eric pantin, jean schneider, a. boccaletti, p. baudoz, r. galicher, r. gratton, d. stam et al....

24
Eric Pantin, an Schneider, A. Boccaletti, P. Baudoz, R. Galicher, R. Gratt D. Stam et al. olarimetry and spectral imaging f mature Jupiter and super-Eart with SEE-COAST

Upload: raymond-watts

Post on 03-Jan-2016

215 views

Category:

Documents


1 download

TRANSCRIPT

Eric Pantin,

Jean Schneider, A. Boccaletti, P. Baudoz, R. Galicher, R. Gratton,

D. Stam et al.

Polarimetry and spectral imaging

of mature Jupiter and super-Earth

with SEE-COAST

SEE-COAST UCF Orlando 2

Direct

imaging

Complementarity of techniques

SPECTRA & POLARIZATION

DATA

Transi

t

SEE-COAST UCF Orlando 3

Space-based

Ground-based

1995 2000 2011 2017-20202010 >2025-30

We are here

Ground/space complementarity

SEE-COAST UCF Orlando 4

Space-based

Ground-based

1995 2000 2011 2017-2020 >2025-30

8m + OA

VLT, Keck,

Gemini

4m + OA

Silla, CFH

We are here

2010

Ground/space complementarity

HST

SEE-COAST UCF Orlando 5

Space-based

Ground-based

1995 2000 2011 2017-2020 >2025-30

We are here

2010

8m + XAO

SPHERE / GPI / HICIAO

NIR : EGPs young/massive/nearby

Ground/space complementarity

8m + OA

VLT, Keck,

Gemini

4m + OA

Silla, CFH

HST

SEE-COAST UCF Orlando 6

Space-based

Ground-based

1995 2000 2011 2017-2020 >2025-30

We are here

2010

Ground/space complementarity

8m + OA

VLT, Keck,

Gemini

4m + OA

Silla, CFH

HST

30/42m + XAO

EPICS, METIS etc with ELTs

NIR : EGPs intermediate

Old + Super-Earth ?

8m + XAO

SPHERE / GPI / HICIAO

NIR : EGPs young/massive/nearby

SEE-COAST UCF Orlando 7

Space-based

Ground-based

1995 2000 2011 2017-2020

JWST

NIR + MIR:

Old EGPs>2025-30

We are here

2010

SPICA MIR:

Old EGPs

Ground/space complementarity

8m + OA

VLT, Keck,

Gemini

4m + OA

Silla, CFH

HST

30/42m + XAO

EPICS, METIS etc with ELTs

NIR : EGPs intermediate

Old + Super-Earth ?

8m + XAO

SPHERE / GPI / HICIAO

NIR : EGPs young/massive/nearby

SEE-COAST UCF Orlando 8

Space-based

Ground-based

1995 2000 2011 2017-2020

Darwin/TPF-I

MIR: Earth

TPF-C

Vis: Earth

>2025-30

We are here

?

?

2010

JWST

NIR + MIR:

Old EGPs

SPICA MIR:

Old EGPs

Ground/space complementarity

8m + OA

VLT, Keck,

Gemini

4m + OA

Silla, CFH

HST

30/42m + XAO

EPICS, METIS, etc with ELTs

NIR : EGPs intermediate

Old + Super-Earth ?

8m + XAO

SPHERE / GPI / HICIAO

NIR : EGPs young/massive/nearby

SEE-COAST UCF Orlando 9

Space-based

Ground-based

1995 2000 2011 2017-2020 >2025-30

Visible light

Old giants & super-Earths

We are here

?

?

2010

JWST

NIR + MIR:

Old EGPs

SPICA MIR:

Old EGPs Darwin/TPF-I

MIR: Earth

TPF-C

Vis: Earth

?

?Ground/space complementarity

8m + OA

VLT, Keck,

Gemini

4m + OA

Silla, CFH

HST

30/42m + XAO

EPICS, METIS, etc with ELTs

NIR : EGPs intermediate

Old + Super-Earth ?

8m + XAO

SPHERE / GPI / HICIAO

NIR : EGPs young/massive/nearby

Opportunity for space

projects

SEE-COAST UCF Orlando 10

Space-based

Ground-based

1995 2000 2011 2017-2020 >2025-30

We are here

?

?

2010

JWST

NIR + MIR:

Old EGPs

SPICA MIR:

Old EGPs Darwin/TPF-I

MIR: Earth

TPF-C

Vis: Earth

?

?

SEE COAST Vis/NIR

Old Jupiter + Super Earth

Ground/space complementarity

8m + OA

VLT, Keck,

Gemini

4m + OA

Silla, CFH

HST

30/42m + XAO

EPICS, PFI, etc with ELTs

NIR : EGPs intermediate

Old + Super-Earth ?

8m + XAO

SPHERE / GPI / HICIAO

NIR : EGPs young/massive/nearby

SEE-COAST UCF Orlando 11

What SEE-COAST will characterize :

What's expected :

Exo-zodiacal and debris disk

Mature Jupiter (>1 Gyr)

And unexpected objects !Stay open-minded (cf. hot Jupiter in 1995)

Brighter

Atmosphere, climate

Variations, habitability

Super

Earth

Around nearby star

-

SEE-COAST UCF Orlando 12

Spectroscopy : chemical composition

Giant planets

Solid planets

SEE-COAST UCF Orlando 13

Polarimetry : physical informationsJupiter-like planet - Stam et al. 2005

Spectrum

Polarization

Earth-like planet - Stam et al. 2008

cloud

vegetation

oceanA=0

A=1

SEE-COAST UCF Orlando

- Spectral time variation=> variation of temperature

=> surface properties

0.45 m

0.75 m

- Polarimetric time variation => surface properties

Cloud free Earth from 0.65 to 0.9 m

50° Phase angle

130°90°

• Spectroscopy• Polarimetry• Variability

SEE-COAST UCF Orlando 15

How many detections ?

SEE-COAST UCF Orlando 16

How many detections ?

1e-9

1e-10

SEE-COAST UCF Orlando 17

How many detections ?

1e-9

1e-10

Requirements : 10-10 contrast Small inner working angles

SEE-COAST UCF Orlando 18

Hyperbolic secondary mirror 4,85m long

Parabolic primary mirror

Two folding

mirrors

Focal plane Submitted in 2007 to

ESA Cosmic Vision

SEE-COAST proposed to ESA Cosmic VisionParameter Value

Entrance pupil diameter D > 1.5m

Angular resolution 70 mas @ 0.6 m

Contrast (after speckle subtraction) @ 2 /D

< 10-9

Contrast (after speckle subtraction) @ 4 /D

< 10-10

Orbit for 6 months visibility, high thermal stability

L2 Lagrangian

SEE-COAST UCF Orlando

1) Coronagraphy2) Wavefront control (a few nm rms from science image)

3) Polarization+Spectral Differential imaging

SEE-COAST : optical concept

1) visible light channel (0.4-0.85 m): 2 polarimetric arms

2) Near-IR channel (0.85-1.25 m): no polarimetry

SEE-COAST UCF Orlando 20

Main component I: Achromatic Coronagraph

Laboratory "planet"

Contrast : 6.7 10- 9

at 4.5/D= 20%

Visible lightBaudoz et al. 2007, 08

Multi-stage four quadrant

phase mask coronagraph

SEE-COAST UCF Orlando 21

Main component II: Wavefront correction

Speckle nulling

in a limited FOV

with a DM (JPL, Trauger

& Traub, 07)

2 stages WFS: 1st stage : Classical WFS+DM (~1 nm rms residuals) 2nd stage : Phase correction in coronagraphic image : wavefront error

reduced by 100, spurious speckles by a factor 10 000 (speckles nulling).

2 DMs concept is preferred (and envisioned)

SEE-COAST UCF Orlando 22

Main component III :

Integral Field Spectrometer (R=40-80)

Field position

Wavelength

SEE-COAST UCF Orlando 23

Main component IV :

Reject efficiently spurious star speckles

1) differential polarimetry

Field position

Wavelength

2) spectral deconvolution (aberrations scale with )

Wavelength

3) Self-coherent method (Baudoz, 07)

SEE-COAST UCF Orlando

SummarySEE COAST requires :

High contrast : ≈ 10-10 AND small IWA : ≈ 2 /D

SEE COAST can get :

low res spectra of mature giants < 20pc (< 8 - 10 AU)

colors of a few mature Super Earths < 10pc (< 4 - 5 AU)

possibly Earths around the nearest star ( Cen)

low res spectra of self luminous planets (extension to near IR)

SEE COAST is :

Compatible with general astrophysics (pushing to UV, wide field ?)

Compatible with transit spectroscopy

additional targets (unresolved planets) & complements IR transit characterization programs

Next steps in the project :

refine some science cases and simulations (statistical analysis)

elaborate optical design with industrial partners (Astrium) + derive tolerances

technological developments in coronagraphy and wavefront control

get prepared for next COSMIC VISION proposal (2010)