esd.70j engineering economy module - session 31 esd.70j engineering economy fall 2006 session three...

35
ESD.70J Engineering Economy Module - Session 3 1 ESD.70J Engineering Economy Fall 2006 Session Three Alex Fadeev - [email protected] Link for this PPT: http://ardent.mit.edu/real_options/ROcse_Excel_latest/ExcelS ession3.pdf

Upload: laura-neal

Post on 25-Dec-2015

225 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ESD.70J Engineering Economy Module - Session 31 ESD.70J Engineering Economy Fall 2006 Session Three Alex Fadeev - afadeev@mit.edu Link for this PPT:

ESD.70J Engineering Economy Module - Session 3 1

ESD.70J Engineering Economy

Fall 2006Session Three

Alex Fadeev - [email protected]

Link for this PPT: http://ardent.mit.edu/real_options/ROcse_Excel_latest/ExcelSession3.pdf

Page 2: ESD.70J Engineering Economy Module - Session 31 ESD.70J Engineering Economy Fall 2006 Session Three Alex Fadeev - afadeev@mit.edu Link for this PPT:

ESD.70J Engineering Economy Module - Session 3 2

Question from Session Two

Last time we used uniformly distributed random variables to model the uncertain demand. This implies identical probability of median as well as extreme high and low outcomes. It’s not too hard to imagine why this is not very realistic.

What alternative models for demand uncertainties should we try?

Page 3: ESD.70J Engineering Economy Module - Session 31 ESD.70J Engineering Economy Fall 2006 Session Three Alex Fadeev - afadeev@mit.edu Link for this PPT:

ESD.70J Engineering Economy Module - Session 3 3

Modeling Uncertainty• Generate random numbers from various

distributions (Normal, LogNormal, etc)

• Random variables as time function (stochastic processes)– Geometric Brownian Motion– Mean Reversion– S-curve

• Statistical analysis to data-mine distribution and its descriptive stats from historical data

Page 4: ESD.70J Engineering Economy Module - Session 31 ESD.70J Engineering Economy Fall 2006 Session Three Alex Fadeev - afadeev@mit.edu Link for this PPT:

ESD.70J Engineering Economy Module - Session 3 4

Random numbers generation redux

• Generate normally distributed random numbers:– Use norminv(rand(), μ, σ) (norminv stands for “the

inverse of the normal cumulative distribution”) – μ is the mean– σ is the standard deviation

• In the data table output formula cell (B1 in “Sim” sheet of 1.xls) type in “=norminv(rand(), 5, 1)”. Press “F9”, see what happens)

Link for Excel: http://ardent.mit.edu/real_options/ROcse_Excel_latest/Session3-1.xls

Page 5: ESD.70J Engineering Economy Module - Session 31 ESD.70J Engineering Economy Fall 2006 Session Three Alex Fadeev - afadeev@mit.edu Link for this PPT:

ESD.70J Engineering Economy Module - Session 3 5

Random numbers from triangular distribution

• Triangular distribution could work as an approximation of other distribution (e.g. normal, Weibull, and Beta)

• Try “=rand()+rand()” in the data table output formula cell (B1 in “Sim” sheet of 1.xls), press “F9”, see what happens.

Page 6: ESD.70J Engineering Economy Module - Session 31 ESD.70J Engineering Economy Fall 2006 Session Three Alex Fadeev - afadeev@mit.edu Link for this PPT:

ESD.70J Engineering Economy Module - Session 3 6

Random numbers from lognormal distribution

• A random variable X has a lognormal distribution if its natural logarithm has a normal distribution

• Using loginv(rand(), log_μ, log_σ)– log_μ is the log mean– log_σ is the log standard deviation

• In the data table output formula cell (B1 in “Simu” sheet of 1.xls) type in “=loginv(rand(), 2, 0.3)”. Press “F9”, see what happens)

Page 7: ESD.70J Engineering Economy Module - Session 31 ESD.70J Engineering Economy Fall 2006 Session Three Alex Fadeev - afadeev@mit.edu Link for this PPT:

ESD.70J Engineering Economy Module - Session 3 7

From probability to stochastic processes

• We can describe the probability density function (PDF) of random variable x, or f(x)

• Apparently, the distribution of a random variable in the future is not independent from what happens now

• Life is random in a non-random way…

Time

Histogram

0

50

100

150

200

250

300

1.02 1.216 1.413 1.609 1.806 2.003 2.199 2.396 2.592 2.789 2.985

Histogram

0

50

100

150

200

250

300

350

3.734 4.835 5.935 7.036 8.136 9.237 10.34 11.44 12.54 13.64 14.74

Histogram

0

100

200

300

400

500

600

700

0.739 6.969 13.2 19.43 25.66 31.89 38.12 44.35 50.57 56.8 63.03

Year 1 Year 2 Year 3

Page 8: ESD.70J Engineering Economy Module - Session 31 ESD.70J Engineering Economy Fall 2006 Session Three Alex Fadeev - afadeev@mit.edu Link for this PPT:

ESD.70J Engineering Economy Module - Session 3 8

• We have to study the time function of distribution of random variable x across time, or f(x,t)

• That is a stochastic process, or in plain English language:

TREND + UNCERTAINTY

From probability to stochastic processes

Page 9: ESD.70J Engineering Economy Module - Session 31 ESD.70J Engineering Economy Fall 2006 Session Three Alex Fadeev - afadeev@mit.edu Link for this PPT:

ESD.70J Engineering Economy Module - Session 3 9

Check the solution sheet.

Please ask questions now…

Page 10: ESD.70J Engineering Economy Module - Session 31 ESD.70J Engineering Economy Fall 2006 Session Three Alex Fadeev - afadeev@mit.edu Link for this PPT:

ESD.70J Engineering Economy Module - Session 3 10

Three stochastic models

• Geometric Brownian Motion

• Mean-reversion

• S-Curve

Page 11: ESD.70J Engineering Economy Module - Session 31 ESD.70J Engineering Economy Fall 2006 Session Three Alex Fadeev - afadeev@mit.edu Link for this PPT:

ESD.70J Engineering Economy Module - Session 3 11

Geometric Brownian Motion

• Brownian motion (aka random walk)– the motion of a pollen in water– a drunk walks in Boston Common– S&P500 return

• Rate of change of the geometric mean is Brownian, not the underlying observations– For example, the stock prices do not follow

Brownian motion, but their returns do !

Page 12: ESD.70J Engineering Economy Module - Session 31 ESD.70J Engineering Economy Fall 2006 Session Three Alex Fadeev - afadeev@mit.edu Link for this PPT:

ESD.70J Engineering Economy Module - Session 3 12

Simulate a stock price

• Google’s stock price is $378.49 per class A common share on 9/8/06 (see “GOOG” tab).

• Using historical data, we calculate monthly mean return and volatility of 6% and 14%

• These two values are key inputs into any forward-looking simulation models. We will be using them repeatedly, so lets define their names…

Page 13: ESD.70J Engineering Economy Module - Session 31 ESD.70J Engineering Economy Fall 2006 Session Three Alex Fadeev - afadeev@mit.edu Link for this PPT:

ESD.70J Engineering Economy Module - Session 3 13

Defining Excel variable names

1. Select sell with the historical mean value (6.16%) and go to: <Insert> <Name> <Define>

2. Enter field name “drift” and hit <OK>.

3. Repeat the same for historical standard deviation and call that variable “vol”.

Page 14: ESD.70J Engineering Economy Module - Session 31 ESD.70J Engineering Economy Fall 2006 Session Three Alex Fadeev - afadeev@mit.edu Link for this PPT:

ESD.70J Engineering Economy Module - Session 3 14

Simulate a stock price (Cont)

Time Stock Price

Random Draw from standardized normal

distribution1)

Expected Return + random draw *

volatility

September $378.49 =NORMINV(RAND(),0,1) =drift+vol*C2

October =B2*(1+D2)

November

December

Complete the following table for Google stock:

1). Standardized normal distribution with mean 0 and standard deviation 1

Page 15: ESD.70J Engineering Economy Module - Session 31 ESD.70J Engineering Economy Fall 2006 Session Three Alex Fadeev - afadeev@mit.edu Link for this PPT:

ESD.70J Engineering Economy Module - Session 3 15

Simulating Google returns in Excel

1. Open a new worksheet, name it “GOOG forecast”2. Copy or input forecasting time frame (i.e.: “Time” in

cell A1, “September” in A2)3. Type “=norminv(rand(),0,1)” in cell C2, and drag

down to cell C134. Type “=drift+vol*C2” in cell D2, and drag down to cell

D135. Type “=B2*(1+D2)” in cell B3, and drag down to cell

B136. Click “Chart” under “Insert” menu

Page 16: ESD.70J Engineering Economy Module - Session 31 ESD.70J Engineering Economy Fall 2006 Session Three Alex Fadeev - afadeev@mit.edu Link for this PPT:

ESD.70J Engineering Economy Module - Session 3 16

7. “Standard types” select “Line”, “Chart sub-type” select whichever you like, click “Next”

8. “Data range” select “= ‘GOOG forecast’!$A$1:$B$6”, click “Next”

9. “Chart options” select whatever pleases you, click “Next”

10. Choose “As object in” and click “Finish”

11. Press “F9” several times to see what happens.

Simulating Google returns in Excel (cont)

Page 17: ESD.70J Engineering Economy Module - Session 31 ESD.70J Engineering Economy Fall 2006 Session Three Alex Fadeev - afadeev@mit.edu Link for this PPT:

ESD.70J Engineering Economy Module - Session 3 17

Check the solution sheet.

Please ask questions now…

Page 18: ESD.70J Engineering Economy Module - Session 31 ESD.70J Engineering Economy Fall 2006 Session Three Alex Fadeev - afadeev@mit.edu Link for this PPT:

ESD.70J Engineering Economy Module - Session 3 18

Brownian Motion Theory• This is the standard model for modeling stock

price behavior in finance theory, and lots of other uncertainties (enter the Central Limit Theorem)

• Mathematic form for Geometric Brownian Motion (you do not have to know)

SdzSdtdS

where S is the stock price, μ is the expected return on the stock, σ is the volatility of the stock price, and dz is the basic Wiener process

Page 19: ESD.70J Engineering Economy Module - Session 31 ESD.70J Engineering Economy Fall 2006 Session Three Alex Fadeev - afadeev@mit.edu Link for this PPT:

ESD.70J Engineering Economy Module - Session 3 19

Mean-reversion

• Unlike Geometric Brownian Motion that grows forever at the rate of drift, some processes have the tendency to – fluctuate around a mean– the farther away from the mean, the high

the probability of reversion to the mean– the speed of mean reversion can be

measured by a parameter η

Page 20: ESD.70J Engineering Economy Module - Session 31 ESD.70J Engineering Economy Fall 2006 Session Three Alex Fadeev - afadeev@mit.edu Link for this PPT:

ESD.70J Engineering Economy Module - Session 3 20

Simulating interest rate• In finance, people usually use mean

reversion to model behavior of interest rates and asset volatilities

• Suppose the Fed rate r is 4.25% today, the speed of mean reversion η is 0.3, the long-term mean is 7%, the volatility σ is 1.5% per year

• Expected mean reversion is:dtrrdr )(

r

Page 21: ESD.70J Engineering Economy Module - Session 31 ESD.70J Engineering Economy Fall 2006 Session Three Alex Fadeev - afadeev@mit.edu Link for this PPT:

ESD.70J Engineering Economy Module - Session 3 21

Simulating interest rate (Cont)

Time Interest rate Random Draw from standardized normal

distribution

Realized return (expected reversion +

random draw * volatility)

2006 4.25%

2007

2008

2009

2010

Complete the following table for interest rate:

Page 22: ESD.70J Engineering Economy Module - Session 31 ESD.70J Engineering Economy Fall 2006 Session Three Alex Fadeev - afadeev@mit.edu Link for this PPT:

ESD.70J Engineering Economy Module - Session 3 22

Interest rate forecast in Excel

1. Open a new worksheet, name it “Interest Rates”2. Copy or input the table in the previous slide into Excel,

with “Time” as cell A13. Type “=norminv(rand(),0,1)” in cell C2, and drag down

to cell C124. Type “=0.3*(0.07-B2)+C2*0.015” in cell D2, and drag

down to cell D125. Type “=B2+D2” in cell B3, and drag down to cell B126. Click “Chart” under “Insert” menu

Page 23: ESD.70J Engineering Economy Module - Session 31 ESD.70J Engineering Economy Fall 2006 Session Three Alex Fadeev - afadeev@mit.edu Link for this PPT:

ESD.70J Engineering Economy Module - Session 3 23

7. “Standard types” select “XY(Scatter)”, “Chart sub-type” select any one with line, click “Next”

8. “Data range” select “=‘Interest Rates’!$A$1:$B$12”, click “Next”

9. “Chart options” select whatever pleases you, click “Next”

10. Choose “As object in” and click “Finish”

11. Press “F9” several times to see what happens.

Interest rate forecast in Excel

Page 24: ESD.70J Engineering Economy Module - Session 31 ESD.70J Engineering Economy Fall 2006 Session Three Alex Fadeev - afadeev@mit.edu Link for this PPT:

ESD.70J Engineering Economy Module - Session 3 24

Check the solution sheet.

Please ask questions now…

Page 25: ESD.70J Engineering Economy Module - Session 31 ESD.70J Engineering Economy Fall 2006 Session Three Alex Fadeev - afadeev@mit.edu Link for this PPT:

ESD.70J Engineering Economy Module - Session 3 25

Mean reversion Theory

• Mean reversion has many applications besides modeling interest rate behavior in finance theory

• Mathematic form (you do not have to know)

where r is the interest rate, η is the speed of mean reversion, is the long-term mean, σ is the volatility, and dz is the basic Wiener process

dzdtrrdr )(

r

Page 26: ESD.70J Engineering Economy Module - Session 31 ESD.70J Engineering Economy Fall 2006 Session Three Alex Fadeev - afadeev@mit.edu Link for this PPT:

ESD.70J Engineering Economy Module - Session 3 26

S-curve• Many interesting process follow the S-

curve pattern

Time

For example, demand for a new technology initially grows slowly, then the demand explodes exponentially and finally decays as it approaches a natural saturation limit

Page 27: ESD.70J Engineering Economy Module - Session 31 ESD.70J Engineering Economy Fall 2006 Session Three Alex Fadeev - afadeev@mit.edu Link for this PPT:

ESD.70J Engineering Economy Module - Session 3 27

Modeling S-curve Deterministically

• Parameters:– Demand at year 0– Demand at year T– The limit of demand, or demand at time

• Model:

• α and β can be derived from demand at year 0 and year T

teDemandtDemand )()(

10/))10()(

ln(

)0()(

DemandDemand

DemandDemand

Page 28: ESD.70J Engineering Economy Module - Session 31 ESD.70J Engineering Economy Fall 2006 Session Three Alex Fadeev - afadeev@mit.edu Link for this PPT:

ESD.70J Engineering Economy Module - Session 3 28

Modeling S-curve dynamically

• We can estimate incorrectly the initial demand, demand at year T, and the limit of demand, so all of these are random variables

• The growth every year is subject to an additional annual volatility

Page 29: ESD.70J Engineering Economy Module - Session 31 ESD.70J Engineering Economy Fall 2006 Session Three Alex Fadeev - afadeev@mit.edu Link for this PPT:

ESD.70J Engineering Economy Module - Session 3 29

S-curve example

• Demand(0) = 80 (may differ +/- 20%)

• Demand(10) = 1000 (may differ plus or minus 40%)

• Limit of demand = 1600 (May differ plus or minus 40%, not less than (Demand(10)+100))

• Annual volatility is 10%Link for Excel: http://ardent.mit.edu/real_options/ROcse_Excel_latest/Session3-2.xls

Page 30: ESD.70J Engineering Economy Module - Session 31 ESD.70J Engineering Economy Fall 2006 Session Three Alex Fadeev - afadeev@mit.edu Link for this PPT:

ESD.70J Engineering Economy Module - Session 3 30

Back to Big vs. small?

• We talked about the following models today– Normal– LogNormal– Geometric Brownian Motion– Mean Reversion– S-curve

• Which one is more appropriate for our demand modeling problem? Why?

Page 31: ESD.70J Engineering Economy Module - Session 31 ESD.70J Engineering Economy Fall 2006 Session Three Alex Fadeev - afadeev@mit.edu Link for this PPT:

ESD.70J Engineering Economy Module - Session 3 31

Model calibration challenges

• Knowing the theoretical models is only a start. Properly calibrating them is critical

• Otherwise – GIGO

• In many cases, data is scarce for interesting decision modeling problems.

• A good everyday habit to contemplate plausible sources of data for your line of work.

Page 32: ESD.70J Engineering Economy Module - Session 31 ESD.70J Engineering Economy Fall 2006 Session Three Alex Fadeev - afadeev@mit.edu Link for this PPT:

ESD.70J Engineering Economy Module - Session 3 32

Example• We simulated the movement of Google

stock price using the expected monthly return of 6% and quarterly volatility of 14%. Is it reasonable?

• When Google IPO-ed in 2004, there was no historical data to draw upon. Solution - use a comparable stock, like Yahoo, to estimate expected drift and volatility.

Page 33: ESD.70J Engineering Economy Module - Session 31 ESD.70J Engineering Economy Fall 2006 Session Three Alex Fadeev - afadeev@mit.edu Link for this PPT:

ESD.70J Engineering Economy Module - Session 3 33

Issues in modeling• Do not trust the model – this is the presumption

for using any model.– Highly complicated models are prone (if not doomed)

to be misleading– The more inputs are required – the more room for

error– Always check sensitivity of inputs

• Dynamic models offer great insights, regardless of the output data errors

• In some sense, it is more a way of thinking, analysis and communication

Page 34: ESD.70J Engineering Economy Module - Session 31 ESD.70J Engineering Economy Fall 2006 Session Three Alex Fadeev - afadeev@mit.edu Link for this PPT:

ESD.70J Engineering Economy Module - Session 3 34

Summary• We have generated random numbers from

various distributions• Explored random variables as functions of

time (stochastic processes)– Geometric Brownian Motion– Mean Reversion– S-curve

• Used statistical analysis to collect key model inputs

Page 35: ESD.70J Engineering Economy Module - Session 31 ESD.70J Engineering Economy Fall 2006 Session Three Alex Fadeev - afadeev@mit.edu Link for this PPT:

ESD.70J Engineering Economy Module - Session 3 35

Next class…

The course has so far concentrated on ways to model the uncertainty.

Modeling is passive. As human being, we have the capacity to manage uncertainties proactively. This capacity is called flexibility and contingency planning.

The next class we’ll finally explore way to model and value the flexibility.