABCD matrices 1 Beam optics! ESO's Compact Laser Guide Star Unit Ottobeuren, Germany

Introduction Characteristics ABCD matrices

3

Paraboloidal vs. Gaussian!

A(r) ≈ A1zexp −ik ρ2

2z⎡

⎣⎢

⎦⎥

ρ2 = x 2 + y 2

A(r) ≈ A1q(z )

exp −ik ρ2

2q(z )⎡

⎣⎢

⎦⎥

q(z ) = z + iz0Paraboloidal Gaussian

Both are solutions of the paraxial Helmholtz equation

Page 4: ESO's Compact Laser Guide Star Unit Ottobeuren, Germany ... · Introduction Characteristics ABCD matrices 1 Beam optics! ESO's Compact Laser Guide Star Unit Ottobeuren, Germany

Introduction Characteristics ABCD matrices

4

Many types of lasers emit beams with a Gaussian shape!

For all z, the amplitude (intensity) distribution along x and y is a Gaussian curve.!

software plot! real HeNe laser!

∝ exp − x2 + y 2

W 2(z )⎛⎝⎜

⎞⎠⎟

Page 5: ESO's Compact Laser Guide Star Unit Ottobeuren, Germany ... · Introduction Characteristics ABCD matrices 1 Beam optics! ESO's Compact Laser Guide Star Unit Ottobeuren, Germany

Introduction Characteristics ABCD matrices

5

The Gaussian beam!

A(r) ≈ A1q(z )

exp −ik ρ2

2q(z )⎡

⎣⎢

⎦⎥

ρ2 = x 2 + y 2 q(z ) = z + iz0Gaussian beam: complex envelope!

q(z) !q-parameter of the beam!z0 !Rayleigh range!

!For convenience (we will see why soon) we can write q(z) as: !

1q(z )

= 1z + iz0

= 1R(z )

− i λπW 2(z )

Page 6: ESO's Compact Laser Guide Star Unit Ottobeuren, Germany ... · Introduction Characteristics ABCD matrices 1 Beam optics! ESO's Compact Laser Guide Star Unit Ottobeuren, Germany

Introduction Characteristics ABCD matrices

6

Now let’s put everything together!The complex amplitude of the Gaussian beam: U(r) = A(r) e-ikz!

U(r) = A0W0

W (z )exp −

ρ2

W 2(z )$

% &

'

( )

×exp −i kz − ζ(z )( )[ ]

×exp −ik ρ2

2R(z )$

% &

'

( )

A0 = A1 / iz0

W (z ) =W0 1+zz0

"

# $

%

& '

2

R(z ) = z 1+z0z

" # $

% & ' 2(

) * *

+

, - -

ζ(z ) = tan−1 zz0

W0 =λz0π

The beam is fully defined by A0 and z0 (and λ)!

amplitude!(real)!

phase!(imaginary)!

Page 7: ESO's Compact Laser Guide Star Unit Ottobeuren, Germany ... · Introduction Characteristics ABCD matrices 1 Beam optics! ESO's Compact Laser Guide Star Unit Ottobeuren, Germany

Introduction Characteristics ABCD matrices

7

Gaussian beam: amplitude and phase!

U(r) = A0W0

W (z )exp −

ρ2

W 2(z )$

% &

'

( )

×exp −i kz − ζ(z )( )[ ]

×exp −ik ρ2

2R(z )$

% &

'

( )

Amplitude factor!describes beam spread!

Longitudinal phase factor!describes phase delay relative to a plane wave or spherical wave!

Radial phase factor!phase shift due to measuring a spherical surface along a plane!

Page 8: ESO's Compact Laser Guide Star Unit Ottobeuren, Germany ... · Introduction Characteristics ABCD matrices 1 Beam optics! ESO's Compact Laser Guide Star Unit Ottobeuren, Germany

Introduction Characteristics ABCD matrices

8

Gaussian beam: amplitude and phase!

U(r) = A0W0

W (z )exp −

ρ2

W 2(z )$

% &

'

( )

×exp −i kz − ζ(z )( )[ ]

×exp −ik ρ2

2R(z )$

% &

'

( )

Amplitude factor!describes beam spread!

Longitudinal phase factor!describes phase delay relative to a plane wave or spherical wave!

Radial phase factor!phase shift due to measuring a spherical surface along a plane!

Page 9: ESO's Compact Laser Guide Star Unit Ottobeuren, Germany ... · Introduction Characteristics ABCD matrices 1 Beam optics! ESO's Compact Laser Guide Star Unit Ottobeuren, Germany

Introduction Characteristics ABCD matrices

9

Properties of the Gaussian beam!The intensity is given by:!

I(ρ,z ) = U(r) 2 = I0W0

W (z )#

$ %

&

' (

2

exp −2ρ2

W 2(z )#

$ %

&

' ( I0 = Ao

2( )•  For any z the intensity is a Gaussian function of ρ!

•  The Gaussian function has its peak on the z axis (ρ=0), and decreases monotonically as ρ increases.!

• W(z) is the beam width of the Gaussian distribution; it increases with the axial distance z.!

• On the beam axis the intensity is!

I(0,z ) = I0W0

W (z )"

# $

%

& '

2

=I0

1+ z / z0( )2

Page 10: ESO's Compact Laser Guide Star Unit Ottobeuren, Germany ... · Introduction Characteristics ABCD matrices 1 Beam optics! ESO's Compact Laser Guide Star Unit Ottobeuren, Germany

Introduction Characteristics ABCD matrices

10

Intensity vs. distance z!

I(0,z ) ≈ I0 z0 / z( )2, z >> z0

NB this one is not a gaussian!

z = 0 I = I0

z = z0 I = I0/2

z = 2 z0 I = I0/5

x

y

Page 11: ESO's Compact Laser Guide Star Unit Ottobeuren, Germany ... · Introduction Characteristics ABCD matrices 1 Beam optics! ESO's Compact Laser Guide Star Unit Ottobeuren, Germany

Introduction Characteristics ABCD matrices

11

Viewing a Gaussian beam propagation!

(YouTube, Propagation of a Gaussian beam, computed with a FDTD code)

Page 12: ESO's Compact Laser Guide Star Unit Ottobeuren, Germany ... · Introduction Characteristics ABCD matrices 1 Beam optics! ESO's Compact Laser Guide Star Unit Ottobeuren, Germany

Introduction Characteristics ABCD matrices

12

Gaussian beam: power!Using the previous definition for optical power,!

P(z ) = I(ρ,z )dAA∫ = I(ρ,z )2πρdρ

0

∫= 1

2 I0 πW02( )

•  Total power = (half the peak intensity) × (the beam area) !•  Independent of z (i.e. energy is conserved)!

Page 13: ESO's Compact Laser Guide Star Unit Ottobeuren, Germany ... · Introduction Characteristics ABCD matrices 1 Beam optics! ESO's Compact Laser Guide Star Unit Ottobeuren, Germany

Introduction Characteristics ABCD matrices

13

A circle of radius W(z) contains ~86% of the total power!

power in circle of radius ρ0 total power!

= 1P

I(ρ,z )2πρd ρ0

ρ0∫

= 1− exp − 2ρ02

W 2 z( )⎡

⎣⎢

⎦⎥

A circle of radius ρ = 1.5 W(z) contains 99% of the total power!

Page 14: ESO's Compact Laser Guide Star Unit Ottobeuren, Germany ... · Introduction Characteristics ABCD matrices 1 Beam optics! ESO's Compact Laser Guide Star Unit Ottobeuren, Germany

Introduction Characteristics ABCD matrices

14

W(z) is the beam radius,with a minimum W0 at z = 0!

ρ = W(z) = beam radius or beam width!

W (z ) =W0 1+zz0

"

# $

%

& '

2

• Minimum value (beam waist) happens for z = 0: W(0) = W0!• Waist diameter 2W0 is called spot size!•  Beam width has the value √2W0 at z = z0!• Width increases linearly for z >> z0!

Page 15: ESO's Compact Laser Guide Star Unit Ottobeuren, Germany ... · Introduction Characteristics ABCD matrices 1 Beam optics! ESO's Compact Laser Guide Star Unit Ottobeuren, Germany

Introduction Characteristics ABCD matrices

15

Beam divergence!For large z the beam width increases linearly,!

W (z ) =W0 1+zz0

"

# $

%

& '

2

≈W0

z0z = θ0z

We define the divergence angle!

θ0 =W0

z0= λπW0

•  It varies linearly with the wavelength λ!•  It is inversely proportional to the spot size 2W0!

2θ0 =4π

λ2W0

Page 16: ESO's Compact Laser Guide Star Unit Ottobeuren, Germany ... · Introduction Characteristics ABCD matrices 1 Beam optics! ESO's Compact Laser Guide Star Unit Ottobeuren, Germany

Introduction Characteristics ABCD matrices

16

The Lunar Laser ranging Experiment!

D =cΔt2

What kind of laser beam would you choose to send to the Moon: Wide or narrow? Red or green?

Apollo 15 retro-reflectors

2θ0 =4π

λ2W0

Page 17: ESO's Compact Laser Guide Star Unit Ottobeuren, Germany ... · Introduction Characteristics ABCD matrices 1 Beam optics! ESO's Compact Laser Guide Star Unit Ottobeuren, Germany

Introduction Characteristics ABCD matrices

17

Gaussian beam: amplitude and phase!

U(r) = A0W0

W (z )exp −

ρ2

W 2(z )$

% &

'

( )

×exp −i kz − ζ(z )( )[ ]

×exp −ik ρ2

2R(z )$

% &

'

( )

Amplitude factor!describes beam spread!

Longitudinal phase factor!describes phase delay relative to a plane wave or spherical wave!

Radial phase factor!phase shift due to measuring a spherical surface along a plane!

Page 18: ESO's Compact Laser Guide Star Unit Ottobeuren, Germany ... · Introduction Characteristics ABCD matrices 1 Beam optics! ESO's Compact Laser Guide Star Unit Ottobeuren, Germany

Introduction Characteristics ABCD matrices

18

The phase of a Gaussian beam has three components!

ϕ(ρ,z ) = kz − ζ(z )[ ] + k ρ2

2R(z )

kz !phase of a plane wave propagating along z!!

!phase delay specific of the Gaussian beam, that makes!it different from either a plane or a spherical wave.!This is called the Gouy effect.!

! term responsible for wavefront bending i.e. shift from a plane to a spherical wavefront at off-axis points.

!

Page 19: ESO's Compact Laser Guide Star Unit Ottobeuren, Germany ... · Introduction Characteristics ABCD matrices 1 Beam optics! ESO's Compact Laser Guide Star Unit Ottobeuren, Germany

Introduction Characteristics ABCD matrices

19

The phase components ζ(z) and kρ2/2R(z) vary slowly with z !

ϕ(ρ,z ) = kz − ζ(z )[ ] + k ρ2

2R(z )

1/R(z)

ζ(z)

Page 20: ESO's Compact Laser Guide Star Unit Ottobeuren, Germany ... · Introduction Characteristics ABCD matrices 1 Beam optics! ESO's Compact Laser Guide Star Unit Ottobeuren, Germany

Introduction Characteristics ABCD matrices

20

Gaussian beam: wavefronts!

ϕ(ρ,z ) = k z +ρ2

2R(z )$

% &

'

( ) − ζ(z ) = 2πq

Since ζ(z) and R(z) vary slowly, they may be considered constant for low values of ρ: ζ(z) ≈ ζ and R(z) ≈ R, leading to!

z + ρ2

2R≈ qλ + ζλ / 2π

This represents a paraboloidal surface of radius of curvature R = R(z)!

R(z ) = z 1+ z0z

⎛⎝⎜

⎞⎠⎟2⎡

⎣⎢⎢

⎦⎥⎥

Page 21: ESO's Compact Laser Guide Star Unit Ottobeuren, Germany ... · Introduction Characteristics ABCD matrices 1 Beam optics! ESO's Compact Laser Guide Star Unit Ottobeuren, Germany

Introduction Characteristics ABCD matrices

21

R(z) is the radius of curvature.It has a minimum ±2z0 at z = ±z0.!

Note that the sign convention for wavefronts and for optical surfaces is the opposite!

Page 22: ESO's Compact Laser Guide Star Unit Ottobeuren, Germany ... · Introduction Characteristics ABCD matrices 1 Beam optics! ESO's Compact Laser Guide Star Unit Ottobeuren, Germany

Introduction Characteristics ABCD matrices

22

On the other hand:!!!so we have!

A Gaussian beam may be described by its complex q-parameter!

If we know q(z):!!then!

q(z ) = z + iz0

1q(z )

=1

R(z )− i λ

πW 2(z )€

Re q(z )[ ] = z = distance to beam waist

Im q(z )[ ] = z0 = Rayleigh length

R(z ) = Re 1 q(z )[ ]−1 = radius of curvature

W (z ) = λπ

Im − 1q(z )

⎡⎣⎢

⎤⎦⎥

−1

= beam radius

Page 23: ESO's Compact Laser Guide Star Unit Ottobeuren, Germany ... · Introduction Characteristics ABCD matrices 1 Beam optics! ESO's Compact Laser Guide Star Unit Ottobeuren, Germany

Introduction Characteristics ABCD matrices

23

Exercise!Use the definition of q(z) and the last two expressions to arrive at the definitions for the beam size and the radius of curvature.!

W (z ) =W0 1+zz0

"

# $

%

& '

2

R(z ) = z 1+z0z

" # $

% & ' 2(

) * *

+

, - -

W0 =λz0π

q(z ) = z + iz0

R(z ) = Re 1 q(z )[ ]−1= radius of curvature

W (z ) =λπ

Im −1 q(z )[ ]−1= beam radius

Page 24: ESO's Compact Laser Guide Star Unit Ottobeuren, Germany ... · Introduction Characteristics ABCD matrices 1 Beam optics! ESO's Compact Laser Guide Star Unit Ottobeuren, Germany

Introduction Characteristics ABCD matrices

24

Gaussian beam transmitted through a thin lens!

We just need to multiply the complex amplitude of the Gaussian beam by the complex transmittance of the lens. The resulting phase is:!

ϕ(ρ,z ) = kz − ζ + k ρ2

2R&

' ( )

* + − k ρ

2

2f

= kz + k ρ2

2 , R − ζ

1, R

=1R−1f

Page 25: ESO's Compact Laser Guide Star Unit Ottobeuren, Germany ... · Introduction Characteristics ABCD matrices 1 Beam optics! ESO's Compact Laser Guide Star Unit Ottobeuren, Germany

Introduction Characteristics ABCD matrices

25

Useful demonstrations!Gaussian beam propagation through two lenses!(http://demonstrations.wolfram.com)!

Page 26: ESO's Compact Laser Guide Star Unit Ottobeuren, Germany ... · Introduction Characteristics ABCD matrices 1 Beam optics! ESO's Compact Laser Guide Star Unit Ottobeuren, Germany

Introduction Characteristics ABCD matrices

26

Transmission through an arbitrary optical system!

Remember the ABCD matrices from ray optics? Consider an arbitrary paraxial optical system characterized by an [ABCD] matrix:!

q2 =Aq1 +BCq1 +D

The ABCD law!

The same rules for cascading optical components apply.!

Page 27: ESO's Compact Laser Guide Star Unit Ottobeuren, Germany ... · Introduction Characteristics ABCD matrices 1 Beam optics! ESO's Compact Laser Guide Star Unit Ottobeuren, Germany

Introduction Characteristics ABCD matrices

27

Example: Gaussian beam focusing by a lens!

Use the ABCD law to show that the beam diameter at the focus of a lens is given by!

W2 =λfπW1

> What are the best wavelengths for micro-lithography (semiconductor manufacturing) or micromachining?!

Page 28: ESO's Compact Laser Guide Star Unit Ottobeuren, Germany ... · Introduction Characteristics ABCD matrices 1 Beam optics! ESO's Compact Laser Guide Star Unit Ottobeuren, Germany

Introduction Characteristics ABCD matrices

28

UV lasers are used for microlithography !

In direct laser writing, pulsed laser light is used for printing

2D or 3D patterns directly.

In photolithography, light from an ultraviolet laser is used to transfer an image from a mask onto a silicon substrate.