er stolte av å presentere

23
1 er stolte av å presentere Eirik Hoel Isak Nordal Marlene Stubberud Kristoffer Glesdal Olav Are Frøynes Christoffer Rognseth Even Hansen Erlend Orvik Mari Hæreid Marius Giske Helene Nævdal Gruppe 6

Upload: benny

Post on 24-Feb-2016

55 views

Category:

Documents


0 download

DESCRIPTION

er stolte av å presentere. Eirik Hoel Isak Nordal Marlene Stubberud Kristoffer Glesdal Olav Are Frøynes Christoffer Rognseth. Even Hansen Erlend Orvik Mari Hæreid Marius Giske - PowerPoint PPT Presentation

TRANSCRIPT

1

er stolte av å presentere

Eirik Hoel Isak Nordal Marlene Stubberud Kristoffer Glesdal Olav Are FrøynesChristoffer Rognseth

Even Hansen Erlend Orvik Mari Hæreid Marius Giske Helene Nævdal Gruppe 6

2

Side Sideinnhold1 Forside

2 Innhold

3 Brukerprofil og brukssituasjon

4 Behovsscenario, visjon og misjon

5 Bruksmåte og produktkravspesifikasjon

6 Presentasjon av prosjektet

7 Konseptutvikling av ramme

8 Detaljert layout med mål og dimensjoner

9 Kraft-, skjær- og momentdiagram

10 Maskintegning av egenkonstruert rammeløsning

11 Maskintegning av egenkonstruert rammeløsning

12 Utviklingen av framdriftsystemet

13 Presentasjon av framdriftsystemet

14 Maskintegning av motorfeste

15 Beregning av hastighet og akselerasjon

16 3D-modell og strømningseffekter

17 Beregning av dragkraft

18 Sammenstillingstegning av vindskjerm

19 Beskrivelse av bremsesystem

20 Miljøbelastningsanalyse

21 Maskintegning av hele sykkelen

22 Evaluering og utbedringer

23 Forklaring av sykkelen

Tema 1: Bruker Tema 2: Brukssituasjon Gruppe: 6 Utført av: Helene og Marlene Dato: 11. mars 2010

BrukerprofilFysiske begrensninger: IngenHøyde: 180 cmVekt: 100 kg (med rustning)Krav: • Behøver en hånd til disposisjon (til bruk av sverd)• Frontskjerm for beskyttelse, men ikke så stor at den hindrer bruk av sverd• Relativt liten svingeradius for lettere manøvrering• Stående posisjon for større kontroll og kraft i slag. Muliggjør enklere av- og påstigning• Tre hjul for bedre balanse

BrukergruppeGladiatorer med behov for kjøretøy i arena.

BrukssituasjonGladiatoren Maximus vil ha bruk for produktet i arenaen ved kamp på dagtid. Det er en stressende og livstruende situasjon hvor han kontinuerlig blir utsatt for angrep.

Brukerprofil

Navn: Maximus Decimus MeridiusAlder: 30

Yrke: Gladiator

Brukssituasjon

Maximus trives best i et avslappet og kontrollert miljø hvor han kan nyte et glass vin eller to mens han skuer utover eiendommen bestående av svaiende åkre og filosoferer over livets store spørsmål.

En familiekjær mann og setter stor pris på kvalitetstid med sin sønn og kone.

Han er et strategisk geni som ble den yngste generalen i keiserens hær noensinne. 3

Colosseum

BehovsscenarioLegionærene i arenaen hadde vogn og hest, mens gladiatoren måtte kjempe til fots. Vi ønsket derfor å utvikle et framkomstmiddel til gladiatoren for å skape en mer rettferdig kamp.

VisjonUt i fra gladiatorens behov har vi kommet fram til at den beste løsningen er å utvikle et framkomstmiddel som gir effektiv manøvrering og rask framdrift, samtidig som man har mulighet til å forsvare seg.

Vi ønsket å lage en unik sykkel med en utradisjonell bruksmåte for å vise hva vi som produktutviklingsbedrift kan skape. Potensialet til denne sykkelen overstiger eventuelle økonomiske risikoer, og vil presentere dyktigheten og kreativiteten i vår bedrift på en god måte.

MisjonGladRide er konseptet vi utviklet som et demonstrasjonsprodukt for vår bedrift. Det skulle være en sykkel som assosieres med en romersk vogn, men samtidig er moderne utstyrt. Den er bygd slik for å vise vår kompetanse innen produktutvikling og produksjon.

Våre ambisjoner er å utvikle nye produkter som imponerer, samt oppfyller kundens krav på en tilfredstillende måte.

Visjon

Behovsscenario

Misjon

4

Tema 1: Behovsscenario Tema 2: Visjon og misjon Gruppe: 6 Utført av: Helene, Marius og Marlene

Dato: 11. mars 2010

Under kamp har man dårlige odds som gladiator

Ved hjelp av et tilpasset framkomstmiddel, øker sjansen for å overleve i kamp

Bruksmåte• Påstigning bak på kjøretøyet• Sykles stående av én person• Styres ved hjelp av kun én hånd som manøvrerer en joystick (med bremsehändel, av/på knapp til el-motor og gass)• Framdrift ved hjelp av step-pedaler og elektromotor i navet i framhjulet

ProduktkravspesifikasjonProduktkravspesifikasjonen er en koalisjon av brukerkravspesifikasjonen og teknologikravspesifikasjonen. Vi har valgt å ta med dette for å vise de målene vi har satt oss for sykkelen, og bruker det videre i utformingen av sykkelen.

Beskrivelse Skal Bør1 Funksjonskrav

1.1 Tåle person på minst 100 kg √

1.2 Lav nok svingradius til å klare løypen (90 grader sving) √

1.3 Framdrift til å drive mann + sykkel √

1.4 Hjelpemotor på minst 250 W √

1.5 Ha bremser nok til å stoppe √

1.6 Kunne stoppe på 5 m √

1.7 Lett av/på stigning √

1.8 Være raskere enn motstandere til fots √

2 Omgivelseskrav

2.1 Tåle underlag av hardpakket jord/sand og asfalt √

2.2 Gi beskyttelse i kamp √

3 Operasjonelle krav

3.1 Styres med én hånd √

3.2 Stående styreposisjon med hensyn til kamp √

4 Pålitelighets krav

4.1 Levetid på én kamp √

4.2 Tåle normalbruk (utenfor arenaen) i 1 år √

5 Utseende

5.1 Ha et showvennlig utseende ( vha. applausbarometer) √

5.2 Aerodynamisk utforming √

5.3 Maks dimensjoner: 2,4 m x 1,5 m x 1,0 m (L x H x B) √

6 Miljøkrav

6.1 Laget av organisk/resirkulerbart materiale √

Bruksmåte

+

Produktkravspesifikasjon

5

Tema 1: Bruksmåte Tema 2: Produktkrav-spesifikasjon

Gruppe: 6 Utført av: Eirik, Helene og Marlene

Dato: 18. mars 2010

GladRide er sykkelen som gir gladiatoren et solid fortrinn i kampen på Colosseum!

Med sin enkle av- og påstigning er det lett å skifte mellom kamp på og av sykkelen. Framdrift med step-pedaler gjør at man kan stå oppreist; og sammen med enhåndsstyringen gjør dette det mulig å kjempe også på sykkelen. Kåpen gir god beskyttelse mot piler og sverd, og lav svingradius gjør det lett og raskt å skifte retning i kampens hete.

Med denne sykkelen kommer man enkelt i angrepsposisjon i forhold til motstanderne, og el-motoren gjør at man kan få regulert hastigheten gjennom hele kampen, selv om kreftene begynner å ta slutt. I tillegg er sykkelen utviklet for god stabilitet med sine tre hjul.

Selv om sykkelen skiller seg radikalt ut med sine tekniske detaljer, glir den flott inn blant andre framkomstmidler på denne historiske arenaen.

Dette er ikke noen billig sykkel, men det er heller ikke dens formål. Dette er en solid sykkel som er spesiallaget for kjempende gladiatorer, og gir de ekstra beskyttelse, økt hurtighet, bedre utholdenhet og mer offensiv styrke. Disse forbedrede egenskapene gir de igjen det viktigste med hele sykkelen; en mye større sjanse til å overleve og vinne kampene i Colosseum!

Tema 1: Presentasjon Tema 2: Egenskaper Gruppe: 6 Utført av: Marius og Isak Dato: 30. april 2010

6VENI VIDI VICI

Konseptutvikling av ramme

7

Tema 1: Ramme Tema 2: Konseptutvikling Gruppe: 6 Utført av: Mari og Erlend Dato: 30. april 2010

Tidlig utviklingsfasePå grunnlag av visjonen begynte vi å skissere utkast til en rammestruktur. Pedalplassering, posisjonen til fører og antall hjul var avgjørende for utformingen. Vi kom frem til at rammen burde gå mellom bena til føreren for å få en så smal og lett struktur som mulig. Vi regnet med at den øverste delen ville bli utsatt for trykkrefter. Derfor gjorde vi de øverste rørene rettlinjet i xy-planet.(se fase 3).

ByggefaseUnderveis i byggeprosessen så vi at rammen kunne være sterk nok uten alt fagverket. En forenklet beregning av kreftene på rammen ble utført.(se neste side). På bakgrunn av dette bestemte vi oss for å forenkle strukturen ved å eliminere deler av fagverket.

Utvikling av feste for drivverkVi hadde til nå ventet med å gå i detalj på hvordan vi skulle feste drivverk og hjul grunnet at også fremdrift var under utvikling.

Pedalene er koblet til en differensial (se fremdriftsdel) som vi valgte å feste til rammen slik anvist i bildet til høyre.

Angående bakakslingen valgte vi en modulbasert løsning. Vi festet først alle lagerbrakettene langs et rett firkantrør med ”festeører”. På den måten kunne vi ha en god arbeidsstilling når vi skulle rette opp lagrene, før hele systemet ble montert fast til rammen vha bolter (se maskintegning for detaljer).

Første testkjøringDet viste seg at firkantrøret alene ikke var sterkt nok til å holde imot tråkreftene. I tillegg måtte det gjøres forbedringer på fremdriften. Dette krevde forbedringer av rammen. Se neste side for det ferdige resultatet.

Modulbasert akslingsfesteFeste-ører for monteringtil ramme

Hull for montering avlagerbraketter

Deformasjon under testkjøringFirkantrøret bøyde seg drastisk da kjedene dro I akslingen

Detaljert layout med mål og dimensjoner

8

Tema 1: Ramme Tema 2: Detaljert layout Gruppe: 6 Utført av: Olav og Christoffer Dato: 01. mai 2010

8

Beregning av verdier som utgangspunkt for diagrammerFor å kunne regne ut diverse krefter som påvirker rammestrukturen og interne krefter i rørene, må det forenklinger til. Første forenkling er å anta at strukturen er todimensjonal. I tillegg fjerner vi enkelte rør som har liten innvirkning i forhold til andre. Noen vinkler forenkles og vi antar at vekten på differensialen og syklisten virker i samme punkt og på øverste rør. Lengden på de fleste rør er som i NX-modellene.

1. Frittlegemediagram av forenklet rammestruktur. Viser kraft fra differensial (15 kg) og syklist (100 kg med rustning) og opplagerkrefter som treffer bakhjul i punkt A og framhjul i punkt B.

2. Frittlegemediagram som viser rør AC hvor eksternkraft treffer. Sammenligner røret med en bjelke og antar fast innspenning i begge ender. Ukjente krefter er aksialkrefter fra andre rør og opplagerkraft fra bakhjul.

3. Aksialkraft-, skjærkraft- og momentdiagram av rør AC.

4. Aksialkraftdiagram av hele rammestrukturen som viser i hvilke rør det befinner seg strekk eller trykk. På grunn av eksternkraft blir det strekk på undersiden av strukturen og trykk i stav som fester sammen øvre og nedre rør.

Tema 1: Ramme Tema 2: Diagrammer Gruppe: 6 Utført av: Mari Dato: 30. april 2010

9

Aksialkraft-, skjær- og momentdiagram

2.

1. 3.

4.

10

Tema 1: Ramme Tema 2: Maskintegning av egenkonstruerte deler

Gruppe: 6 Utført av: Olav og Christoffer Dato: 01. mai 2010

10

11

Tema 1: Ramme Tema 2: Maskintegning av egenkonstruerte deler

Gruppe: 6 Utført av: Olav og Christoffer Dato: 01. mai 2010

11

Prinsipielle strukturerI startfasen utviklet vi en morfologisk tabell med alternative løsninger til framdrift. Ut i fra denne tabellen konkluderte vi med noen prinsipielle strukturer som vi videreutviklet etter vi hadde bestemt oss for step-metoden.

Strukturene har uavhengig bakaksel for bedre svingegenskaper.

SkisserNederst er mer detaljerte skisser av strukturene vi valgte å jobbe videre med. Vi kom fram til at løsningen til høyre ville være mest gunstig og solid, og valgte derfor å ta utgangspunkt i denne løsningen. Her er det også lagt på en ekstra utveksling, som er nødvendig for å få tilstrekkelig fart på sykkelen.

* Med ”krank” mener vi frihjulsnav

Utvikling av framdrift

12

Tema 1: Fremdrift Tema 2: Utvikling av systemet Gruppe: 6 Utført av: Isak Dato: 26. april 2010

12

Manuell framdriftDen manuelle delen av framdriften er step-basert der tanken er å få stort moment inn i et kjedehjulsystem som omdanner dette til rotasjon i hjulene. Kjedehjulsystemet har en utveksling på 1:16.

En differensial er benyttet for å forbinde pedalene mekanisk.

Elektrisk framdriftEn børsteløs likestrømsmotor som er plassert i fremre hjulnav sørger for ekstra skyv når det behøves. Motoren har en effekt på 250 W og drives av et batteri på 36 V. Motorstyringen sitter integrert på sykkelens styrespak.

IllustrasjonenTil høyre er en oversikt over sykkelens framdriftsystem, bestående av manuell og elektrisk framdrift.

Presentasjon av framdriftsystem

13

Tema 1: Framdrift Tema 2: Oversikt over systemet

Gruppe: 6 Utført av: Isak Dato: 26. april 2010

13

14

Tema 1: Framdrift Tema 2: Motorfeste Gruppe: 6 Utført av: Olav og Christoffer Dato: 01. mai 2010

14

HjelpemotorVi ser bort i fra luftmotstand. Effekt på motoren var oppgitt på selve maskindelen og turtallverdi er hentet fra internett.* Farten brukt i beregningene er lik den brukt i utregning av dragkraft.

Manuell framdriftDet er gjort noen forenklinger, men det er tatt hensyn til alle tre tannhjuløverføringene. Eventuelle andre tap av krefter er ikke tatt hensyn til.

ResultatNår man ser på resultatene, avviker de ikke mye fra de virkelige tallene. Vi hadde regnet med en litt for stor fart på manuell framdrift, og akselerasjonen ble beregnet deretter.

Beregningene for hjelpemotoren ble nærmest omvendt. Farten som ble beregnet var litt for lav i forhold til farten vi egentlig fikk på den siste langsiden i løpet. Nok en gang ser man at akselerasjonsberegningene ble deretter.

Den estimerte farten ble beregnet til 15 km/t og når man ser på målingene foretatt senere, viser det seg at 15 km/t faktisk ligger midt i mellom de målte resultatene; 10 og 21 km/t.

Alt i alt blir konklusjonen at de estimerte beregningene kunne ha blitt gjort mer detaljert, men under forholdene er de tilfredsstillende.

* Akselerasjonen vil være raskere i praksis, fordi vi oppnådde toppfart før teststrekningen var slutt under test.

*http://www.ecoride.se

15

Tema 1: Framdrift Tema 2: Hastighet- og akselerasjonsberegninger

Gruppe: 6 Utført av: Isak, Helene og Marlene

Dato: 30. april 2010

Beregning Målinger

Manuell framdrift Verdier fra måling; t = 9 sek og s = 25 m

Hastighet 15 km/t = 4,17 m/s 10 km/t = 2,8 m/s

Akselerasjon 0,8 m/s2 0,3 m/s2 *

Hjelpemotor Verdier fra løpet; t = 13,56 sek og s = 80 m:

Hastighet 15 km/t = 4,17m/s v = s/t = 21,24 km/t = 5,9 m/s

Akselerasjon 0,1 m/s2 a = (v-v0)/(t-t0) = 0,4 m/s2 (gj.snitt a)

Sykkel:Omkrets framhjul: 2,0 mRadius framhjul:0,35 mVekt av sykkel: 62 kgVekt av bruker: 80 kgTotalvekt: 142 kg

Beregning av hastighet og akselerasjon

Konstanter:Rullefriksjon: 0.006 (litt grov asfalt, vanlig sykkeldekk)

El-motor:Effekt: 250 WMaks hastighet: 15 km/t

(25 km/t uten last)Turtall: 350 rpm (gj.snitt)Dreiemoment: 6,82 Nm (gj.snitt)

Beregninger - hjelpemotor:Kraft: G = g*m = 9,81 m/s2*142 kg = 1393,02 NNormalkraft: N = -G = -1393,02 NRullefriksjon: R = µ*N = 0,006 * (-1393,02 N) = -8,36 NGj.snitt dreiemoment: (0,25 kW*9549)/350 rpm = 6,82 NmKraft fra motor: F = τ/r = 6,82 Nm/0,35 m = 19,49 N

F+R = 19,49 N+(-8,36 N) = 11,13 NAkselerasjon: a = F/m = 11,13 N/142 kg = 0,078 m/s2

Beregninger - manuell framdrift:Kraft: G = g*m = 9,81 m/s2*80 kg = 784,8 NKraft fra 1. tannhjul: M1 = G*s = 784,8 N/0,6 m = 470,9 Nm

F1/radius1 = 470.9 Nm/0,08 m = 5886 NKraft fra 2. tannhjul: M2 = F1/radius2 = 5886 N/0,02 m = 117,72 Nm

F2 = M2/radius3 = 117,72 Nm/0,08 m = 1471,5 NKraft på bakhjul: M3 = F2/radius4 = 1471,5 N/0,02 m = 29,43 Nm

F3 = M3/radius5 = 29,43 Nm/0,25 m = 117,72 NTotalkraft: F3+R = 117,72 N+(-8,36 N) = 109,36 NAkselerasjon: a = F/m = 109,36 N/142 kg=0,77 m/s2

15

VindtunnelVindskjermen ble ikke testet i vindtunnelen daden var i ustand, men vi benytter resultater frarøyktunnelen.

Røyktunnel og strømningerVed testing av vindskjermmodell i røyktunnelener det rimelig å anta at vindstrømmene trefferføreren av sykkelen kraftigst i brystregionen.Nedenfor vindskjermen er kåpen, så det vil ikkebli luftstrømninger under skjermen som vist påbildet, men testen gir et bilde av hvordan vindenvil passerer på oversiden av skjermen.

Vi ser ut ifra røykstrømningene at vindskjermenbryter røyken bra. Skjermen fører strømningenefint langs fronten og sender den videre bak

utenfor mye turbulens. Vinden blir fordelt over oglangs sidene av skjermen og det er tydelig atden er godt aerodynamisk utformet. Designet avskjermen ble valgt med omhu; den måtte ikkevære for bratt slik at dragkraften ble for stor.Samtidig måtte det være nok helling på den slikat den bryter vinden fint og fører noe av vindenover føreren.

UtformingPå denne vindskjermen er designet merenn bare aerodynamikk, det er også tatt hensyntil funksjonalitet. Sidene ble senket for å gi romtil å svinge sverdet mot fiender, samtidig som atfronten er høy nok til å gi beskyttelse.

Tema 1: Vindskjerm Tema 2: 3D-modell og strømningseffekter

Gruppe: 6 Utført av: Christoffer, Eirik og Kristoffer

Dato: 28. april 2010

16Pilene illustrerer hvordan luftstrømmen vil ledes over vindskjermen

Beregning av luftmotstandDet ble først beregnet et overslag på hva dragkraften kom til å være. Det ble da komet fram til at den vil være nokså høy for hele sykkelen, ettersom at den ikke er laget med høy fart som prioritet. Vindskjermen derimot ble utformet med tanke på god funksjonalitet for bruker, samt med en aerodynamisk utforming. Det ble antatt at den kom til å bidra lite til den totale dragkraften.

Resultater fra målinger i vindtunnelFordi motoren i vindtunnelen havarerte, fikk dessverre ingen grupper gjennomført vindtunneltesten. Likevel har vi antatt at testen ble gjennomført og baserer utregninger på verdier estimert ut i fra tidligere sykler som har vært i vindtunnelen.

Vurdering av den antatte luftmotstand for GladRide sammenlignet med resultatene fra den estimerte vindtunnelenMed tanke på størrelsen og overflaten på vår sykkel, er ikke disse tallene så urimelige. Resultatene stemmer nokså bra med hva som ble antatt før tallene ble regnet på.Til tross for at det er større areal på vindskjermen enn andre som har vært gjennom samme test, så har skjermen en gunstig aerodynamisk form som gjør at dragkraften blir minimalisert.

Beregning av luftmotstand

Tema 1: Vindskjerm Tema 2: Beregninger Gruppe: 6 Utført av: Marlene Dato: 21. april 2010

17

1. Utregning av dragkraft: Forenklinger:• Vindskjermen er sett på som sylinderskall• Sykkelkroppen/kåpen er sett på som sylinderskall• Overkroppen er sett på som 1/3 av en stående person

Mål: (formel for overflate av sylinder: 2πrh) • Vindskjerm: 2 * π * 0,285m * 0,35m = 0,63m2

• Kåpe: 2 * π * 0,285m * 1m = 1,79m2

• Sirkelhull til hjulet: π * r² = π * 0,375² = 0,442m2

• Overkropp: 9ft2 (0,836m2)/3 = 0,279m2

Formel for dragkraft: D = ½ ρ U∞2 ACD

 Lufttetthet: ρ = 1,211kg/m3, ved 15 °C, 100m.o.hFart: U∞ = 15km/t = 4,17m/s estimert fart på sykkelAreal for vindskjerm * dragkoeffisient: ACD1 = 0,63m2 * 1,11 = 0,693m2

Areal for hele sykkelen med fører * dragkoeffisient: ACD2 = 2,455m2

Vindskjerm:D = ½ * 1,211kg/m3 * (4,17m/s)2 * 0,693 m2 = 7,30 N

Hele sykkelen:D = ½ * 1,211kg/m3 * (4,17m/s)2 * 2,455 m2 = 25,85 N2. Dragkraft utregnet med målinger fra vindtunnel:Tidligere sykler har hatt en fart/motstand i vindtunnelen på ca 8m/s ca. 28,8km/t. Dermed benyttet også vi denne hastigheten for å beregne dragkraften. Med disse forutsetningene blir dragkraften på sykkelen som følger:

Vindskjerm:D = ½ * 1,211kg/m3 * (8,00m/s)2 * 0,693 m2 = 26,86 N

Hele sykkelen:D = ½ * 1,211kg/m3 * (8,00m/s)2 * 2,455 m2 = 95,14 N

18

Tema 1: Vindskjerm Tema 2: Sammenstillings-tegning

Gruppe: 6 Utført av: Olav og Christoffer Dato: 01. mai 2010

18

Bremsesystem

19

Tema 1: Bremsesystem Tema 2: Gruppe: 6 Utført av: Eirik og Kristoffer Dato: 8. april 2010

Forklaring av de forskjellige delene1. Bremsevaier festet til bremsehåndtak. Når bremsehåndtak presses inn, strammes vaieren.

2. Festepunkt for håndtak. Rotasjonen skjer om dette punktet.

3. Festepunkt der vaieren blir koblet sammen med bremsene. Dette gjør at begge bremseklossene virker med like stor kraft når det trekkes i vaieren.

4. Festeanordning hvor bremseklossene sitter og presser inn mot felgen som bremser hjulet.

5. Festepunkt. Samme prinsipp som for festepunktet for håndtak. Sitter fast i forstaget og gjør at det kan roteres om dette punktet.

BegrunnelseFordi mesteparten av tyngden er konsentrert bak, vil sykkelen ha vanskeligheter med å tippe framover, og bremser på framhjulet vil være trygt. Bremseklosser vil være tilstrekkelig siden farten alltid er relativt liten. Derfor så vi det som unødvendig å benytte ekstra resursser for å anskaffe skivebrems.

1 2

3

4

5

20

Miljøbelastningsanalyse

Fase 1: Formålet med miljøbelastningsanalysenHensikten med analysen er å få en oversikt over hvordan produktet GladRide påvirker miljøet, med tanke på produksjon, bruk og avhending.

Fase 2: Definisjon av produktets livsløpSe prosesstre. Vi har valgt å se bort i fra motoren.

Fase 3: Kvantifisering av materialer og prosesser Funksjonell enhet: Estimerer effektiv bruk til en kamp à to timer. Eventuelt daglig bruk (utenfor arenaen) i ett år. Materialene og prosessene er veid eller estimert.

Fase 4: MiljøberegningsskjemaSe tabell.

Fase 5: Tolkning av resultateneVi ser ut i fra resultatene at stålet utgjør en stor del av totalsummen. En forbedring kan derfor være å bruke aluminium som er mer miljøvennlig, både i produksjon, bruk og avhending. Totalmassen til sykkelen hadde blitt redusert, men samtidig hadde produksjonen blitt dyrere.

De fleste verdiene er målt, men enkelte er estimert, som vekt av gummi, PVC og aluminium. Resultatet kan derfor være litt unøyaktig, men feilen er såpass liten at den neglisjeres.

Resultatet er som forventet. Sykkelen er nokså miljøvennlig hvis man påser at delene blir resirkulert.

Trefiner2,71 kg

PET1,50 kg

Stål44,88 kg

Gummi1,50 kg

Sammenlimt trevirke Støping Støping

Montasje

BatteriBruk

Avhending av sykkel

Avhending av batteri

Aluminium2,60 kg

Valsing og pressing

Transport

Prosesstre: produktets livsløp Miljøberegningsskjema

Tema 1: Miljøbelastnings-analyse

Tema 2: Miljøberegnings-skjema og prosesstre

Gruppe: 6 Utført av: Helene og Marlene Dato: 29. mars 2010

Støping

Produksjon

Materiale/prosess Mengde (kg)

Indikator (mP)

Sum (mP)

Stål* 44,88 86,00 3859,68

Aluminium (100% resirkulert) 2,60 60,00 156,00

Ekstrudere 2,60 72,00 187,20

PET (vindskjerm) 1,50 380,00 570,00

Trykkforming 1,50 6,40 9,60

PVC 0,20 240,00 48,00

Kalandering 0,20 3,70 0,74

EPDM gummi 1,50 360,00 540,00

Tre (wood board) 2,71 39,00 105,69

Batteri 8,61 1,50 12,92

Sum 62,00 5489,83

Bruk

Oppladning av batteri 9,72 22,00 213,84

Sum 213,84

Avfallshåndtering

Gjennvinnbart materiale

Stål 44,88 - 70,00 -3141,60

Aluminium 2,60 - 720,00 - 1872,00

PVC 0,20 - 170,00 -34,00

Tre (wood board) 2,71 -12,00 -32,52

Batteriavhending 8,61 33,50 288,44

Ikke-gjennvinnbart materiale

PET (vindskjerm) brenning 1,50 - 6,30 - 9,45

Produksjon av ny PET 1,50 380,00 570,00

EPDM gummi 1,50 37,00 55,50

Prod. av ny EPDM gummi 1,50 360,00 540,00

Sum -3635,63

Total sum 2068,04

*har ikke tatt med prossesering av stål da faktoren blir så liten

GladRide

21

Tema 1: Sykkel Tema 2: Maskintegning Gruppe: 6 Utført av: Olav og Christoffer Dato: 01. mai 2010

22

Tema 1: Evaluering Tema 2: Forbedringer Gruppe: 6 Utført av: Even Dato: 03. mai 2010

I det store og hele har vi klart å fremstille en sykkel vi er godt fornøyd med, men vi har under testing oppdaget noen funksjoner med forbedringspotensial. Noen er blitt utbedret, men pga. tidsmangel ble noen nedprioritert.

Stabilitet1. Sykkelens tyngdepunkt er høyere enn antatt noe som førte til at fremre del av rammen bøyde seg i svinger og det var vanskelig for fører å holde seg stabil.Mulige løsninger: 2. Bøye pedalene for å senke tyngdepunktet.3. Montere front- og sidestøtte til hoftene slik at fører har en stabil plassering.4. Forsterke fremre del av rammen.5. Montere håndtak på rammen.

Fremdrift6. Det var liten utveksling på manuell fremdrift noe som førte til at sykkelen gikk sakte fremover.Løsning:7. Ekstra utveksling ble montert.

På og avstigning8. På- og avstigning er noe vanskelig hvis man ikke holder inne bremsen.Mulig løsning9. Montere stoppere for pedalene slik at de har et endepunkt i nedre posisjon.

1. 2.

6. 7.

9.

De forskjellige maskindelene1. BremsehendelFastsatt på joysticken for lett tilgjengelighet. Koblet til bremseklosser på framhjul; kobler også ut motoren.2. Bryter og gassLar deg operere den elektriske motoren fra joysticken. Bryteren skrur av og på motoren, og man gir gass ved å vri mot høyre.3. BatteriEt 36V blybatteri driver den elektriske motoren i navet i framhjulet på sykkelen.4. Step-pedalerSykkelen drives manuelt ved hjelp av egenkonstruerte step-pedaler.5. DifferensialGjør at den ene pedalen går opp når den andre tråkkes ned.6. VindskjermLaget i PET-plast og formet ved hjelp av varme. Aerodynamisk og stilmessig riktig utformet i forhold til tema og kåpe. Festet direkte i kåpen ved hjelp av festebraketter.7. KåpenLaget av en undertak-plate, lett og bøyelig i en retning, men allikevel stiv nok i den andre retningen til dette formålet. Lakkert i bronse og dekorert med tidsriktig mønster, samt sykkellogo.8. Motor i navetEn børsteløs elektrisk motor i navet med effekt på 250W.

Forenklinger i prototypenFor å optimalisere sykkelen, kunne kåpen vært laget i et sterkere materiale for å gi bedre beskyttelse mot piler og sverd, differensialen kunne ha vært mindre for å spare vekt, og vindskjermen kunne ha vært laget av en sterkere plasttype og plasseringen av pedalene burde ha vært litt lavere.

Forklaring av GladRide

23

Tema 1: Forklaring av sykkel Tema 2: Forenklinger i prototypen

Gruppe: 6 Utført av: Marius og Marlene Dato: 29. april 2010

1.

7.

8.

2.3.

6. 5.

4.