equilibrium · web viewa. write the equilibrium constant expression for the dissociation of hf(aq)...

104
Table of Contents – Exam Review Packet (Teacher’s Version) Equilibrium Concept List 2 Free Response Questions 3 Acid / Base Concept List 8 Free Response Questions 8 Kinetics Concept List 20 Free Response Questions 21 Electrochemistry Concept List 28 Free Response Questions 29 Thermodynamics Concept List 42 Free Response Questions 43 Atomic Theory, Bonding, and Intermolecular Forces Concept List 50 Free Response Questions 51 Concentration and Colligative Properties Concept List 58 Free Response Questions 59 Laboratory Free Response Questions 63 Nuclear Free Response Questions 76 1

Upload: others

Post on 17-Apr-2020

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: EQUILIBRIUM · Web viewa. Write the equilibrium constant expression for the dissociation of HF(aq) in water. b. Calculate the molar concentration of H3O+ in a 0.40 M HF(aq) solution

Table of Contents – Exam Review Packet (Teacher’s Version)

EquilibriumConcept List 2Free Response Questions 3

Acid / BaseConcept List 8Free Response Questions 8

KineticsConcept List 20Free Response Questions 21

ElectrochemistryConcept List 28Free Response Questions 29

ThermodynamicsConcept List 42Free Response Questions 43

Atomic Theory, Bonding, and Intermolecular ForcesConcept List 50Free Response Questions 51

Concentration and Colligative PropertiesConcept List 58Free Response Questions 59

LaboratoryFree Response Questions 63

NuclearFree Response Questions 76

1

Page 2: EQUILIBRIUM · Web viewa. Write the equilibrium constant expression for the dissociation of HF(aq) in water. b. Calculate the molar concentration of H3O+ in a 0.40 M HF(aq) solution

AP Chemistry Concept List – EQUILIBRIUM

All Problems are equilibrium problems because

All problems involve stoichiometry: soluble salts, strong acids, strong basesSome problems involve equilibrium: “insoluble” salts, weak acids, weak bases

For chemical reactions – Keq, Kc, and Kp are the important quantities

For physical changes – Ka, Kb, Ksp, Kionize, and Kdissocation are the important quantities

Important points

1. Law of mass action

2. Kc for molarity for ions and gases

3. Kp with atm, or mmHg for gasesRelationship / connection between these Kp = Kc (RT)Δn

4. Shifting equilibrium – Le Chatlier’s Principlea. solidb. liquidc. catalystd. inert gas addede. temperature changes (increasing T favors endothermic processes)f. only factors in equation constant will affect Keq eg. CaCO3(s) CaO(s) +

CO2(g)g. pressure / volume changes

5. Orientation of collisions

2

Page 3: EQUILIBRIUM · Web viewa. Write the equilibrium constant expression for the dissociation of HF(aq) in water. b. Calculate the molar concentration of H3O+ in a 0.40 M HF(aq) solution

2003B #1

After a 1.0 mole sample of HI(g) is placed into an evacuated 1.0 L container at 700. K, the reaction represented occurs. The concentration of HI(g) as a function of time is shown below.

2 HI(g) H2(g) + I2(g)

a. Write the expression for the equilibrium constant, Kc, for the reaction.

b. What is [HI] at equilibrium?

c. Determine the equilibrium concentrations of H2(g) and I2(g).

d. On the graph above, make a sketch that shows how the concentration of H2(g) changes as a function of time.

e. Calculate the value of the following equilibrium constants at 700. K.

i. Kc

ii. Kp

f. At 1,000 K, the value of Kc for the reaction is 2.6 × 10-2. In an experiment, 0.75 mole of HI(g), 0.10 mole of H2(g), and 0.50 mole of I2(g) are placed in a 1.0 L container and allowed to reach equilibrium at 1,000 K. Determine whether the

3

Page 4: EQUILIBRIUM · Web viewa. Write the equilibrium constant expression for the dissociation of HF(aq) in water. b. Calculate the molar concentration of H3O+ in a 0.40 M HF(aq) solution

equilibrium concentration of HI(g) will be greater than, equal to, or less than the initial concentration of HI(g). Justify your answer.

10 points total

a. 1 point

b. From the graph, [HI]eq is 0.80 M 1 pointc. 2HI(g) --> H2(g) + I2(g)

init 1.0 M 0 M 0 Mchang -0.20 M +0.10 M +0.10 Mfinal 0.80 M 0.10 M 0.10 M[H2] = [I2] = 0.10 M1 point for stoichiometric relationship between HI and H2 and I2 1 point for equilibrium concentrations of H2 and I2

d. From the graph, [H2]eq is 0.10 M. The curve should have the following characteristics: start at 0 M, increase to 0.10 M, reach equilibrium at the same time [HI] reaches equilibrium1 point for any two characteristics, 2 points for all three characteristics

e. i)

1 point for correct substitution which must agree with parts b and cii) KP = Kc = 0.016 because the number of moles of gaseous products is equal to the number of moles of gaseous reactants 1 point

f.

Kc = 0.026, Q > Kc, therefore to establish equilibrium, the numerator must decrease and the denominator must increase. Therefore, [HI] will increase.1 point for calculating Q and comparing to Kc

1 point for predicting correct change in [HI]

2004B #1

N2(g) + 3 H2(g) 2 NH3(g)

For the reaction represented above, the value of the equilibrium constant, Kp is 3.1 × 10-4 at 700 K.

a. Write the expression for the equilibrium constant, Kp, for the reaction.

b. Assume that the initial partial pressures of the gases are as follows:

P(N2) = 0.411 atm, P(H2) = 0.903 atm, and P(NH3) = 0.224 atm.

i) Calculate the value of the reaction quotient, Q, at these initial conditions.

4

Page 5: EQUILIBRIUM · Web viewa. Write the equilibrium constant expression for the dissociation of HF(aq) in water. b. Calculate the molar concentration of H3O+ in a 0.40 M HF(aq) solution

ii) Predict the direction in which the reaction will proceed at 700. K if the initial partial pressures are those given above. Justify your answer.

c. Calculate the value of the equilibrium constant, Kc, given that the value of Kp for the reaction at 700. K is 3.1 × 10-4.

d. The value of Kp for the reaction represented below is 8.3 × 10-3 at 700. K.

NH3(g) + H2S(g) NH4HS(g)

Calculate the value of Kp at 700. K for each of the reactions represented below.

i) NH4HS(g) NH3(g) + H2S(g)

ii) 2 H2S(g) + N2(g) + 3 H2(g) 2 NH4HS(g)

10 points

a.

1 point for pressure expression1 point for correct substitution

b. i)

1 point for calculation of Q with correct mass action expression consistent with part aii) Since Q > Kp, the numerator must decrease and the denominator must increase, so the reaction must proceed from right to left to establish equilibrium1 point for direction or for stating that Q > Kp

1 point for explanationc. Kp = Kc (RT)Δn, with Δn = 2 – 4 = -2

3.1 × 10-4 = Kc (0.0821 L atm mol-1 K-1 × 700 K)-2

3.1 × 10-4 = Kc (57.5)-2 --> 3.1 × 10-4 = Kc(3.1 × 10-4 )Kc = 11 point for calculating Δn1 point for correct substitution and value of Kc

d. i) Kp = (8.3 × 10-3)-1 = 1.2 × 102 1 pointii) 2 × [NH3 + H2S --> NH4HS] Kp = (8.3 × 10-3)2

N2 + 3 H2 --> 2 NH3 Kp = 3.1 × 10-4

2 H2S + N2 + 3H2 --> 2 NH4HSKp = (8.3 × 10-3)2(3.1 × 10-4) = 2.1 × 10-8

1 point for squaring Kp for NH4HS or for multiplying Kp’s

5

Page 6: EQUILIBRIUM · Web viewa. Write the equilibrium constant expression for the dissociation of HF(aq) in water. b. Calculate the molar concentration of H3O+ in a 0.40 M HF(aq) solution

1 point for correct Kp

1988 #6

NH4HS(s) NH3(g) + H2S(g)

For this reaction, ΔH° = + 93 kilojoules. The equilibrium above is established by placing solid NH4HS in an evacuated container at 25 °C. At equilibrium, some solid NH4HS remains in the container. Predict and explain each of the following.

a. The effect on the equilibrium partial pressure of NH3 gas when additional solid NH4HS is introduced into the container.

b. The effect on the equilibrium partial pressure of NH3 gas when additional H2S gas is introduced into the container.

c. The effect on the mass of solid NH4HS present when the volume of the container is decreased.

d. The effect on the mass of solid NH4HS present when the temperature is increased

Average score = 4.31a) two pointsThe equilibrium pressure of NH3 gas would be unaffected Kp = (PNH3) (PH2S). Thus the amount of solid NH4HS present does not affect the equilibrium.

b) two pointsThe equilibrium pressure of NH3 gas would decrease. In order for the pressure equilibrium constant, Kp, to remain constant, the equilibrium pressure of NH3 must decrease when the pressure of H2S is increased.Kp = (PNH3) (PH2S)(A complete explanation based on Le Chatelier's principle is also acceptable.)

c) two pointsThe mass of NH4HS increases. A decrease in volume causes the pressure of each gas to increase. To maintain the value of the pressure equilibrium constant, Kp, the pressure of each of the gases must decrease. That decrease realized by the formation of more solid NH4HS.Kp = (PNH3) (PH2S)(A complete explanation based on Le Chatelier's principle is also acceptable.)

d) two pointsThe mass of NH4HS decreases because the endothermic reaction absorbs heat and goes nearer to completion (to the right) as the temperature increases. (One point was assigned for each correct prediction and one point for each correct explanation.)

6

Page 7: EQUILIBRIUM · Web viewa. Write the equilibrium constant expression for the dissociation of HF(aq) in water. b. Calculate the molar concentration of H3O+ in a 0.40 M HF(aq) solution

1980 #6

NH4Cl(s) NH3(g) + HCl(g) for this reaction, ΔH = +42.1 kilocalories

Suppose the substances in the reaction above are at equilibrium at 600 K in volume V and at pressure P. State whether the partial pressure of NH3(g) will have increased, decreased, or remained the same when equilibrium is reestablished after each of the following disturbances of the original system. Some solid NH4Cl remains in the flask at all times. Justify each answer with a one- or two-sentence explanation.

a. A small quantity of NH4Cl is added.

b. The temperature of the system is increased.

c. The volume of the system is increased.

d. A quantity of gaseous HCl is added.

e. A quantity of gaseous NH3 is added.

a. Partial pressure of ammonia will not change, ammonium chloride is a solid and does not effect equilibrium position. If partial pressure of ammonia would increase the partial pressure so would partial pressure of HCl and Keq value would change.

b. Increase the temp shifts equilibrium to the right to favor endothermic process, so partial pressure of NH3 would increase.

c. Increasing the volume (decrease the pressure) would not change the partial pressure because both NH3 and HCl would decrease and cause a change in the Keq value. Only temperature can cause this change.

d. The reaction would shift to the left so partial pressure of NH3 would decrease.

e. The partial pressure of NH3 would increase because the equilibrium would shift to the left, amount of HCl decreases so amount of NH3 would need to increase to keep Keq constant.

7

Page 8: EQUILIBRIUM · Web viewa. Write the equilibrium constant expression for the dissociation of HF(aq) in water. b. Calculate the molar concentration of H3O+ in a 0.40 M HF(aq) solution

AP Chemistry Concept List – ACID - BASE

pH = - log [H+] pOH = - log [OH-] Kw = [H+] [OH-] = 1×10-14 at 25 oC

If you know one quantity, you know the other three

Definitions

Acid Base TheoryDonates H+ Donates OH- ArrheniusDonates protons Accepts protons - {anions?} Bronsted – LowryAccepts e- pairs (AlCl3) Donates e- pairs (NH3) Lewis

Conjugate Acid – Base Pairs

1. HCl + H2O → H3O+ + Cl-

2. NH3 + H2O NH4+ + OH-

3. HSO4- + H2O H3O+ + SO4

2-

4. CO32- + H3O+ HCO3

- + H2O

A. Ka Weak Acid HCN H+ + CN-

What is the ph of a 0.5 M HCN solution?

B. Kb Weak base NH3 + H2O NH4+ + OH-

What is the pH of a 0.5 M NH2OH solution?

8

Page 9: EQUILIBRIUM · Web viewa. Write the equilibrium constant expression for the dissociation of HF(aq) in water. b. Calculate the molar concentration of H3O+ in a 0.40 M HF(aq) solution

C. Ksp Insoluble Salts MgF2(s) Mg2+ + 2F-

Ksp = [Mg2+] [F-]2 = 6.6 × 10-9

What is the solubility of MgF2 in molarity?

D. Buffers – a weak acid/base and its soluble salt (conjugate base or acid) mixture

What is the pH of a 0.5 M HC2H3O2 in 2 M NaC2H3O2 solution? Ka = 1.8 × 10-5

E. Salts of Weak Acids and Weak Bases

What is the pH of a 1 M NaC2H3O2 solution?

Titrations and Endpoints

At endpoint: acid moles = base moles or [H+] = [OH-]

Strong acid – strong base endpoint pH = 7

Strong acid – weak base endpoint pH < 7

Weak acid – strong base endpoint pH > 7

The last two are important because of conjugate acid and base pairs

9

Page 10: EQUILIBRIUM · Web viewa. Write the equilibrium constant expression for the dissociation of HF(aq) in water. b. Calculate the molar concentration of H3O+ in a 0.40 M HF(aq) solution

2007 #1

1. HF(aq) + H2O(l) H3O+(aq) + F-(aq) Ka = 7.2 × 10-4

Hydrofluoric acid, HF(aq), dissociates in water as represented by the equation above.

a. Write the equilibrium constant expression for the dissociation of HF(aq) in water.

b. Calculate the molar concentration of H3O+ in a 0.40 M HF(aq) solution.

HF(aq) reacts with NaOH(aq) according to the reaction represented below.

HF(aq) + OH-(aq) H2O(l) + F-(aq)

A volume of 15 mL of 0.40 M NaOH(aq) is added to 25 mL of 0.40 M HF(aq) solution. Assume volumes are additive.

c. Calculate the number of moles of HF(aq) remaining in the solution.

d. Calculate the molar concentration of F-(aq) in the solution.

e. Calculate the pH of the solution.

9 points

a. 1 point

b.

Assume x << 0.40, then x2 = (0.40)(7.2 × 10-4), x = [H3O+] = 0.017 M1 point is earned for the correct setup (or that consistent with part a)1 point is earned for the correct concentration

c. mol HF = initial mol HF – mol NaOH added= (0.025 L)(0.40 mol L-1)–(0.015 L)(0.40 mol L-1)=0.010–0.0060=0.0040 mol1 point is earned for determining initial number of moles of HF and OH-

1 point is earned for setting up and doing correct subtractiond. mol F- formed = mol NaOH added = 0.0060 mol F-

0.0060 mol F- / (0.015 + 0.025) L of solution = 0.15 M F-

1 point is earned for determining the number of moles of F-

1 point is earned for dividing the number of moles of F- by the correct total volume

e. [HF] = 0.004 mol HF / 0.040 L = 0.10 M HF

10

Page 11: EQUILIBRIUM · Web viewa. Write the equilibrium constant expression for the dissociation of HF(aq) in water. b. Calculate the molar concentration of H3O+ in a 0.40 M HF(aq) solution

pH = - log (4.8 × 10-4) = 3.32ORHenderson – Hasselbach equation1 point is earned for indicating that the resulting solution is a buffer (by showing a ration of [F-] to [HF] or moles of F- to HF)1 point is earned for the correct calculation of pH

2005B #1 Ka

Hypochlorous acid, HOCl, is a weak acid in water. The Ka expression for HOCl is shown above.

a. Write a chemical equation showing how HOCl behaves as an acid in water.

b. Calculate the pH of a 0.175 M solution of HOCl.

c. Write the net ionic equation for the reaction between the weak acid HOCl(aq) and the strong base NaOH(aq)

d. In an experiment, 20.00 mL of 0.175 M HOCl(aq) is placed in a flask and titrated with 6.55 mL of 0.435 M NaOH(aq).

i) Calculate the number of moles of NaOH(aq) added.

ii) Calculate [H3O+] in the flask after the NaOH(aq) has been added.

iii) Calculate [OH-] in the flask after the NaOH(aq) has been added.10 points

a. HOCl + H2O --> OCl- + H3O+ 1 pointb. 0.175 0 0 initial

-x x x change0.175 –x x x final

Assume that x <<< 0.175, x = 7.5 × 10-5 M, pH = 4.131 point is earned for calculating the value of [H3O+]1 point is earned for calculating the pH

c. HOCl + OH- --> OCl- + H2O 1 point for both correct reactants1 point for both correct products

11

Page 12: EQUILIBRIUM · Web viewa. Write the equilibrium constant expression for the dissociation of HF(aq) in water. b. Calculate the molar concentration of H3O+ in a 0.40 M HF(aq) solution

d. i) mol(NaOH)=6.55 mL(1L/1000 mL)(0.435 M)=2.85×10-31 pointii) mol(HOCl) = 20.00 (1/1000) (0.175) = 3.50 ×10-3 mol 1 pointOH- is the limiting reactant, therefore all of it reactsHOCl + OH- --> OCl- + H2O0.00350 0.00285 0-0.00285 -0.00285 0.002850.00065 0 0.00285

M(HOCl) = 0.00065 / 0.02655 = 0.0245 MM(OCl-) = 0.00285 / 0.02655 = 0.107 M

HOCl + H2O --> H3O+ + OCl-

0.0245 0 0.107-x x x0.0245 x 0.107 + x 1 point

Assume 0.107 + x = 0.107 and 0.0245-x = 0.0245x = 7.3 × 10-9 M 1 pointiii) [H3O+][OH-]= 10-14 = Kw

[OH-] = 10-14 / [H3O+] = 10-14 / 7.3 × 10-9 = 1.4 × 10-6 M 1 point

1999 #1 Kb

NH3(aq) + H2O(l) NH4+(aq) + OH-(aq)

In aqueous solution, ammonia reacts as represented above. In 0.0180 M NH3(aq) at 25°C, the hydroxide ion concentration, [OH-] , is 5.60 × 10-4 M. In answering the following, assume that temperature is constant at 25°C and that volumes are additive. a. Write the equilibrium-constant expression for the reaction represented above.

b. Determine the pH of 0.0180 M NH3(aq).

12

Page 13: EQUILIBRIUM · Web viewa. Write the equilibrium constant expression for the dissociation of HF(aq) in water. b. Calculate the molar concentration of H3O+ in a 0.40 M HF(aq) solution

c. Determine the value of the base ionization constant, Kb, for NH3(aq).

d. Determine the percent ionization of NH3 in 0.0180 M NH3(aq).

e. In an experiment, a 20.0 mL sample of 0.0180 M NH3(aq) was placed in a flask and titrated to the equivalence point and beyond using 0.0120 M HCl(aq).

i. Determine the volume of 0.0120 M HCl(aq) that was added to reach the equivalence point.

ii. Determine the pH of the solution in the flask after a total of 15.0 mL of 0.0120 M HCl(aq) was added.

iii. Determine the pH of the solution in the flask after a total of 40.0 mL of 0.0120 M HCl(aq) was added.

9 Points

(a) 1 point

pOH = 3.252(b) [OH-] = 5.60 × 10-4 → { or } → pH = 10.748 1 point

[H+] = 1.79 × 10-11

(c) (or 1.80 ×10-5 ) 2 point

Note: 1st point for [NH4+] = [OH-] = 5.60 × 10-4; 2nd point for correct answer

(d) = 3.11% (or 0.0311) 1 point

(e) NH3 + H+ → NH4+

(i) mol NH3 = 0.0180 M × 0.0200 L = 3.60 × 10-4 mol = mol H+ needed

= 0.0300 L = 30.0 mL 1 point

(ii) mol H+ added = mol 0.0120 M × 0.0150 L = 1.80 × 10-4 mol H+ added= 1.80 × 10-4 mol NH4

+ produced

1 point

Note: Point earned for 1.80 × 10-4 mol, or 0.00514 M [NH3] or [NH4+] or

statement “halfway to equivalence point.”

13

Page 14: EQUILIBRIUM · Web viewa. Write the equilibrium constant expression for the dissociation of HF(aq) in water. b. Calculate the molar concentration of H3O+ in a 0.40 M HF(aq) solution

Kb = 1.80 × 10-5 = =[OH-] → pOH = 4.745 → pH = 9.255

(= 1.74 × 10-5) (= 4.759) (= 9.241) 1pt(iii) 10.0 mL past equivalence point

0.0100 L × 0.0120 M = 1.20 × 10-4 mol H+ in 60.0 mL [H+ ] = 0.000120 mol / 0.060 L = 0.00200 MpH = − log (2.00 × 10-3) = 2.700 1 point

One point deduction for mathematical error (maximum once per question)One point deduction for error in significant figures* (maximum once per question)*number of significant figures must be correct within +/− one digit (except for pH: +/− two digits)

1996 A/B lab #6

A 0.500-gram sample of a weak, nonvolatile acid, HA, was dissolved in sufficient water to make 50.0 milliliters of solution. The solution was then titrated with a standard NaOH solution. Predict how the calculated molar mass of HA would be affected (too high, too low, or not affected) by the following laboratory procedures. Explain each of your answers.

a. After rinsing the buret with distilled water, the buret is filled with the standard NaOH solution; the weak acid HA is titrated to its equivalence point.

b. Extra water is added to the 0.500-gram sample of HA.

c. An indicator that changes color at pH 5 is used to signal the equivalence point.

for explanation point in 9 (a), (c), and (d), credit is earned at step indicted in boldface type.(a) two pointsCalculated Mm(HA) too lowM(NaOH) => V(NaOH) => n(NaOH) => n(HA) => Mm(HA)(M = n ÷ V) and (Mm = m÷ n)

(b) two pointsCalculated Mm(HA) not affectedAny one of the following reasons. Water: does not change n(HA), changes only M(HA) -- sense of dilution, is not a reactant (c) two pointsCalculated Mm(HA) too highequivalence point => n(NaOH) => n(HA) => Mm(HA)(expected pH higher)Note: "no effect if NaOH standardized with same indicator" earns 2 points; no credit earned if pH=7 or neutral

(d) two points

14

Page 15: EQUILIBRIUM · Web viewa. Write the equilibrium constant expression for the dissociation of HF(aq) in water. b. Calculate the molar concentration of H3O+ in a 0.40 M HF(aq) solution

Calculated Mm(HA) too lowV(NaOH) => n(NaOH) => n(HA) => Mm(HA)Note: point earned for V(NaOH) only if:(i) no explanation point is earned in (a)(ii) explanation in (a) also includes V(NaOH)

2000 #8 A/B Lab

A volume of 30.0 mL of 0.10 M NH3(aq) is titrated with 0.20 M HCl(aq). The value of the base-dissociation constant, Kb, for NH3 in water is 1.8 × 10-5 at 25 oC.

a. Write the net-ionic equation for the reaction of NH3(aq) with HCl(aq).

b. Using the axes provided below, sketch the titration curve that results when a total of 40.0 mL of 0.20 M HCl(aq) is added dropwise to the 30.0 mL volume of 0.10 M NH3(aq).

c. From the table below, select the most appropriate indicator for the titration. Justify your choice

Indicator pKa

Methyl Red 5.5Bromothymol Blue 7.1Phenolphthalein 8.7

d. If equal volumes of 0.10 M NH3(aq) and 0.10 M NH4Cl(aq) are mixed, is the resulting solution acidic, neutral, or basic? Explain

15

Page 16: EQUILIBRIUM · Web viewa. Write the equilibrium constant expression for the dissociation of HF(aq) in water. b. Calculate the molar concentration of H3O+ in a 0.40 M HF(aq) solution

8 points(a) NH3(aq) + H+(aq) → NH4

+(aq) 1 pointor NH3(aq) + H3O+(aq) → NH4

+(aq) + H2O(l)Note: phase designations not required to earn point(b) Sketch of Titration Curve: 3 pnts• 1st pt. → initial pH must be > 7 (calculated pH ≈ 11)• 2nd pt. → equivalence point occurs at 15.0 mL ± 1 mL of HCl added (equivalence point must be detectable from the shape of the curve or a mark on the curve)• 3rd pt. → pH at equivalence point must be < 7 (calculated pH ≈ 5).Note: a maximum of 1 point earned for any of the following:- a line without an equivalence point- a random line that goes from high pH to low pH- an upward line with increasing pH (equivalence point MUST be at 15.0 mL)(c) Methyl Red would be the best choice of indicator, 1 pointBecause the pKa for Methyl Red is closest to pH atequivalence point. 1 pointNotes: • explanation must agree with equivalence point on graph• alternative explanation that titration involves strong acid and weak base (with product an acidic salt) earns the point

(d) The resulting solution is basic. 1 pointKb for NH3 (1.8 × 10-5) and Ka for NH4

+ (5.6 × 10-10) indicate that NH3 is a stronger base than NH4

+ is an acidor [OH-] = Kb = 1.8 × 10-5 because of the equimolar and equivolume amounts of ammonium and ammonia → cancellation in the buffer pH calculation. Thus pOH

≈ 5 and pH ≈ 9 (i.e., recognition of buffer, so that → pOH = pKb ≈

5 → pH = 14 – pOH ≈ 9)

Ksp 1998 #1

Solve the following problem related to the solubility equilibria of some metal hydroxides in aqueous solution.

a. The solubility of Cu(OH)2 is 1.72 × 10-6 gram per 100. mL of solution at 25 °C. (i) Write the balanced chemical equation for the dissociation of

Cu(OH)2(s) in aqueous solution.(ii) Calculate the solubility (in moles per liter) of Cu(OH)2 at 25 °C.(iii) Calculate the value of the solubility-product constant, Ksp, for Cu(OH)2

at 25 °C.

16

Page 17: EQUILIBRIUM · Web viewa. Write the equilibrium constant expression for the dissociation of HF(aq) in water. b. Calculate the molar concentration of H3O+ in a 0.40 M HF(aq) solution

b. The value of the solubility-product constant, Ksp, for Zn(OH)2 is 7.7 × 10-17 at 25°C. (i) Calculate the solubility (in moles per liter) of Zn(OH)2 at 25°C in a

solution with a pH of 9.35.(ii) At 25°C, 50.0 mL of 0.100-molar Zn(NO3)2 is mixed with 50.0 mL of

0.300-molar NaOH. Calculate the molar concentration of Zn2+(aq) in the resulting solution once equilibrium has been established. Assume that volumes are additive.

9 pointsa i.) Cu(OH)2(s) → Cu2+(aq) + 2 OH-(aq) 1 pointCorrect stoichiometry and charges (but not phases) necessaryNo credit earned if water as a reactant or product

ii) 1 point

One point earned for conversion of mass to moles (need not be computed explicitly)One point earned for calculation of moles per liter

iii) [Cu2+] = 1.76 × 10-7 M[OH-] = 2 × (1.76 X 10-7 M) = 3.52 × 10-7 M 1 pointKsp = [Cu2+][OH-]2 = (1.76 × 10-7)( 3.52 × 10-7)2 = 2.18 × 10-20 1 pointOne point earned for correct [Cu2+] and [OH-] One point for correct substitution into Ksp expression and answerResponse need not include explicit statement of [OH-] if Ksp expression is written

with correct values of [Cu2+] and [OH-]

bi) pH = 9.35 → pOH = 4.65 → [OH-] = 2.24 × 10-5 M1 point

One point earned for correct determination of [OH-] One point for correct answer (assume [Zn2+] equals solubility in moles per liter)No points earned if [OH-] is assumed equal to twice [Zn2+]

ii) Zn2+ + 2OH- Zn(OH)2(s)

Zn2+ OH- Zn(OH)2 (s)initial 0.0050 mol 0.0150 mol 0 molfinal 0 mol 0.0050 mol 0.0050 mol

17

Page 18: EQUILIBRIUM · Web viewa. Write the equilibrium constant expression for the dissociation of HF(aq) in water. b. Calculate the molar concentration of H3O+ in a 0.40 M HF(aq) solution

or

One point earned if precipitation reaction is clearly indicated and moles or concentration of OH- is calculated correctly Zn(OH)2 Zn2+ + 2 OH-

x (0.050 + 2x)Ksp = 7.7 × 10-17 = [Zn2+][OH-]2 = (x) (0.050 + 2x)2 = (x)(0.050)2 [Zn2+] = x = 3.1 × 10-14 M 1 pointORZn(OH)2 Zn2+ + 2 OH-

(0.050-x) (0.150 - 2x)

Ksp = 7.7× 10-17 = [Zn2+][OH-]2 = (0.050-x)(0.150-2x)2 1 pointSolve for x, then subtract x from 0.050 M to obtain [Zn2+] 1 point

2001 Ksp

Answer the following questions relating to the solubility of the chlorides of silver and lead.

a. At 10 oC, 8.9 × 10-5 g of AgCl(s) will dissolve in 100. mL of water.

i. Write the equation for the dissociation of AgCl(s) in water.

ii. Calculate the solubility, in mol L-1, of AgCl(s) in water at 10 oC.

iii. Calculate the value of the solubility-product constant, Ksp, for AgCl(s) at 10 oC.

b. At 25 oC, the value of Ksp for PbCl2(s) is 1.6 × 10-5 and the value of Ksp for AgCl(s) is 1.8 × 10-10.

i. If 60.0 mL of 0.0400 M NaCl(aq) is added to 60.0 mL of 0.0300 M Pb(NO3)2(aq), will a precipitate form? Assume that volumes are additive. Show calculations to support your answer.

ii. Calculate the equilibrium value of [Pb2+(aq)] in 1.00 L of saturated PbCl2 solution to which 0.250 mole of NaCl(s) has been added. Assume that no volume change occurs.

iii. If 0.100 M NaCl(aq) is added slowly to a beaker containing both 0.120 M AgNO3(aq) and 0.150 M Pb(NO3)2(aq) at 25 oC, which will precipitate first, AgCl(s) or PbCl2(s)? Show calculations to support your answer.

(10 points)

18

Page 19: EQUILIBRIUM · Web viewa. Write the equilibrium constant expression for the dissociation of HF(aq) in water. b. Calculate the molar concentration of H3O+ in a 0.40 M HF(aq) solution

(a)(i) AgCl(s) → Ag+(aq) + Cl-(aq) 1 point· Correct charges needed to earn credit.· Phases not necessary to earn credit.

(ii)

1 pointNote: The first point is earned for the correct number of moles; the second point is earned for the conversion from moles to molarity.(iii) Ksp = [Ag+][Cl-] = (6.2 × 10-6)2 = 3.8 × 10-11 1 pointNote: Students earn one point for squaring their result for molarity in (a) (ii).

(b) (i) n(Cl-) = (0.060 L) (0.040 mol/L) = 0.0024 mol 1 point[Cl-] = (0.0024 mol)/(0.120 L) = 0.020 mol/L = 0.020 Mn (Pb2+) = (0.060 L) (0.030 mol/L) = 0.0018 mol[Pb2+] = (0.0018 mol)/(0.120 L) = 0.015 mol/L = 0.015 MQ = [Pb2+][Cl-]2 = (0.015)(0.020)2 = 6.0 × 10-6 1 pointQ < Ksp , therefore no precipitate forms 1 pointNote: One point is earned for calculating the correct molarities; one point is earned for calculating Q ; one point is earned for determining whether or not a precipitate will form.(ii) [Pb2+] = Ksp / [Cl- ]2 = 1.6 × 10-5 / (0.25)2 = 2.6 × 10-4 M 1 point

(iii) for AgCl solution: [Cl-] = 1 point

for PbCl2 solution: [Cl-] =

The [Cl-] will reach a concentration of 1.5 × 10-9 M before it reaches a concentration of 1.0 × 10-2 M, (or 1.5 × 10-9 << 1.0 × 10-2), therefore AgCl(s) will precipitate first.Note: One point is earned for calculating [Cl-] in saturated solutions with the appropriate Ag+ and Pb2+ concentrations; one point is earned for concluding which salt will precipitate first, based on the student’s calculations.

19

Page 20: EQUILIBRIUM · Web viewa. Write the equilibrium constant expression for the dissociation of HF(aq) in water. b. Calculate the molar concentration of H3O+ in a 0.40 M HF(aq) solution

AP Chemistry Concepts List - KINETICS

1. Rate definition

2. Rate Law – differential versus integrated

3. Factors affecting rate

a. [C]b. ΔTc. catalysisd. surface areae. nature of reactants – distinguish between homo- and heterogenous

i. solids ii. Liquids iii. gases iv. Ions (solutions)

4. Collision theory – orientation and energy

5. Mechanism – relationship between ΔT, ΔS, ΔH – catalysis

6. Energy of activation (Ea) – Arrhenius equation – differentiate from ΔH

7. Ordera. determined by

i. experimental comparisonii. graphing

b. zero, first, second – determining % remaining and/or % reactedex. Ln (x2/x1) = kt

8. Rate constants with units (units change with reaction order)a. unsuccessful versus effective collisionsb. orientation and energy

20

Page 21: EQUILIBRIUM · Web viewa. Write the equilibrium constant expression for the dissociation of HF(aq) in water. b. Calculate the molar concentration of H3O+ in a 0.40 M HF(aq) solution

1997 #4

2 A + B → C + D The following results were obtained when the reaction represented above was studied at 25 °C

Experiment Initial[A]

Initial[B]

Initial Rateof Formationof C (mol L-1 min-1)

1 0.25 0.75 4.3 × 10-4 2 0.75 0.75 1.3 × 10-3 3 1.50 1.50 5.3 × 10-3 4 1.75 ?? 8.0 × 10-3

a. Determine the order of the reaction with respect to A and B. Justify your answer.

b. Write the rate law for the reaction. Calculate the value of the rate constant, specifying units.

c. Determine the initial rate of change of [A] in Experiment 3.

d. Determine the initial value of [B] in Experiment 4.

e. Identify which of the reaction mechanisms represented below is consistent with the rate law developed in part (b). Justify your choice.

1 A + B → C + M Fast

M + A → D Slow

2 B <===> M Fast equilibrium M + A → C + X Slow A + X → D Fast

3 A + B <===> M Fast equilibrium M + A → C + X Slow X → D Fast

(a) three points 1.3 x 10-3 / 4.3 x 10¯4 = k (0.75)x (0.75)y / k (0.25)x (0.75)y leads to 3 = (3)x leads to x = 1, first order in A 5.3 x 10¯3 / 1.3 x 10¯4 = k(1.50)(1.50)y/ k(0.75)(0.75)y => 4= 2(2)y => y=1 => First order in B Notes; Verbal descriptions accepted, but no point earned for just "if A doubles, the rate doubles". If A given as second order, 2 points can be earned for showing that B must be zero order.

21

Page 22: EQUILIBRIUM · Web viewa. Write the equilibrium constant expression for the dissociation of HF(aq) in water. b. Calculate the molar concentration of H3O+ in a 0.40 M HF(aq) solution

(b) two points rate = k[A][B] (equation must be consistent with part (a)) k= 4.3 x 10¯4M min¯1 / (0.25M) (0.75M) = 2.3 x 10¯3 M¯ 1 min¯1 Note; Units must be correct to earn second point. If no part (a) shown, 1 point can be earned for a reasonable (first or second order) rate law. (c) one point [A] / t = -2 (5.3 x 10¯3 M¯1 min¯1) = - 1.06 x 10¯2 M¯1 min¯ 1 Note; Units ignored; no penalty for ( ¯ ) sign. (d) one point 8.0 x 10 ¯3 M¯1 min¯1 = (2.3 x 10¯2 M¯1 min¯1) (1.75 M) [B] [B] = 2.0 M Note; No penalty if answer is consistent with wrong part (b). (e) two points Mechanism 2 is consistent rate proportional to [M][A] and [M] proportional to [B] => rate proportional to [A][B] Notes; Verbal discussion accepted for second point. Mechanism must be consistent with rate law in part (b). Showing that mechanisms 1 and 3 are inconsistent is not required.

1999 # 3

2 NO(g) + Br2(g) → 2 NOBr(g)

A rate study of the reaction represented above was conducted at 25°C. The data that were obtained are shown in the table below.

Experiment Initial [NO](mol L-1)

Initial [Br2](mol L-1)

Initial Rate of Appearanceof NOBr (mol L-1 s-1)

1 0.0160 0.0120 3.24 × 10-4

2 0.0160 0.0240 6.38 × 10-4

3 0.0320 0.0060 6.42 × 10-4

a. Calculate the initial rate of disappearance of Br2(g) in experiment 1.

b. Determine the order of the reaction with respect to each reactant, Br2(g) and NO(g). In each case, explain your reasoning.

c. For the reaction,

i. write the rate law that is consistent with the data, and

ii. calculate the value of the specific rate constant, k, and specify units.

d. The following mechanism was proposed for the reaction:

22

Page 23: EQUILIBRIUM · Web viewa. Write the equilibrium constant expression for the dissociation of HF(aq) in water. b. Calculate the molar concentration of H3O+ in a 0.40 M HF(aq) solution

Br2(g) + NO(g) → NOBr2(g) slow

NOBr2(g) + NO(g) → 2 NOBr(g) fast

Is this mechanism consistent with the given experimental observations? Justify your answer.

9 points:(a) Rate of Br2(g) loss occurs at ½ the rate of NOBr(g) formation.

Rate of Br2(g) loss = = 1.62 × 10-4 M sec-1 (or mol L-1 sec-1)

1 pointNote: No penalty for missing units; ignore + or − signs(b) Comparing experiments 1 and 2, [NO] remains constant, [Br2] doubles,

and rate doubles; therefore, rate α [Br2]1 → reaction is first-order with respect to [Br2]. 1 point

x = 2 → reaction is second-order with respect to [NO]

2 pointsNote: One point earned for a proper set-up, comparing experiments 2 and 3 (as is shown here) or experiments 1 and 3. Second point earned for solving the ratios correctly and determining that the exponent = 2. Also, credit can be earned for a non-mathematical approach (e.g., one point for describing the change in [Br2] and subsequent effect on rate, another point ford escribing the change in [NO] and subsequent effect on rate).(c) (i) Rate = k[NO]2[Br2]

1 pointNote: Point earned for an expression that is consistent with answer in part (b)

(ii) k = = 105 M -2 sec-1 (or 105 L2 mol-2

sec-1) 2 points(Using rate of Br2(g) loss = 1.62 × 10-4 M sec-1 → k = 52.7 M-2 sec-1 is correct.)Note: One point for solving for the value of the rate constant consistent with therate-law expression found in (b) or stated in part (c); one point for the correct units consistent with the rate-law expression found in part (b) or stated in (c).(d) No, it is not consistent with the given experimental observations. 1 pointThis mechanism gives a reaction that is first-order in [NO], and first-order in [Br2], as those are the two reactants in the rate-determining step. Kinetic data show the reaction is second-order in [NO] (and first-order in [Br2]), so this cannot be the mechanism. 1 pointNote: One point earned for “No” [or for “Yes” if rate = k[NO][Br2] in part (b)].One point earned for justifying why this mechanism is inconsistent with the observed rate-law [or consistent with rate law stated earlier in response].

23

Page 24: EQUILIBRIUM · Web viewa. Write the equilibrium constant expression for the dissociation of HF(aq) in water. b. Calculate the molar concentration of H3O+ in a 0.40 M HF(aq) solution

One point deduction for mathematical error (maximum once per question)One point deduction for error in significant figures* (maximum once per question)*number of significant figures must be correct within +/− one digit

1996 # 8

The reaction between NO and H2 is believed to occur in the following three-step process.NO + NO <===> N2O2 (fast)N2O2 + H2 → N2O + H2O (slow)N2O + H2 → N2 + H2O (fast)

a. Write a balanced equation for the overall reaction.

b. Identify the intermediates in the reaction. Explain your reasoning.

c. From the mechanism represented above, a student correctly deduces that the rate law for the reaction is rate = k[NO]2[H2]. The student then concludes that (1) the reaction is third-order and (2) the mechanism involves the simultaneous collision of two NO molecules and an H2 molecule. Are conclusions (1) and (2) correct? Explain.

d. Explain why an increase in temperature increases the rate constant, k, given the rate law in part c.

(a) one point2 NO + 2 H2 ---> N2 + 2 H2O

(b) two pointsN2O2 and N2O are intermediatesbecause they appear in the mechanism but not in the overall products (or reactants)

(c) three points; one for each half of conclusion (1) answer, third for conclusion (2) answerStudent indicates conclusion (1) is correct,because the sum of the exponents in rate law is 2 + 1 = 3Student indicates conclusion (2) is incorrect,because no step involves two NO molecules and a H2 molecule

(d) two points; T goes up therefore k goes up:because increasing number of collisions between reactantsare occuring with sufficient energy to form an activated complex

ORT goes up therefore rate goes upbecause no change in concentration of reactants, therefore k must increase

24

Page 25: EQUILIBRIUM · Web viewa. Write the equilibrium constant expression for the dissociation of HF(aq) in water. b. Calculate the molar concentration of H3O+ in a 0.40 M HF(aq) solution

ORfrom Arrhenius equation (not required in AP Chemistry curriculum, but noted in some student responses):as T goes up, k goes up

1998 #6

Answer the following questions regarding the kinetics of chemical reactions.

a. The diagram below at right shows the energy pathway for the reaction O3 + NO → NO2 + O2.Clearly label the following directly on the diagram.

i. The activation energy (Ea) for the forward reactionii. The enthalpy change (ΔH) for the reaction

b. The reaction 2 N2O5 → 4 NO2 + O2 is first order with respect to N2O5.i. Using the axes at right, complete the graph that represents the change

in [N2O5] over time as the reaction proceeds.ii. Describe how the graph in part i could be used to find the reaction rate

at a given time, t.iii Considering the rate law and the graph in part i, describe how the

value of the rate constant, k, could be determined.iv. If more N2O5 were added to the reaction mixture at constant

temperature, what would be the effect on the rate constant, k? Explain.

25

Page 26: EQUILIBRIUM · Web viewa. Write the equilibrium constant expression for the dissociation of HF(aq) in water. b. Calculate the molar concentration of H3O+ in a 0.40 M HF(aq) solution

c. Data for the chemical reaction 2A → B + C were collected by measuring the concentration of A at 10-minute intervals for 80 minutes. The following graphs were generated from analysis of data.

Use the information in the graphs above to answer the following.

i. Write the rate-law expression for the reaction. Justify your answer.

ii. Describe how to determine the value of the rate constant for the reaction.

8 point

a) Response must clearly indicate (and distinguish between) Eact and ΔHrxn on graph. Each earns one point (2 total)

26

Page 27: EQUILIBRIUM · Web viewa. Write the equilibrium constant expression for the dissociation of HF(aq) in water. b. Calculate the molar concentration of H3O+ in a 0.40 M HF(aq) solution

bi). Response shows a softly curving line that approaches the time axis and whose slope changes continually

No penalty if curve crosses time axis or levels out above time axis. Curve must drop initially and continually. No credit earned if [N2O5] increases.

ii. Reaction Rate is the slope of the line tangent to any point on the curve.Rate must be tied somehow to slope of graph. Answer may be indicated directly on the graph.Instantaneous rate must be indicated rather than the average rate

iii) Since rate = slope = k[N205], the value of k can be determined algebraically from the slope at a known value of [N205]. No penalty for Rate =2k[N205], as reaction stoichiometry could suggest this answer. Point can be earned for rate constant = slope of graph of ln[N2O5] vs. time since reaction is first order. Use of half-life or integrated rate law to solve for k can be accepted.

iv. The value of the rate constant is independent of the reactant concentrations, so adding more reactant will not affect the value of k. No point earned for simply stating that value of k will not change. Response must distinguish between rate . and rate constant.

bi. Rate = k[A] or ln ([A]/[A]0) = -kt. Since graph of ln [A] vs. time is linear, it must be a first-order reaction.Either form of the rate law is acceptable, and both the equation and the brief justification are required to earn the pointNo point earned if response indicates first order because the first graph is not linear.ii. Determine the slope of the second graph and set “k= - slope”Response must indicate both the negative sign and the slope.

27

Page 28: EQUILIBRIUM · Web viewa. Write the equilibrium constant expression for the dissociation of HF(aq) in water. b. Calculate the molar concentration of H3O+ in a 0.40 M HF(aq) solution

AP Chemistry Concepts - ELECTROCHEMISTRY

1. oxidation / reduction – balancing equations (review)

2. galvanic cells – {positive, Red Cat}

3. electrolytic cells

4. cathode

5. anode

6. current, charge, Faradays, (voltage / EMF) (amps, coulombs and volts – unit problem)

7. cell notation

8. salt bridge – “balance of charge” not electron balance

9. Eo and spontaneity

10. ΔGo = - n F Eo

11. E = Eo – (0.059 / n) log Kc

28

Page 29: EQUILIBRIUM · Web viewa. Write the equilibrium constant expression for the dissociation of HF(aq) in water. b. Calculate the molar concentration of H3O+ in a 0.40 M HF(aq) solution

2007 #3.

An external direct-current power supply is connected to two platinum electrodes immersed in a beaker containing 1.0 M CuSO4(aq) at 25oC, as shown in the diagram above. As the cell operates, copper metal is deposited onto one electrode and O2(g) is produced at the other electrode. The two reduction half-reactions for the overall reaction that occurs in the cell are shown in the table below.

half-reaction Eo(V)O2(g) + 4 H+(aq) + 4 e- 2H2O(l) +1.23Cu2+(aq) + 2e- Cu(s) +0.34

a. On the diagram, indicate the direction of electron flow in the wire.

b. Write a balanced net ionic equation for the electrolysis reaction that occurs in the cell.

c. Predict the algebraic sign of ΔGo for the reaction. Justify your prediction.

d. Calculate the value of ΔGo for the reaction.

An electric current of 1.50 amps passes through the cell for 40.0 minutes.

e. Calculate the mass, in grams, of the Cu(s) that is deposited on the electrode.

f. Calculate the dry volume, in liters measured at 25oC and 1.16 atm, of the O2(g) that is produced.

10 pointsa. Electron flow in the wire is from the right to the left (counterclockwise)

1 pointb. 2 H2O + 2 Cu2+ → 4 H+ + 2 Cu + O2

1 point is earned for all three products1 point is earned for balancing the equation

29

Page 30: EQUILIBRIUM · Web viewa. Write the equilibrium constant expression for the dissociation of HF(aq) in water. b. Calculate the molar concentration of H3O+ in a 0.40 M HF(aq) solution

c. The sign of ΔGo would be positive because the reaction is NOT spontaneous.1 point is earned for indicating that ΔGo is greater than 0 and supplying a correct explanation

d. Eo = -1.23 V + 0.34 V = -0.89 V = -0.89 J C-1

ΔGo = -nFEo = -4 (96500) (-0.89) = 340,000 J = 340 kJ1 point is earned for calculating Eo

1 point is earned for calculating ΔGo (consistent with Eo)e. q = (1.50 C s-1) (40.0 min) (60 s / 1 min) = 3600 C 1 point

mass Cu = (3600 C) (1 mole / 96500 C) (1 mol Cu / mol e-) (63.55 g Cu / moll) = 1.19 g Cu 1 pointOR can be calculated in one step (2 points)

f. n(O2) = (1.19 g Cu) (1 mol Cu / 63.55 g Cu) (1 mol O2 / 2 mol Cu) =0.00936 mol O2 1 pointV = nRT / P = (0.00936) (0.0821) (298) / (1.16) = 0.197 L 1 point

1997 #3

In an electrolytic cell, a current of 0.250 ampere is passed through a solution of a chloride of iron, producing Fe(s) and Cl2(g).

a. Write the equation for the reaction that occurs at the anode.

b. When the cell operates for 2.00 hours, 0.521 gram of iron is deposited at one electrode. Determine the formula of the chloride of iron in the original solution.

c. Write the balanced equation for the overall reaction that occurs in the cell.

d. How many liters of Cl2(g), measured at 25 °C and 750 mmHg, are produced when the cell operates as described in part (b)?

e. Calculate the current that would produce chlorine gas at a rate of 3.00 grams per hour.

(a) 1 point 2Cl¯ ---> Cl2 + 2e¯ (equation need not be balanced) (b) three points (0.250 coul / sec x 7,2000 sec) / (96,500 coul / mol e¯) = 1,800 coul / (96,500 coul / mol e¯) = 0.01865 mol e¯ mol Fe = 0.521 g Fe / (55.85 g / mol Fe) = 0.00933 mol Fe mol e¯ / mol Fe = 1.865 x 10¯2 mol e¯ / 9.33 x 10¯3 approx. equals 2 e¯ per Fe atom ---> FeCl2 (c) 1 point Fe2+ + 2 Cl¯ ---> Fe + Cl2 Notes: "FeCl2(aq)" accepted for reactants. Any balanced equation corresponding to answer in part (b) earns 1 point.

30

Page 31: EQUILIBRIUM · Web viewa. Write the equilibrium constant expression for the dissociation of HF(aq) in water. b. Calculate the molar concentration of H3O+ in a 0.40 M HF(aq) solution

(d) 1 point moles Fe2+ = moles Cl2 = 9.33 x 10¯3 mol Cl2 V = nRT / P = (0.00933 mol Cl2 x 0.0821 L.atm.mol¯1.K¯1 x 298 K) / (750 / 760) atm = 0.231 L (or 231 mL) (e) two points (3.00 g Cl2 / 71 g mol¯1) / 3,600 sec = 0.0423 mol Cl2 / 3,600 sec = 1.17 x 10¯5 mol Cl2 / sec current (in amperes) = (2 mol e¯ / mol Cl2) x (1.17 x 10¯5 mol Cl2 / sec) x (96,500 coul / 1 mol e¯) = 2.27 amp (or coul /sec) alternate solution: 0.00933 mole Cl2 / 2 hrs = 0.662 g Cl2 / 2 hrs = 0.331 g Cl2 / hr 0.20 amp / 0.331 g Cl2 = x / 3.00 g Cl2 x = (3.00 g x 0.250 amp) / 0.331 g = 2.27 amp

2000 # 2

2. Answer the following questions that relate to electrochemical reactions.

a. Under standard conditions at 25 oC, Zn(s) reacts with Co2+(aq) to produce Co(s)

i) Write the balanced equation for the oxidation half reaction.

ii) Write the balanced net-ionic equation for the overall reaction.

iii) Calculate the standard potential, Eo, for the overall reaction at 25 oC.

b. At 25 oC, H2O2 decomposes according to the following equation.

2 H2O2(aq) 2 H2O(l) + O2(g) Eo = 0.55 V

i) Determine the value of the standard free energy change, ΔGo, for the reaction at 25 oC.

ii) Determine the value of the equilibrium constant, Keq, for the reaction at 25 oC.

iii) The standard reduction potential, Eo, for the half reaction O2(g) + 4 H+(aq) + 4e- 2 H2O(l) has a value of 1.23 V. Using this information in addition to the information given above, determine the value of the standard reduction potential, Eo, for the half reaction below.

O2(g) + 2 H+(aq) + 2e- H2O2(aq)

31

Page 32: EQUILIBRIUM · Web viewa. Write the equilibrium constant expression for the dissociation of HF(aq) in water. b. Calculate the molar concentration of H3O+ in a 0.40 M HF(aq) solution

c. In an electrolytic cell, Cu(s) is produced by the electrolysis of CuSO4(aq). Calculate the maximum mass of Cu(s) that can be deposited by a direct current of 100. amperes passed through 5.00 L of 2.00 M CuSO4(aq) for a period of 1.00 hour.

10 points(a) (i) Zn(s) → Zn2+(aq) + 2 e- 1 point(ii) Co2+(aq) + Zn(s) → Co(s) + Zn2+(aq) 1 point(iii) 0.76 V + (−0.28 V) = 0.48 V 1 pointNote: phase designations not required in part (i) or part (ii)(b) (i) ΔG° = − nFE° = − 2(96,500)(0.55V) 2 pnts

= − 1.1 × 105 J or − 1.1 ×102 kJ• First point earned for n = 2 (consistent use of n = 4 also accepted)• Second point earned for negative sign, correct number (2 ± 1 sig. figs.),and appropriate units (kJ or J or kJ/mole or J/mole)(ii) ΔG° = – RT ln(K) 1 point

-1.1 × 105 J = – [8.31 J mol-1 K-1][298 K][ln (K)]K = 2.0 × 1019

(full credit also for correct use of log K = nE/ 0.0592)(iii) O2 + 2 H2O → 2 H2O2 -0.55 V

O2 + 4 H+ + 4 e- → 2 H2O 1.23 V______________________________________________________2 O2 + 4 H+ + 4 e- → 2 H2O2 0.68 V 2

points→ O2 + 2 H+ + 2 e- → H2O2 0.68 V (not required)

• Two points earned for correct voltage with supporting numbers (chemicalequations not necessary)• One point earned for correct chemical equations with incorrect voltage• Two points earned for correct answer (3 ± 1 sig. figs.)• One point earned for any two of these steps: (amp)(sec) → coulombs, coulombs → mol e-, mol e- → mol Cu, mol Cu → g Cu

1996 #7

Sr(s) + Mg2+ <===> Sr2+ + Mg(s)

Consider the reaction represented above that occurs at 25°C. All reactants and products are in their standard states. The value of the equilibrium constant, Keq, for the reaction is 4.2 × 1017 at 25°C.

a. Predict the sign of the standard cell potential, E°, for a cell based on the reaction. Explain your prediction.

b. Identify the oxidizing agent for the spontaneous reaction.

32

Page 33: EQUILIBRIUM · Web viewa. Write the equilibrium constant expression for the dissociation of HF(aq) in water. b. Calculate the molar concentration of H3O+ in a 0.40 M HF(aq) solution

c. If the reaction were carried out at 60°C instead of 25°C, how would the cell potential change? Justify your answer.

d. How would the cell potential change if the reaction were carried out at 25°C with a 1.0 M solution of Mg(NO3)2 and a 0.10 M solution of Sr(NO3)2? Explain.

e. When the cell reaction in part d reaches equilibrium, what is the cell potential?

(a) two points

The sign of the cell potential will be positivebecause (any one is sufficient):K is greater than 1the reaction is spontaneous (occurs)E° for Sr2+ is more positiveStandard reduction potential for Sr more negativeE° = + 0.52 V Note: only 1 point earned for just E° positive because Keq positive.

(b) one pointThe oxidizing agent is Mg2+

(c) two pointThe cell potential would increaseSince all ions are at 1 M, Q for the system is 1 and E° = (RT/nF) ln Kso as T increases, so should E°Note: no credit lost if student recognizes Keq dependence on T. For temperature change in this problem, decrease in ln K term is small relative to the term RT/nF

ORNo change, because in the Nernst equation Ecell = E° - (RT/nF) ln Qln Q = 0, and Ecell = E°Note: this second approach earns 1 point only

(d) two pointsEcell will increaseIn the equation Ecell = E° - (0.0592 / n) log QQ = 0.1 therefore log Q is negative therefore term after E° is positive therefore Ecell increases

ORwith the concentration of Mg2+ larger than that of Sr2+, Le Chatelier's principle predicts the reaction will have a larger driving force to the right and a more positive Ecell

(e) one point

33

Page 34: EQUILIBRIUM · Web viewa. Write the equilibrium constant expression for the dissociation of HF(aq) in water. b. Calculate the molar concentration of H3O+ in a 0.40 M HF(aq) solution

At equilibrium, Ecell = 0Note: "balanced", "neutral", or "no net reaction" not accepted

1998 #8

Answer the following questions regarding the electrochemical cell shown above. a. Write the balanced net-ionic equation for the spontaneous reaction that occurs as

the cell operates, and determine the cell voltage.

b. In which direction do anions flow in the salt bridge as the cell operates? Justify your answer.

c. If 10.0 mL of 3.0-molar AgNO3 solution is added to the half-cell on the right, what will happen to the cell voltage? Explain.

d. If 1.0 grams of solid NaCl is added to each half-cell, what will happen to the cell voltage? Explain.

e. If 20.0 mL of distilled water is added to both half-cells, the cell voltage decreases. Explain.

8 pointsa) 2 Ag+(aq) + Cd(s) ~ 2 Ag(s) + Cd2+(aq)1 point

34

Page 35: EQUILIBRIUM · Web viewa. Write the equilibrium constant expression for the dissociation of HF(aq) in water. b. Calculate the molar concentration of H3O+ in a 0.40 M HF(aq) solution

equation must be balanced and net ionic, phases not necessaryreaction direction and ion charges must be correct

0.80 - (-0040) = 1.20 V evidence of where numbers came from should be present; if equation is exactly reversed, -1.20 V earns the point 1 point

b) Anions (or N03- ions) will flow to the Cd2+ solution or from the Ag+ solution to

balance the charges OR Anions will flow to the left to balance the positive charge of the new Cd2+ ions both the correct direction and justification needed to earn this point direction may be indicated by arrow marked on diagram 1 point

c) The cell voltage will increase. 1 pointAg+ is a reactant, so increasing [Ag+] will increase the driving force (stress) for the forward (spontaneous) reaction and the potential will increase OR 1 point Since Q = [Cd2+]/[Ag+]2, increasing [Ag+] will decrease Q. According to the Nernst equation, E = E0 - (0.0592 log Q / n , if Q decreases, then voltage increases.

d.) The cell voltage will decrease. 1 point

Adding NaCI will have no effect on the Cd cell, but will cause AgCI to precipitate in the Ag cell (Ag+ + Cl- AgCl). Thus [Ag+] decreases, and since Ag+ is a reactant, decreasing [Ag+] causes a decrease in voltage. 1 pointCredit earned for decreasing [Ag+] results in decreased voltage or opposite of part c

e) Since Q = [Cd2+]/ [Ag+]2 , diluting both solutions by the same amount will increase the value of Q. According to the Nernst equation, E = E0 - (0.0592 log Q )/n , if Q increases, then voltage decreases. , No credit earned for "since the solutions are diluted, the voltage will decrease"

2002 # 2

Answer parts (a) through (e) below, which relate to reactions involving silver ion, Ag+.

The reaction between silver ion and solid zinc is represented by the following equation

2 Ag+(aq) + Zn(s) Zn2+(aq) + 2 Ag(s)

a. A 1.50 g sample of Zn is combined with 250. mL of 0.110 M AgNO3 at 25 oC.

i. Identify the limiting reactant. Show calculations to support your answer.

35

Page 36: EQUILIBRIUM · Web viewa. Write the equilibrium constant expression for the dissociation of HF(aq) in water. b. Calculate the molar concentration of H3O+ in a 0.40 M HF(aq) solution

ii. On the basis of the limiting reactant that you identified in part (i), determine the value of [Zn2+] after the reaction is complete. Assume that volume change is negligible.

b. Determine the value of the standard potential, Eo, for a galvanic cell based on the reaction between AgNO3(aq) and solid Zn at 25 oC.

Another galvanic cell is based on the reaction between Ag+(aq) and Cu(s), represented by the equation below. At 25 oC, the standard potential, Eo, for the cell is 0.46 V.

2 Ag+(aq) + Cu(s) Cu2+(aq) + 2 Ag(s)

c. Determine the value of the standard free-energy change, Go, for the reaction between Ag+(aq) and Cu(s) at 25 oC.

d. The cell is constructed so that [Cu2+] is 0.045 M and [Ag+] is 0.010 M. Calculate the value of the potential, E, for the cell.

e. Under the conditions specified in part (d), is the reaction in the cell spontaneous? Justify your answer.

Total Score 10 points

a.) i. n(Zn) = 1.50 g Zn = 2.29 × 10-2 mol Zn

n(Ag+) = 0.250 L = 2.75 × 10-2 mol Ag+

n(Ag+) = 1.50 g Zn = 4.59 × 10-2 mol Ag+ required

Since only 2.75 × 10-2 mol Ag+ available, Ag+ is the limiting reactant.OR

n(Ag+) = 0.250 L = 2.75 × 10-2 mol Ag+

n(Zn) = 2.75 × 10-2 mol Ag+ = 1.38 × 10-2 mol Zn required

Since 2.29 × 10-2 mol Zn are available, more is available than required, so Znis in excess and Ag+ is limiting.(Correct solutions other than shown above earn both points.)•1 point earned for the moles of one reactant and the proper stoichiometry•1 point earned for the limiting reactant and the supporting calculation or explanation

ii. n(Zn2+) = 2.75 × 10-2 mol Ag+ = 1.38 × 10-2 mol Zn2+

36

Page 37: EQUILIBRIUM · Web viewa. Write the equilibrium constant expression for the dissociation of HF(aq) in water. b. Calculate the molar concentration of H3O+ in a 0.40 M HF(aq) solution

= 0.0550 M Zn2+

OR[Ag+]initial = 0.110 M , therefore [Zn2+] = (1/2) (0.110 M) = 0.0550 M1 point earned for mol Zn2+

1 point earned for [Zn2+]OR2 points earned for [Zn2+]**********************************************************If the student concludes Zn is the limiting reactant, then

1.50 g Zn = 2.29 × 10-2 mol Zn2+ formed

= 0.0916 M Zn2+

1 point earned for mol Zn2+

1 point earned for [Zn2+]

b.) E°cell = E°(reduction) − E°(reduction)= (0.80 V) − (−0.76 V) = 1.56 V2 Ag+(aq) + Zn(s) → Zn2+(aq) + 2 Ag(s) +1.56 VORAg+(aq) + e- → Ag(s) +0.80 VZn(s) → Zn2+(aq) + 2 e- +0.76 V2 Ag+(aq) + Zn(s) → Zn2+(aq) + 2 Ag(s) +1.56 V1 point earned for correct E°

c) ΔG° = –nFE°ΔG° = (–2 mol e-)(96,500 J V-1 mol-1)(+0.46 V)ΔG° = – 89,000 J or – 89 kJ (units required)1 point earned for n and E° in the correct equation1 point earned for correct value and sign of ΔG°

d) Ecell=E°–(RT/nF) lnQ =E°–(RT/nF) ln([Cu2+]/[Ag+]2) = Eo−(0.0592/n) log([Cu2+]/[Ag+]2)Note: Q must include only ion concentrations

Ecell = +0.46 V –

Ecell = +0.46 V – 0.0128 V ln 450 = +0.46 V – 0.0128 V · 6.11 = +0.46 V – 0.0782 VEcell = +0.38 V1 point earned for correct substitution1 point earned for correct answer

e) Ecell = +0.38 V. The cell potential under the non-standard conditions in part (d) is positive. Therefore the reaction is spontaneous under the conditions

37

Page 38: EQUILIBRIUM · Web viewa. Write the equilibrium constant expression for the dissociation of HF(aq) in water. b. Calculate the molar concentration of H3O+ in a 0.40 M HF(aq) solution

stated in part (d). A correct reference (from answer in part (d)) to a negative ΔG (not ΔG°) is acceptable. If no answer to (d) is given, students must make an assumption or a general statement about Ecell, not E°.1 point earned for correct answer and correct explanation

2001 # 7

Answer the following questions that refer to the galvanic cell shown in the diagram below. (A table of standard reduction potentials is printed on the green insert and on page 4 of the booklet with the pink cover.)

a. Identify the anode of the cell and write the half-reaction that occurs there.

b. Write the net ionic equation for the overall reaction that occurs as the cell operates and calculate the value of the standard cell potential, Eo

cell.

c. Indicate how the value of Ecell would be affected if the concentration of Ni(NO3)2(aq) was changed from 1.0 M to 0.10 M and the concentration of Zn(NO3)2(aq) remained at 1.0 M. Justify your answer.

d. Specify whether the value of Keq for the cell reaction is less than 1, greater than 1, or equal to 1. Justify your answer.

(8 points)(a) The anode is the electrode on the right (Zn is the anode) 1 point· Point is also earned if the student points to the Zn cell in the diagram.The half-reaction is Zn → Zn2+ + 2 e- 1 point(b) Zn + Ni2+ → Zn2+ + Ni 1 pointEo

cell = (-0.25 V) - (-0.76 V) = 0.51 V 1 point· Some work must be shown to support the answer.(c) Ecell would decrease 1 point

38

Page 39: EQUILIBRIUM · Web viewa. Write the equilibrium constant expression for the dissociation of HF(aq) in water. b. Calculate the molar concentration of H3O+ in a 0.40 M HF(aq) solution

Since Ni2+ is a reactant, a decrease in its concentration decreases the driving force for the forward reaction 1 pointor

Ecell = E° - (RT/n) ln Q , where Q =

Decreasing [Ni2+] would increase the value of Q, so a larger number would be subtracted from E°, thus decreasing the value of Ecell.(d) K > 1 1 pointE° is positive, so K > 1 1 pointNote: The student’s score in part (d) is based on the sign of Eo

cell calculated in part (b).Note on Overall Question: If in part (a) a student incorrectly identifies Ni as being oxidized, partial credit is earned if subsequent parts are followed through consistently.

2003B # 6

Answer the following questions about electrochemistry.

a. Several different electrochemical cells can be constructed using the materials shown below. Write the balanced net-ionic equation for the reaction that occurs in the cell that would have the greatest positive value of Ecell

o.

b. Calculate the standard cell potential, Ecell

o, for the reaction written in part a.

c. A cell is constructed based on the reaction in part a above. Label the metal used for the anode on the cell shown in the figure below.

39

Page 40: EQUILIBRIUM · Web viewa. Write the equilibrium constant expression for the dissociation of HF(aq) in water. b. Calculate the molar concentration of H3O+ in a 0.40 M HF(aq) solution

d. Of the compounds, NaOH, CuS, and NaNO3, which one is appropriate to use in a salt bridge? Briefly explain your answer, and for each of the other compounds, include a reason why it is not appropriate.

e. Another standard cell is based on the following reaction.

Zn + Pb2+ Zn2+ + Pb

If the concentration of Zn2+ is decreased from 1.0 M to 0.25 M, what effect does this have on the cell potential? Justify your answer.

9 pointsa. Al(s) → Al3+ + 3 e-

Cu2+ + 2 e- → Cu(s)2 Al + 3 Cu2+ → 2 Al3+ + 3 Cu1 point for selection of correct two redox couples1 point for correctly balanced net ionic equation

b. Al3+ + 3 e- → Al Eo = -1.66 VCu2+ + 2 e- → Cu Eo = +0.34 VEcell = Ecathode – Eanode = +0.34 V – (-1.66 V) = +2.00 V 1 point

c. The metal is aluminum solid 1 point d. NaOH is not appropriate. The anion, OH-, would migrate towards the

anode. The OH- would react with the Al3+ ion in solutionCuS is not appropriate. It is insoluble in water, so no ions would be available to migrate to the anode and cathode compartment to balance the charge.NaNO3 is appropriate. It is soluble in water, and neither the cation or the anion will react with the ions in the anode or cathode compartment.1 point for correctly indicating whether each compound is appropriate, along with an explanation (3 points total)

e. Ecell = Ecello – 0.059 ln ([Zn2+] / [Pb2+])

40

Page 41: EQUILIBRIUM · Web viewa. Write the equilibrium constant expression for the dissociation of HF(aq) in water. b. Calculate the molar concentration of H3O+ in a 0.40 M HF(aq) solution

If [Zn2+] is reduced, then the ratio is < 1, therefore ln (ratio) <0, and Ecell

increases (becomes more positive)1 point for correctly indicating how Ecell is affected1 point for explanation in term of Nernst equation and Q

41

Page 42: EQUILIBRIUM · Web viewa. Write the equilibrium constant expression for the dissociation of HF(aq) in water. b. Calculate the molar concentration of H3O+ in a 0.40 M HF(aq) solution

AP Chemistry Concepts - THERMODYNAMICS

1. ∆H0 rxn = ∑ ∆ Hf 0Products - ∑∆ Hf0 Reactants

= ∑ Bond Energy Reactants - ∑ Bond energy Products

∆Hrxn - exothermic ∆Hrxn + endothermic

2. ∆S0 rxn = ∑ Sf0 Products - ∑ Sf

0 Reactants

∆S0rxn - ordered ∆S0

rxn + disordered

3. ∆G0 rxn = ∆H0rxn - T ∆S 0

rxn

∆G0rxn - spontaneous ∆G0

rxn + nonspontaneous

4. ∆G0rxn = - RT ln Q Q = Keq free energy and equilibrium

5. ∆G0 rxn = - nF E0 free energy and electrochemistry

F = 96,500 coulombs / mole electrons Faraday’s constant

6. Phase diagrams

7. ∆H rxn = q = m ( c ) ( ∆T )

42

Page 43: EQUILIBRIUM · Web viewa. Write the equilibrium constant expression for the dissociation of HF(aq) in water. b. Calculate the molar concentration of H3O+ in a 0.40 M HF(aq) solution

1998 # 3 C6H5OH(s) + 7 O2(g) → 6 CO2(g) + 3H2O(l)

When a 2.000-gram sample of pure phenol, C6H5OH(s), is completely burned according to the equation above, 64.98 kilojoules of heat is released. Use the information in the table below to answer the questions that follow.

Substance Standard Heat of Formation, ΔH°f, at 25°C (kJ/mol) Absolute Entropy, S°, at 25°C (J/mol-K)

C(graphite) 0.00 5.69 CO2(g) -395.5 213.6 H2(g) 0.00 130.6 H2O(l) -285.85 69.91 O2(g) 0.00 205.0 C6H5OH(s) ? 144.0

a. Calculate the molar heat of combustion of phenol in kilojoules per mole at 25°C.

b. Calculate the standard heat of formation, ΔH°f, of phenol in kilojoules per mole at 25°C.

c. Calculate the value of the standard free-energy change, ΔG° for the combustion of phenol at 25°C.

d. If the volume of the combustion container is 10.0 liters, calculate the final pressure in the container when the temperature is changed to 110°C. (Assume no oxygen remains unreacted and that all products are gaseous.)

9 points

a) 1 point

Heat released per mole

Or, ΔHcomb = -3058 kJ mol-1 1 pointUnits not necessaryb) ΔHcomb = -3058 kJ mol-1 1 point-3058 kJ = [6(-395.5) + 3(-285.85)] – [ΔHf

o (phenol)] 1 pointΔHf

o (phenol) = -161 kJ 1 pointOne point earned for correct sign of heat of combustion, one point for correct use of moles / coefficients, and one point for correct substitutionc) ΔSo = [3(69.91) + 6(213.6)] [7(205.0) + 144.0] = -87.67 J!K 1 pointΔGo = ΔHo - TΔSo = 3058 kJ – (298 K)(-0.08767 kJ K-1) = -3032 kJ 1 pointUnits not necessary; no penalty if correct except for wrong ΔHcomb for part ad) moles gas = 9 × [moles from part a] = 9 (0.02125 mol) = 0.1913 moles gas

43

Page 44: EQUILIBRIUM · Web viewa. Write the equilibrium constant expression for the dissociation of HF(aq) in water. b. Calculate the molar concentration of H3O+ in a 0.40 M HF(aq) solution

1 pointUnits necessary; no penalty for using Celcius temperature if also lost point in part c for same error

1996 #3

C2H2(g) + 2 H2(g) → C2H6(g) Information about the substancesSubstance S° (J/mol K) ΔH°f (kJ/mol) Bond Bond Energy (kJ/mol)

C2H2(g) 200.9 226.7 C-C 347H2(g) 130.7 0 C=C 611C2H6(g) -------- -84.7 C-H 414

H-H 436

a. If the value of the standard entropy change, ΔS°, for the reaction is -232.7 joules per mole Kelvin, calculate the standard molar entropy, S°, of C2H6 gas.

b. Calculate the value of the standard free-energy change, ΔG°, for the reaction. What does the sign of ΔG° indicate about the reaction above?

c. Calculate the value of the equilibrium constant, K, for the reaction at 298 K.

d. Calculate the value of the C C bond energy in C2H2 in kilojoules per mole.

(a) two points; one for line of answer- 232.7 J/K = S° (C2H6) - (261.4 + 200.9) J./KS° (C2H6) = 229.6 J/Kunits ignored; 1 point earned for 98.9 J/K; 1 point lost if stoichiometry is not implied in process

(b) three points total; one point each portion; any value for T (e.g., 273 K or 298 K) is allowable:ΔH° = (- 84.7 kJ) - (226.7 kJ) = -311.4kJ= - 311.4kJ - (298 K) (- 0.2327kJ/K)= - 311.4 kJ + 69.3 kJ= - 242.1 kJNegative ΔG° therefore reaction is spontaneous, or Keq > 1 therefore reaction is spontaneous, or products are favored at equilibrium.

(c) two points

44

Page 45: EQUILIBRIUM · Web viewa. Write the equilibrium constant expression for the dissociation of HF(aq) in water. b. Calculate the molar concentration of H3O+ in a 0.40 M HF(aq) solution

ln K = 242.1 ÷ [(8.31 x 10¯3) (298)] = 97.7K = 3 x 1042 (1,2,or 3 significant figures acceptable)

(d) two points; first point earned for correct substitution and correct number of bonds, second point earned for setting equal to ΔHrxn and correct calculation of answer; no points earned for "extrapolation" techniques to find carbon-carbon triple bond energy; E* is the energy of the carbon-carbon triple bond.- 311.4 kJ = [(2) (436) + E* + (2) (414)] - [(347) + (6) (414)]E* = 820 kJ

1997 #7

For the gaseous equilibrium represented below, it is observed that greater amounts of PCl3 and Cl2 are produced as the temperature is increased.

PCl5(g) PCl3(g) + Cl2(g)

a. What is the sign of ΔS° for the reaction? Explain.

b. What change, if any, will occur in ΔG° for the reaction as the temperature is increased. Explain your reasoning in terms of thermodynamic principles.

c. If He gas is added to the original reaction mixture at constant volume and temperature, what will happen to the partial pressure of Cl2? Explain.

d. If the volume of the original reaction is decreased at constant temperature to half the original volume, what will happen to the number of moles of Cl2 in the reaction vessel? Explain.

(a) S° is positive (or "+", or ">0") 1 point Moles products > moles reactants 1 point Note; all species are gaseous, so (g) need not be indicated. To earn credit, number of particles (moles) must be discussed. No explanation point earned for just nothing that disorder increases, or that PCl5 is decomposing or dissociating. (b) G° will decrease (or become more negative, or become smaller). 1 point G° = H° - TS°and since S° is positive, TS° is positive ( > 0). Thus increasing T will result in a larger term being subtracted from H°, or, G° = -RT ln K and K is going up in value since T is increasing.) Note: full credit earned for part (b) if:S° < 0 in part (a) which leads to G° is increasing because TS° is added to H°, or, S° = 0 in part (a) which leads to no change in G° (c) no change (one point)

45

Page 46: EQUILIBRIUM · Web viewa. Write the equilibrium constant expression for the dissociation of HF(aq) in water. b. Calculate the molar concentration of H3O+ in a 0.40 M HF(aq) solution

PHe is not part of the a) reaction (He is not involved) or, b) law of mass action or, c) reaction quotient or, d) equilibrium constant expression; one point hence altering PHe has no effect on the position at equilibrium (d) moles of Cl2 will decrease (one point) The decrease in volume leads to an increase in pressure (concentration), therefore the reaction shifts to the left because: (one point for any of the following)Q > Ksp (Q > Kc, or,the rate of the reverse reaction increase more than the rate of the forward reaction, or,the reaction shifts toward the lesser moles of gas. Note: "LeChatelier's principle" alone is not sufficient to earn the explanation point. If response suggests that the number of moles of Cl2 is halved because the system is "cut" in half, only one point is earned.

1999 # 6

Answer the following questions in terms of thermodynamic principles and concepts of kinetic molecular theory.

a. Consider the reaction represented below, which is spontaneous at 298 K.

CO2(g) + 2 NH3(g) → CO(NH2)2(s) + H2O(l); ΔH°298 = -134 kJ

i. For the reaction, indicate whether the standard entropy change, ΔS°298, is positive, or negative, or zero. Justify your answer.

ii. Which factor, the change in enthalpy, ΔH°298, or the change in entropy, ΔS°298, provides the principal driving force for the reaction at 298 K? Explain.

iii. For the reaction, how is the value of the standard free energy change, ΔG°, affected by an increase in temperature? Explain.

b. Some reactions that are predicted by their sign of ΔG° to be spontaneous at room temperature do not proceed at a measurable rate at room temperature.

i. Account for this apparent contradiction.

ii. A suitable catalyst increases the rate of such a reaction. What effect does the catalyst have on ΔG° for the reaction? Explain.

(a)(i) ΔS° is negative (−) OR ΔS° < 0 OR entropy is decreasing. 1 point3 moles of gaseous particles converted to 2 moles of solid/liquid. 1 point• One point earned for correct identification of (−) sign of ΔS°

46

Page 47: EQUILIBRIUM · Web viewa. Write the equilibrium constant expression for the dissociation of HF(aq) in water. b. Calculate the molar concentration of H3O+ in a 0.40 M HF(aq) solution

• One point earned for correct explanation (mention of phases is crucial for point)• No point earned if incorrect ΔS° sign is obtained from the presumed value of ΔG°

(ii) ΔH° drives the reaction. 1 pointThe decrease in entropy (ΔS° < 0) cannot drive the reaction, so the decrease in enthalpy (ΔH° < 0) MUST drive the reaction.ORΔG° = ΔH° − TΔS°; for a spontaneous reaction ΔG° < 0, and a negative value of ΔS° causes a positive ΔG°. 1 point• One point earned for identifying ΔH° as the principal driving force for the reaction• One point earned for correct justification• Justification point earned by mentioning the effects of changes in entropy and enthalpy on the spontaneity of the reaction OR by a mathematical argument using the Gibbs-Helmholtz equation and some implication about the comparison between the effects of ΔS° and ΔH°

(iii) Given that ΔG° = ΔH° − TΔS° and ΔS° < 0, an increase in temperature causes an increase in the value of ΔG° (ΔG° becomes less negative).

1 point• One point earned for the description of the effect of an increase in temperature on ΔS° and consequently on ΔG°• No point earned for an argument based on Le Châtelier.s principle

(b)(i) The reaction rate depends on the reaction kinetics, which is determined by the value of the activation energy, Eact. If the activation energy is large, a reaction that is thermodynamically spontaneous may proceed very slowly (if at all). 1 point• One point earned for linking the rate of the reaction to the activation energy, which may be explained verbally or using a reaction profile diagram

(ii) The catalyst has no effect on the value of ΔG°. 1 pointThe catalyst reduces the value of Eact, increasing the rate of reaction, but has no effect on the values of ΔH° and ΔS°, so it cannot affect the thermodynamics of the reaction. 1 point• One point earned for indicating no change in the value of ΔG°• One point earned for indicating (verbally, or with a reaction-profile diagram) that the catalyst affects the activation energy

2002 # 8

Carbon (graphite), carbon dioxide, and carbon monoxide form an equilibrium mixture, as represented by the equation

C(s) + CO2(g) 2CO(g)

47

Page 48: EQUILIBRIUM · Web viewa. Write the equilibrium constant expression for the dissociation of HF(aq) in water. b. Calculate the molar concentration of H3O+ in a 0.40 M HF(aq) solution

a. Predict the sign for the change in entropy, S, for the reaction. Justify your prediction.

b. In the table below are data that show the percent of CO in the equilibrium mixture at two different temperatures. Predict the sign for the change in enthalpy, H, for the reaction. Justify your prediction.

Temperature % CO700 oC 60850 oC 94

c. Appropriate complete the potential energy diagram for the reaction by finishing the curve on the graph below. Also, clearly indicate H for the reaction on the graph.

d. If the initial amount of C(s) were doubled, what would be the effect on the percent of CO in the equilibrium mixture? Justify your answer.

a) ΔS = +; There is more disorder in a gas than in a solid, so the product is more disordered than the reactants. The change in entropy is therefore positive.ORThere is 1 mole of gas in the reactants and 2 moles of gas in the product.1 point earned for indicating that ΔS is positive1 point earned for explanation

b) ΔH = +; More CO at the higher temperature indicates that the reaction shifts to the right with increasing temperature. For this to occur, the reaction must be endothermic.

48

Page 49: EQUILIBRIUM · Web viewa. Write the equilibrium constant expression for the dissociation of HF(aq) in water. b. Calculate the molar concentration of H3O+ in a 0.40 M HF(aq) solution

1 point earned for indicating that ΔH is positive1 point earned for explanation

c) 1 point earned for completing the graph according to the information in part (b)1 point earned for appropriately labeling ΔHrxn for the reaction as drawn

d) An increase in the amount of C(s) has no effect. Solids do not appear in the equilibrium expression, so adding more C(s) will not affect the percent of CO in the equilibriummixture.1 point earned for indicating no effect1 point earned for explanationNote: Since the question asks about “percent of CO” a student might think of % by mass or % by mole.Adding carbon will not shift the equilibrium, so P(CO) and P(CO2) stay the same. The % CO then decreases, because now there are more total moles in the system: % CO = nCO/(nCO + nCO2 + nC). As nC is raised, the denominator increases, and % CO decreases.

49

Page 50: EQUILIBRIUM · Web viewa. Write the equilibrium constant expression for the dissociation of HF(aq) in water. b. Calculate the molar concentration of H3O+ in a 0.40 M HF(aq) solution

AP Chemistry Concepts - ATOMIC THEORY, BONDING AND INTERMOLECULAR FORCES

1. Quantum Numbers ,electron configurations, Hund’s rule, orbital diagrams

2. ionic bonds

3. Covalent bonds, Lewis structures, geometric shapes, bond polarity, molecular polarity, resonance, hybridization

4. Trends of the periodic table - a) size for atoms b) size of ions, c) IE, EA, EN

5. Effective nuclear charge (Zeff ) increases as more protons added to same energy level Zeff is a comparison tool.

6. Effective nuclear charge (Zeff ) decreases as more shielding electrons are present.

7. Intermolecular Forces (IMF) are between molecules and help explain differences in FP, BP, solids, liquids, gases, and solubilities.

a. ion – ionb. dipole – dipole with H bondingc. dipole – dipoled. London dispersion forces ( LDF )

8. When students talk about EN differences they are talking about bonds (within a molecule) , we need them to talk about IMF (between molecules )

9. Students often talk about atoms “wanting to gain/lose electrons”, being happy, Full, rather than having a stable octet, complete energy level.

50

Page 51: EQUILIBRIUM · Web viewa. Write the equilibrium constant expression for the dissociation of HF(aq) in water. b. Calculate the molar concentration of H3O+ in a 0.40 M HF(aq) solution

1996 # 9

Explain each of the following in terms of the electronic structure and/or bonding of the compounds involved.

a. At ordinary conditions, HF (normal boiling point = 20°C) is a liquid, whereas HCl (normal boiling point = -114°C) is a gas.

b. Molecules of AsF3 are polar, whereas molecules of AsF5 are nonpolar.

c. The N-O bonds in the NO2¯ ion are equal in length, whereas they are unequal in HNO2.

d. For sulfur, the fluorides SF2, SF4, and SF6 are known to exist, whereas for oxygen only OF2 is known to exist.

(a) two pointsHydrogen bonding (or dipole-dipole attraction) in HF is greater than it is in HCl Note: only one point earned if simply stated that HF has greater intermolecular forces than HCl

(b) two pointsAsF3 has a trigonal pyramid shape and bond dipoles do NOT cancel (or asymmetric molecule)AsF5 has a trigonal bipyramid shape and bond dipoles cancel (or symmetric shape)Notes: explanation must refer to shape in order to earn point; one point earned if only correct Lewis structures are given.

(c) two pointsNO2¯ has resonance structures

HNO2 has no resonance structures

ORone N-O single bond, one N=O double bondNote: one point earned if only correct Lewis structures, including resonance for NO2¯ given.

(d) two pointsSulfur uses d orbitals (or expanded octet), oxygen has no d orbitals in its valence shell

ORSulfur is a larger atom, can accomodate more bonds.

51

Page 52: EQUILIBRIUM · Web viewa. Write the equilibrium constant expression for the dissociation of HF(aq) in water. b. Calculate the molar concentration of H3O+ in a 0.40 M HF(aq) solution

1997 #5

Consider the molecules PF3 and PF5.

a. Draw the Lewis electron-dot structures for PF3 and PF5 and predict the molecular geometry of each.

b. Is the PF3 molecular polar, or is it nonpolar? Explain.

c. On the basis of bonding principles, predict whether each of the following compounds exists. In each case, explain your prediction. i. NF5

ii. AsF5

PF3 (Trigonal) pyramid(al) PF5 (Trigonal) bipyramid(al)

1 point for each structure Note ; One point (total) deducted if lone pairs not shown on F atoms in either molecule. (b) The PF3 molecule is polar The three P-F dipoles do not cancel, or, the lone pair on P leads to asymmetrical distribution of charge. Note; "Molecule is not symmetrical" does not earn point. Both points can be earned if answer is consistent with incorrect (a). (c) NF5 does not exist because no 2d orbitals exist for use in bonding, or, N is too small to accommodate 5 bonding pairs AsF5 does exist because 4d orbitals are available for use in bonding, or, As can accommodate an expanded octet using d orbitals Note; Response with two correct predictions with no explanations earns one point. Also, argument of "no expanded octet" vs. "expanded octet" alone does not earn expalnation point

1999 # 8

Answer the following questions using principles of chemical bonding and molecular structure. a. Consider the carbon dioxide molecule, CO2 , and the carbonate ion, CO3

2-.i. Draw the complete Lewis electron-dot structure for each species.

ii. Account for the fact that the carbon-oxygen bond length in CO32- is greater

than the carbon-oxygen bond length in CO2.

52

Page 53: EQUILIBRIUM · Web viewa. Write the equilibrium constant expression for the dissociation of HF(aq) in water. b. Calculate the molar concentration of H3O+ in a 0.40 M HF(aq) solution

b. Consider the molecules CF4 and SF4.i. Draw the complete Lewis electron-dot structure for each molecule.

ii. In terms of molecular geometry, account for the fact that the CF4 molecule is nonpolar, whereas the SF4 molecule is polar.

1997 # 6

Explain each of the following observations using principles of atomic structure and/or bonding.

a. Potassium has a lower first-ionization energy than lithium.

b. The ionic radius of N3- is larger than that of O2-.

c. A calcium atom is larger than a zinc atom.

d. Boron has a lower first-ionization energy than beryllium.

a) Response must contain a cogent discussion of the forces between the nucleus and the outermost (or "ionized") electron. For example, a discussion of "the outermost electron on K..." should include one of the following: i. it is farther from nucleus than the outermost electron on Liii. it is more shielded from the nucleus (or "experiences a lower effective nuclear charge") than the outermost electron on Liiii. it is in a higher energy orbital (4s) than tne outermost electron on Li (2s)."2 points for any one Notes:"K is larger than Li" earns 1 point. No points earned for "K electron is easier to remove" (or some other restatement). b) Nitrogen has one less proton than oxygen 1 point Nitride and oxide ions are isoelectronic 1 point or, In nitride ion the electron/proton ratio is greater, causing more repulsion; thus, nitride is the larger ion. 2 points c) A Zn atom has more protons (10 more) than an atom of Ca 1 point Electrons in d orbitals of Zn have a lower principal quantum number; thus, they are not in orbitals that are farther from the nucleus. 1 point d) Correct identification of the orbitals involved (2s versus 2p) 1 point Clear statement that the two orbitals have different energies 1 point Note: Arguments that "the 2p orbital is farther out than the 2s orbital", or that "the Be atom has a filled subshell, which is a more stable configuration" earn no explanation point. General note:For all parts (a) through (d), discussions of position in the periodic table earn no points.

53

Page 54: EQUILIBRIUM · Web viewa. Write the equilibrium constant expression for the dissociation of HF(aq) in water. b. Calculate the molar concentration of H3O+ in a 0.40 M HF(aq) solution

2000 # 7

Answer the following questions about the element selenium, Se (atomic number 34).

a. Samples of natural selenium contain six stable isotopes. In terms of atomic structure, explain what these isotopes have in common, and how they differ.

b. Write the complete electron configuration (e.g., 1s2 2s2 … etc.) for a selenium atom in the ground state. Indicate the number of unpaired electrons in the ground-state atom, and explain your reasoning.

c. In terms of atomic structure, explain why the first ionization energy of selenium is

i. less than that of bromine (atomic number 35), and

ii. greater than that of tellurium (atomic number 52).

d. Selenium reacts with fluorine to form SeF4. Draw the complete Lewis electron-dot structure for SeF4 and sketch the molecular structure. Indicate whether the molecule is polar or nonpolar, and justify your answer.

(8 points)(a) The isotopes have the same number (34) of protons, 1 pointbut a different number of neutrons. 1 point• No comment about the number of electrons is necessary(b) 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p4

or 1 point1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p4

• No point is earned for [Ar] 4s2 3d10 4p4, because the question specifically asks for a complete electron configuration.Since there are three different 4p orbitals, must be two unpaired electrons.1 pointNotes: The second part should have some explanation of Hund’s rule, and may include a diagram. The second point can still be earned even if the first point is not IF the electron configuration is incorrect, but the answer for the second part is consistent with the electron configuration given in the first part.(c) (i) The ionized electrons in both Se and Br are in the same energy level, but Br has more protons than Se, so the attraction to the nucleus is greater. 1 pointNote: There should be two arguments in an acceptable answer -- the electrons removed are from the same (4p) orbital and Br has more protons (a greater nuclear charge) than Se.(ii) The electron removed from a Te atom is in a 5p orbital, while the electron removed from an Se atom is in a 4p orbital. The 5p orbital is at a higher energy than the 4p orbital, thus the removal of an electron in a 5p orbital requires less energy. 1 point

(d) Figure showing the see-saw structure of SF4. 1 point

54

Page 55: EQUILIBRIUM · Web viewa. Write the equilibrium constant expression for the dissociation of HF(aq) in water. b. Calculate the molar concentration of H3O+ in a 0.40 M HF(aq) solution

Notes: One point earned for a correct Lewis diagram and a sketch. The Lewis diagram and the molecular structure may be combined into one sketch if both aspects (electron pairs and structure) are correct. Dots, lines, or a mixture of both can be used in the Lewis diagram. The lone pair of electrons need not be shown in the sketch -- just the atomic positions. No credit earned for just a verbal description of molecular geometry (“see-saw”, “saw-horse”, or something “distorted”), because the question clearly asks the student to “sketch the molecular structure”.The SeF4 molecule is polar, because the polarities induced by the bonds and the lone pair of electrons do not cancel. 1 point

2003 # 8

Using the information in the table, answer the following questions about organic compounds.

Compound Name Compound Formula ΔHvapo (kJ mol-1)

Propane CH3CH2CH3 19.0Propanone CH3COCH3 32.01-propanol CH3CH2CH2OH 47.3

a. For propanone,

i. draw the complete structural formula (showing all atoms and bonds)

ii. predict the approximate carbon-to-carbon-to-carbon bond angle.

b. For each pair of compounds below, explain why they do not have the same value for their standard heat of vaporization, ΔHvap

o. (You must include specific information about both compounds in each pair.)

i. propane and propanone

ii. propanone and 1-propanol

c. Draw the complete structural formula for an isomer of the molecule you drew in part a. i.

d. Given the structural formula for propyne below,

55

Page 56: EQUILIBRIUM · Web viewa. Write the equilibrium constant expression for the dissociation of HF(aq) in water. b. Calculate the molar concentration of H3O+ in a 0.40 M HF(aq) solution

i. indicate the hybridization of the carbon atom indicated by the arrow in the structure above;

ii. indicate the total number of sigma (σ) bonds and the total number of pi (π) bonds in the molecule.

8 pointsa. i)1 point for complete and correct structural formula (3 carbon chain,

with ketone group on middle carbon)ii)The C-C-C bond angle is 120o 1 point

b. i) The intermolecular attractive forces in propane are dispersion forces only. The IMF’s in propanone are dispersion and dipole-dipole. Since the IMF’s differ in the two substances, the enthalpy of vaporization will differ1 points for correctly identifying the IMF’s for each substanceii) The IMF’s in 1-propanol are dispersion forces and hydrogen bonding. The IMF’s in propanone are dispersion and dipole-dipole. Since the IMF’s differ in the two substances, the enthalpy of vaporization will differ1 point for correctly identifying the IMF’s for each substance

c. 1 point for a correct, complete structural formula with a 3 carbon chain and a COOH group at one end.

d. i) sp hybridization 1 pointii) 6 sigma bonds, 2 pi bonds1 point for correct number of sigma bonds, 1 point for correct number of pi bonds

2007 B #6

First Ionization Second Ionization Third IonizationEnergy (kJ mol-1) Energy (kJ mol-1) Energy (kJ mol-1)

Element 1 1251 2300 3820Element 2 496 4560 6910Element 3 738 1450 7730Element 4 1000 2250 3360

The table above shows the first three ionization energies for atoms of four elements from the third period of the periodic table. The elements are numbered randomly. Use the information in the table to answer the following questions.

56

Page 57: EQUILIBRIUM · Web viewa. Write the equilibrium constant expression for the dissociation of HF(aq) in water. b. Calculate the molar concentration of H3O+ in a 0.40 M HF(aq) solution

a. Which element is most metallic in character? Explain your reasoning.

b. Identify element 3. Explain your reasoning.

c. Write the complete electron configuration for an atom of element 3.

d. What is the expected oxidation state for the most common ion of element 2?

e. What is the chemical symbol for element 2?

f. A neutral atom of which of the four elements has the smallest radius?

8 pointsa. Element 2. It has the lowest first ionization energy. Metallic elements

lose electron(s) when they become ions, and element 2 requires the least amount of energy to remove an electron1 point for the identification, 1 point for the justification

b. Magnesium. Element 3 has low first and second ionization energies relative to the third ionization energy, indicating that the element has two valence electrons, which is true for magnesium. (The third ionization of element 3 is dramatically higher, indicating the removal of an electron from a noble gas core)1 point for the identification, 1 point for the justification

c. 1s2 2s2 2p6 3s2; 1 point for the correct electron configurationd. 1+ 1 pointe. Na 1 pointf. Element 1 1 point

57

Page 58: EQUILIBRIUM · Web viewa. Write the equilibrium constant expression for the dissociation of HF(aq) in water. b. Calculate the molar concentration of H3O+ in a 0.40 M HF(aq) solution

AP Chemistry Concept List – CONCENTRATION UNITS OF SOLUTIONS / COLLIGATIVE PROPERTIES

1. Molarity M = mole of solute/ L of solution

2. molality m = mole of solute / Kg of solvent

3. % by volume = volume of solute / total volume of solution

4. % by weight = weight of solute / total weight of solution

5. mole fraction = xa = mole of a /total moles in solution

Colligative Properties

1. ∆ FP ↓ = (kf ) ( m ) ( i ) freezing point depression

2. ∆ BP ↑ = ( kb ) (m ) ( i ) boiling point elevation

3. ∏ = ( M ) ( R ) ( T ) ( i ) osmotic pressure

4. Vapor Pressure Lowering = VPL = (x solvent) VP pure solvent

The main use of colligative properties is to find the molecular weight of an unknown compound, thus it is related to problems in earlier chapters about empirical or molecular formulas.

i = Van’t Hoff factor

for organic solutes nonelectrolytes i = 1

for electrolytes i = 2,3,4… NaCl i = 2 AlCl3 i = 4

H2SO4 i = 3

58

Page 59: EQUILIBRIUM · Web viewa. Write the equilibrium constant expression for the dissociation of HF(aq) in water. b. Calculate the molar concentration of H3O+ in a 0.40 M HF(aq) solution

1998# 2

An unknown compound contains only the three elements C,H, and O. A pure sample of the compound is analyzed and found to be 65.60 percent C and 9.44 percent H by mass.

a. Determine the empirical formula of the compound.

b. A solution of 1.570 grams of the compound in 16.08 grams of camphor is observed to freeze at a temperature 15.2 Celsius below the normal freezing point of pure camphor. Determine the molar mass and apparent molecular formula of the compound. (The molal freezing-point depression constant, k f, for camphor is 40.0 kg-K-mol-1.)

c. When 1.570 grams of the compound is vaporized at 300 °C and 1.00 atmosphere, the gas occupies a volume of 577 milliliters. What is the molar mass of the compound based on this result?

d. Briefly describe what occurs in solution that accounts for the difference between the results obtained in parts (b) and (c).

a) Assume a 100 – gram sample (not necessary for credit):

1 point

Mass O = [100 – (65.60 + 9.44)] = 24.96 g O 1 point

C5.462H9.366O1.560 --> C3.5H6.0O1.0 --> C7H12O2 1 pointOne point earned for determining moles of C and moles of HOne point earned for determining moles of OOne point earned for correct empirical formula

b) 1 point

1 point

One point earned for determination of molalityOne point earned for conversion of molality to molar massOR

1 point

1 point

59

Page 60: EQUILIBRIUM · Web viewa. Write the equilibrium constant expression for the dissociation of HF(aq) in water. b. Calculate the molar concentration of H3O+ in a 0.40 M HF(aq) solution

OR

2 pts

Empirical mass of C7H12O2 = 7(12) + 12(1) + 2(1) = 128 g mol-1

128 g mol-1 = ½ molar mass --> molecular formula = 2 × (empirical formula)--> molecular formula = C14H24O4 1 point

One point earned if molecular formula is wrong but is consistent with empirical formula and molar mass

No penalty for simply ignoring the van’t Hoff factorOnly one point earned for part b if response indicates that ΔT = (15.2 + 273) = 288 K and molar mass = 13.6 g mol-1

c) 1 point

1 point

Only one point can be earned for part c if wrong value of R is used and / or T is not converted from C to Kd) The compound must form a dimer in solution, because the molar mass in solution is twice that it is in the gas phase,OR,The compound must dissociate in the gas phase (A(g) --> 2 B(g)) because the molar mass in the gas phase is half that it is in solutionOne point earned for a reference to either or both the ideas of dimerization and dissociationNo point earned for a “non-ideal behavior” argument

1999 # 7

Answer the following questions, which refer to the 100 mL samples of aqueous solutions at 25°C in the stoppered flasks shown below.

a. Which solution has the lowest electrical conductivity? Explain.

60

Page 61: EQUILIBRIUM · Web viewa. Write the equilibrium constant expression for the dissociation of HF(aq) in water. b. Calculate the molar concentration of H3O+ in a 0.40 M HF(aq) solution

b. Which solution has the lowest freezing point? Explain.

c. Above which solution is the pressure of water vapor greatest? Explain.

d. Which solution has the highest pH? Explain.

2001 # 5

Answer the questions below that related to the five aqueous solutions at 25 oC shown below.

a. Which solution has the highest boiling point? Explain.

b. Which solution has the highest pH? Explain.

c. Identify a pair of the solutions that would produce a precipitate when mixed together. Write the formula of the precipitate.

d. Which solution could be used to oxidize the Cl-(aq) ion? Identify the product of the oxidation.

e. Which solution would be the least effective conductor of electricity? Explain. (10 points)

In each part, one point is earned for the correct solution or solutions, and one point is earned for the correct explanation (in parts a, b, and e), precipitate (in part c), or product (in part d).(a) Pb(NO3)2 (Solution 1) 1 pointPb(NO3)2 has the largest value of i , the van’t Hoff factor, so the solution has the highest number of solute particles (it dissociates into the most particles). 1 point· Student must address the relative number of particles.(b) KC2H3O2 (Solution 5) 1 pointThe acetate ion is the conjugate base of a weak acid, so it is a weak base (or KC2H3O2 is the salt of a strong base and a weak acid, so the solution is basic).

1 point(c) Pb(NO3)2 and NaCl (Solutions 1 and 2) 1 pointPbCl2 would precipitate 1 point

61

Page 62: EQUILIBRIUM · Web viewa. Write the equilibrium constant expression for the dissociation of HF(aq) in water. b. Calculate the molar concentration of H3O+ in a 0.40 M HF(aq) solution

· Points can also be earned for KMnO4 plus one of the other solutions(with the precipitation of MnO2).· Points can also be earned for KMnO4 plus Pb(NO3)2

(with the precipitation of PbO2, or MnO2).(d) KMnO4 (Solution 3) 1 pointThe product of the oxidation is Cl2 1 point(e) C2H5OH (Solution 4) 1 pointEthanol is the only nonelectrolyte given. It does not readily dissociate into ions, so it would not produce charged species that would conduct a current. 1 point· One point can also be earned for explanations using i, the van’t Hoff factor.

62

Page 63: EQUILIBRIUM · Web viewa. Write the equilibrium constant expression for the dissociation of HF(aq) in water. b. Calculate the molar concentration of H3O+ in a 0.40 M HF(aq) solution

AP Chemistry – LABORATORY QUESTIONS

2007 #5

5. 5 Fe2+(aq) + MnO4-(aq) + 8H+(aq) 5Fe3+(aq) + Mn2+(aq) + 4H2O(l)

The mass percent of iron in a soluble iron(II) compound is measured using a titration based on the balanced equation above.

a. What is the oxidation number of manganese in the permanganate ion, MnO4-(aq)?

b. Identify the reducing agent in the reaction represented above.

The mass of a sample of the iron(II) compound is carefully measured before the sample is dissolved in distilled water. The resulting solution is acidified with H2SO4(aq). The solution is then titrated with MnO4

-(aq) until the end point is reached.

c. Describe the color change that occurs in the flask when the end point of the titration has been reached. Explain why the color of the solution changes at the end point.

d. Let the variables g, M, and V be defined as follows:

g = the mass, in grams, of the sample of the iron(II) compound

M= the molarity of the MnO4-(aq) used as the titrant

V= the volume, in liters, of MnO4-(aq) added to reach the end point

In terms of these variables, the number of moles of MnO4-(aq) added to reach the

end point of the titration is expressed as M x V. Using the variables defined above, the molar mass of iron (55.85 g mol-1), and the coefficients in the balanced chemical equation, write the expression for each of the following quantities.

i. The number of moles of iron in the sample

ii. The mass of iron in the sample, in grams

iii. The mass percent of iron in the compound

e. What effect will adding too much titrant have on the experimentally determined value of the mass percent of iron in the compound? Justify your answer.

9 points

a. +7 1 point

63

Page 64: EQUILIBRIUM · Web viewa. Write the equilibrium constant expression for the dissociation of HF(aq) in water. b. Calculate the molar concentration of H3O+ in a 0.40 M HF(aq) solution

b. Fe2+(aq) 1 pointc. The solution in the flask changes from colorless to faint purple pink at the

endpoint of the titration. At the endpoint there is no Fe2+(aq) left in the flask to reduce the colored permanganate ion, so when a small amount of permanganate ion is added after the endpoint, the unreacted permanganate ion present in the solution colors the solution faint purple / pink.1 point is earned for stating that a faint pink color appears (unless indication of acid-base reaction)1 point is earned for a correct explanation involving excess MnO4

- after all Fe2+ has reacted

d. i) mol Fe2+ = 5 × M × V 1 pointOR mol Fe2+ = (5 mol Fe2+/1 mol MnO4

-) M Vii) mass Fe = 5 × M × V × 55.85 1 pointOR mass Fe = mol Fe2+ × 55.85iii) mass % Fe = (5 × M × V × 55.85) / g × 100 2 pointOR mass % Fe = mass Fe / g × 100

e. The experimentally determined mass percent of iron in the compound will be too large. V is too large --> expression in d)iii) above is too large

1 point

2007 B #5

Answer the following questions about laboratory situations involving acids, bases, and buffer solutions.

a. Lactic acid, HC3H5O3, reacts with water to produce an acidic solution. Shown below are the complete Lewis structures of the reactants.

In the space provided above, complete the equation by drawing the complete Lewis structures of the reaction products.

b. Choosing from the chemicals and equipment listed below, describe how to prepare 100.00 mL of a 1.00 M aqueous solution of NH4Cl (molar mass 53.5 g mol-1). Include specific amounts and equipment where appropriate.

NH4Cl(s) 50 mL buret 100 mL graduated cylinder 100 mL pipetDistilled water100 mL beaker 100 mL volumetric flask Balance

64

Page 65: EQUILIBRIUM · Web viewa. Write the equilibrium constant expression for the dissociation of HF(aq) in water. b. Calculate the molar concentration of H3O+ in a 0.40 M HF(aq) solution

c. Two buffer solutions, each containing acetic acid and sodium acetate, are prepared. A student adds 0.10 mol of HCl to 1.00 L of each of these buffer solutions and to 1.0 L of distilled water. The table below shows the pH measurements made before and after the 0.10 mol of HCl is added.

pH before pH afterHCl added HCl added

Distilled water 7.0 1.0Buffer 1 4.7 2.7Buffer 2 4.7 4.3

i. Write the balanced net ionic equation for the reaction that takes place when the HCl is added to buffer 1 or buffer 2.

ii. Explain why the pH of buffer 1 is different from the pH of buffer 2 after 0.10 mol of HCl is added.

iii. Explain why the pH of buffer 1 is the same as the pH of buffer 2 before 0.10 mol of HCl is added.

8 pointsa. 1 point is earned for each correct structure. (2 total)b. mass of NH4Cl = (0.100 L) (1.00 mol L-1) (53.5 g mol-1) = 5.35 g NH4Cl

- measure out 5.35 g NH4Cl using the balance- use the 100 mL graduated cylinder to transfer approximately 25 mL of distilled water to the 100 mL volumetric flask- transfer the 5.35 g NH4Cl to the 100 mL volumetric flask- continue to add distilled water to the volumetric flask while swirling the flask to dissolve the NH4Cl and remove all NH4Cl particles adhered to the walls- carefully add distilled water to the 100 mL volumetric flask until the bottom of the meniscus of the solution reaches the etched mark on the flask1 point is earned for the mass1 point is earned for using a volumetric flask1 point is earned for diluting to the mark

c. i) C2H3O2- + H3O+ --> HC2H3O2 + H2O 1 point

ii) Before the HCl was added, each buffer had the same pH and thus had the same [H+]. Because Ka for acetic acid is a constant, the ratio of [H+] to Ka must also be constant; this means that the ratio of [HC2H3O2] to [C2H3O2

-] is the same for both buffers, as shown by the following equation, derived from the equilibrium constant expression for the dissociation of acetic acid.

65

Page 66: EQUILIBRIUM · Web viewa. Write the equilibrium constant expression for the dissociation of HF(aq) in water. b. Calculate the molar concentration of H3O+ in a 0.40 M HF(aq) solution

After the addition of the H+, the ratio in buffer 1 must have been greater than the corresponding ratio in buffer 2, as evidenced by their respective pH values. Thus a greater proportion of the C2H3O2

- in buffer 1 must have reacted with the added H+ compared to the proportion that reacted in buffer 2. The difference between these proportions means that the original concentrations of HC2H3O2 and C2H3O2

- had to be smaller in buffer 1 than in buffer 2.1 point is earned for a correct answer involving better buffering capacity or relative amount of base (acetate ion)iii) Both buffer solutions have the same acid to conjugate base mole ratio in the formula below. Therefore, the buffers have the same [H+] and pH.

1 point is earned for the correct answer involving the ratio of acid to base in the buffer.

1997 # 9

An experiment is to be performed to determine the mass percent of sulfate in an unknown soluble sulfate salt. The equipment shown above is available for the experiment. A drying oven is also available.

a. Briefly list the steps needed to carry out this experiment.

b. What experimental data need to be collected to calculate the mass percent of sulfate in the unknown?

c. List the calculations necessary to determine the mass percent of sulfate in the unknown.

66

Page 67: EQUILIBRIUM · Web viewa. Write the equilibrium constant expression for the dissociation of HF(aq) in water. b. Calculate the molar concentration of H3O+ in a 0.40 M HF(aq) solution

d. Would 0.20 M MgCl2 be an acceptable substitute for the BaCl2 solution provided for this experiment? Explain.

a) 2 points Mix unknown and BaCl2(aq) as reactantsCollect precipitate / set up filtration

b) 2 points Mass of unknown salt as reactant(sulfate="salt"=unknown salt, unless otherwise specified) Mass BaSO4 (must be specified) as dried precipitate/product Note: "Dried" must appear to earn all 4 points for (a) and (b)

c) 2 points Mass BaSO4 --> moles SO4

2¯ --> mass SO42¯ (to be used in) -----> mass SO4 2¯ /

mass unknown Notes: A list alone is acceptable. Method, if correct, acceptable as list. Response must clearly distinguish between SO4

2¯, BaSO4, and unknown sulfate. Only one of two points earned if mass SO4

2¯ incorrect but fraction for percent clearly indicates part (of original salt) / whole (of original salt). d) 2 points MgCl2 is NOT an acceptable substitute for BaCl2. MgCl2 is too soluble. Note: 1 point earned if response indicates MgCl2 is acceptable and reason given is that Mg2+ behaves like Ba2+ to form an insoluble SO4

2¯ precipitate (response must previously specify BaSO4 as product)

1998 # 5

An approximately 0.1 M solution of NaOH is to be standardized by titration. Assume that the following materials are available.

Clean, dry 50 mL buret Analytical balance 250 mL Erlenmeyer flask Phenolphthalein indicator solution Wash bottle filled with distilled water Potassium hydrogen phthalate, KHP, a pure solid

monoprotic acid (to be used as the primary standard)

a. Briefly describe the steps you would take, using materials listed above, to standardize the NaOH solution.

b. Describe (i.e., set up) the calculations necessary to determine the concentration of the NaOH solution.

c. After the NaOH solution has been standardized, it is used to titrate a weak monoprotic acid, HX. The equivalence point is reached when 25.0 mL of NaOH solution has been added. In the space provided at the right, sketch the titration

67

Page 68: EQUILIBRIUM · Web viewa. Write the equilibrium constant expression for the dissociation of HF(aq) in water. b. Calculate the molar concentration of H3O+ in a 0.40 M HF(aq) solution

curve, showing the pH changes that occur as the volume of NaOH solution added increases from 0 to 35.0 mL. Clearly label the equivalence point on the curve.

d. Describe how the value of the acid-dissociation constant, Ka, for the weak acid HX could be determined from the titration curve in part (c).

e. The graph below shows the results obtained by titrating a different weak acid, H2Y, with the standardized NaOH solution. Identify the negative ion that is present in the highest concentration at the point in the titration represented by the letter A on the curve.

8 points

a. 4 essential steps 2 points1) weigh KHP2) fill buret with NaOH solution3) add indicator (phenolphthalein)4) titrate to endpoint (color change)

68

Page 69: EQUILIBRIUM · Web viewa. Write the equilibrium constant expression for the dissociation of HF(aq) in water. b. Calculate the molar concentration of H3O+ in a 0.40 M HF(aq) solution

Two points earned for all 4 steps; one point earned for 2 or 3 stepsTitration of acid into base accepted if described correctly

b. 1 point

moles KHP = moles OH- at equivalence and 1 point

Acceptable if some parts of part b appear in ac. Curve should have 3 important features 2 points1) Curve begins above pH 1, but below 72) Equivalence point at 25 mL3) Equivalence point above pH 7Both points earned for all 3 featuresOne point earned for any 2 of the 3 featuresd. At the half-way point in the titration, pH = pKa 1 pointe. At point A in the titration, the anion in highest concentration is Y2- 1 point Also accepted: Y2-, Y--, Y=, and specific anions such as SO4

2-, SO32-

HY-, Y- and “Y ion” not accepted

1999 # 5

A student performs an experiment to determine the molar mass of an unknown gas. A small amount of the pure gas is released from a pressurized container and collected in a graduated tube over water at room temperature, as shown in the diagram above. The collection tube containing the gas is allowed to stand for several minutes, and its depth is adjusted until the water levels inside and outside the tube are the same. Assume that:

the gas is not appreciably soluble in water the gas collected in the graduated tube and the water are in thermal equilibrium

69

Page 70: EQUILIBRIUM · Web viewa. Write the equilibrium constant expression for the dissociation of HF(aq) in water. b. Calculate the molar concentration of H3O+ in a 0.40 M HF(aq) solution

a barometer, a thermometer, an analytical balance, and a table of the equilibrium vapor pressure of water at various temperatures are also available.

a. Write the equation(s) needed to calculate the molar mass of the gas.

b. List the measurements that must be made in order to calculate the molar mass of the gas.

c. Explain the purpose of equalizing the water levels inside and outside the gas collection tube.

d. The student determines the molar mass of the gas to be 64 g mol-1. Write the expression (set-up) for calculating the percent error in the experimental value, assuming that the unknown gas is butane (molar mass 58 g mol-1). Calculations are not required.

e. If the student fails to use information from the table of the equilibrium vapor pressures of water in the calculation, the calculated value for the molar mass of the unknown gas will be smaller than the actual value. Explain.

2000 # 5

The molar mass of an unknown solid, which is nonvolatile and a nonelectrolyte, is to be determined by the freezing-point depression method. The pure solvent used in the experiment freezes at 10 oC and has a known molal freezing-point depression constant, kf. Assume that the following materials are also available.

Test tubes stirrer pipet thermometer balanceBeaker stopwatch graph paper hot-water bath ice

a. Using the two sets of axes provided below, sketch cooling curves for (i) the pure solvent and for (ii) the solution as each is cooled for 20 oC to 0.0 oC.

70

Page 71: EQUILIBRIUM · Web viewa. Write the equilibrium constant expression for the dissociation of HF(aq) in water. b. Calculate the molar concentration of H3O+ in a 0.40 M HF(aq) solution

b. Information from these graphs may be used to determine the molar mass of the unknown solid.

i) Describe the measurements that must be made to determine the molar mass of the unknown solid by this method.

ii) Show the setup(s) for the calculation(s) that must be performed to determine the molar mass of the unknown solid from the experimental data.

iii) Explain how the difference(s) between the two graphs in part a) can be used to obtain information needed to calculate the molar mass of the unknown solid.

c. Suppose that during the experiment a significant but unknown amount of solvent evaporates from the test tube. What effect would this have on the calculated value of the molar mass of the solid (i.e., too large, too small, or no effect)? Justify your answer.

d. Show the setup for the calculation of the percentage error in a student’s result if the student obtains a value of 126 g mol-1 for the molar mass of the solid when the actual value is 120. g mol-1.

(10 points)(a) 2 points - Cooling curve graphs for pure material and solutionNotes: One point is earned for each correct graph. The first graph should show a line that drops to 10°C, holds steady at 10°C, and then falls steadily to 0°C. There must be a discernable plateau at 10°C to earn this point. The second graph should show a

71

Page 72: EQUILIBRIUM · Web viewa. Write the equilibrium constant expression for the dissociation of HF(aq) in water. b. Calculate the molar concentration of H3O+ in a 0.40 M HF(aq) solution

line that drops to below 10°C, levels off (or slants down a bit), and then falls more sharply to 0°C.(b) (i) Measure mass of solute, mass of solvent, mass of solution 1 point(two of three must be shown)Measure the ΔTfp (or the freezing point of the solution) 1 point• Volume of solution (without density), molality, or number of moles do not earn points(ii) Given: ΔT = iKf m (or ΔT = Kf m) 2 pnts

m = (mol solute)/(kg solvent)moles = g/(molar mass)

Combine to get: molar mass = (i)(Kf)(g solute)/(ΔT)(kg solvent)Notes: One point is earned for any two equations, and two points are earnedfor all three equations. “Solute” and “solvent” must be clearly identified inthe equations.(iii) the difference in the vertical position of the horizontal portions of the graphs is equal to ΔTfp , the change in freezing point due to the addition of the solute.

1 point(c) The molar mass is too small. 1 point

If some of the solvent evaporates, then the (kg solvent) term used in the equation in (b) (ii) is larger than the actual value. If the (kg solvent) term used is too large, then the value calculated for the molar mass will be too small. 1 pointorIf some of the solvent evaporates, then the concentration (molality) of the solute will be greater than we think it is. More moles of solute results in a smaller molar mass (or since ΔT = iKf m, then the ΔTobs would be greater than it should be). Since the molar mass of the unknown solute is inversely proportional to ΔT, an erroneously high value for ΔT implies an erroneously low value for the molar mass (calculated molar mass would be too small). 1 point

(d) % error = 1 point

or

% error =

2005 # 5

Answer the following questions that relate to laboratory observations and procedures.

a. An unknown gas is one of three possible gases: nitrogen, hydrogen, or oxygen. For each of the three possibilities, describe the result expected when the gas is tested using a glowing splint (a wooden stick with one end that has been ignited and extinguished, but still contains hot, glowing, partially burned wood).

72

Page 73: EQUILIBRIUM · Web viewa. Write the equilibrium constant expression for the dissociation of HF(aq) in water. b. Calculate the molar concentration of H3O+ in a 0.40 M HF(aq) solution

b. The following three mixtures have been prepared: CaO plus water, SiO2 plus water, and CO2 plus water. For each mixture, predict whether the pH is less than 7, equal to 7, or greater than 7. Justify your answers.

c. Each of three beakers contains a 0.1 M solution of one of the following solutes: potassium chloride, silver nitrate, or sodium sulfide. The three beakers are labeled randomly as solution 1, solution 2, and solution 3. Shown below is a partially completed table of observations made of the results of combining small amounts of different pairs of the solutions.

Solution 1 Solution 2 Solution 3

Solution 1 black precipitate

Solution 2 no reaction

Solution 3

i) Write the chemical formula of the black precipitate.

ii) Describe the expected results of mixing solution 1 with solution 3.

iii) Identify each of the solutions 1, 2, and 3.

9 points

a. Nitrogen: When the glowing splint is inserted into the gas sample, the glowing splint will be extinguished.

Hydrogen: When the glowing splint is inserted into the gas sample, a popping sound (explosion) can be heard.

Oxygen: When the glowing splint is inserted into the gas sample, the splint will glow brighter or reignite.

1 point is earned for each description

b. CaO plus water: The pH of the solution will be greater than 7. CaO is water forms the base Ca(OH)2 (or metal oxides are basic, or basic anhydrides)

SiO2 plus water: The pH of the solution will be equal to 7. SiO2 is insoluble in water, so there would not be a change in the pH of the mixture.

CO2 plus water: The pH of the solution will be less than 7. CO2 in water forms the acid H2CO3 (or nonmetal oxides are acidic, or acidic anhydride)

73

Page 74: EQUILIBRIUM · Web viewa. Write the equilibrium constant expression for the dissociation of HF(aq) in water. b. Calculate the molar concentration of H3O+ in a 0.40 M HF(aq) solution

1 point is earned for each description

c. i) The black precipitate is Ag2S. 1 point

ii) A precipitate will be produced when the two solutions are mixed.1 point

iii) Solution 1 is silver nitrate. Solution 2 is sodium sulfide. Solution 3 is potassium chloride.

1 point is earned for the correct identification of all three solutions.2005B #5

2 Al(s) + 2 KOH(aq) + 4 H2SO4(aq) + 22 H2O(l) 2 KAl(SO4)2·12 H2O + 3 H2(g)

In an experiment, a student synthesizes alum, KAl(SO4)2·12H2O(s), by reacting aluminum metal with potassium hydroxide and sulfuric acid, as represented in the balanced equation above.

a. In order to synthesize alum, the student must prepare a 5.0 M solution of sulfuric acid. Describe the procedure for preparing 50.0 mL of 5.0 M H2SO4 using any of the chemicals and equipment listed below. Indicate specific amounts and equipment where appropriate.

10.0 M H2SO4 50.0 mL volumetric flaskDistilled water 50.0 mL buret100 mL graduated cylinder 25.0 mL pipet100 mL beaker 50 mL beaker

b. Calculate the minimum volume of 5.0 M H2SO4 that the student must use to react completely with 2.7 g of aluminum metal.

c. As the reaction solution cools, alum crystals precipitate. The student filters the mixture and dries the crystals, then measures their mass.

i) If the student weighs the crystals before they are completely dry, would the calculated percent yield be greater than, less than, or equal to the actual percent yield? Explain.

ii) Cooling the reaction solution in an ice bath improves the percent yield obtained. Explain.

d. The student heats crystals of pure alum, KAl(SO4)2·12 H2O(s), in an open crucible to a constant mass. The mass of the sample after heating is less than the mass before heating. Explain.

10 points

74

Page 75: EQUILIBRIUM · Web viewa. Write the equilibrium constant expression for the dissociation of HF(aq) in water. b. Calculate the molar concentration of H3O+ in a 0.40 M HF(aq) solution

a. (50 mL) (1 L / 1000 mL) (5.0 mol H2SO4 / 1 L) = 0.25 mol H2SO4

(0.25 mol H2SO4) (1 L/ 10.0 mol H2SO4) (1000 mL / 1 L) = 25.0 mL

Put on goggles. Measure approximately 20 mL of distilled water using the 100 mL graduated cylinder, and add the distilled water to the 50.0 mL volumetric flask. Measure 25.0 mL of the 10.0 M H2SO4 using the 25.0 mL pipet, and transfer the concentrated acid slowly, with occasional swirling, to the 50.0 mL volumetric flask containing the distilled water. After adding all the concentrated acid, carefully add distilled water until the meniscus of the solution is at the 50.0 mL mark on the neck of the flask at 20 oC.1 point is earned for the volume of the 10.0 M H2SO4

1 point is earned for using a volumetric flask and the pipet1 point is earned for adding the acid to the water1 point is earned for filling to the mark with water

b. V(H2SO4) = (2.7 g Al)

1 point is earned for the number of moles of Al1 point is earned for the correct stoichiometry1 point is earned for the answer

c. i) If the KAl(SO4)2•12H2O(s) crystals have not been properly dried, there will be excess water present, making the mass of the product greater than it should be and the calculated percent too high. Therefore, the calculated percent yield will be greater than the actual percent yield.1 point is earned for the prediction and a correct explanationii) If the solubility of KAl(SO4)2•12H2O(s) decreases with decreasing temperature, cooling the reaction solution would result in the precipitation of more KAl(SO4)2•12H2O(s) 1 point is earned for the correct explanation

d. KAl(SO4)2•12H2O(s) is a hydrate. For the mass of the sample to be less after heating, the water of hydration must be lost. Heating the sample of KAl(SO4)2•12H2O(s) crystals will drive off the water first, decreasing the mass of the sample1 point for the correct explanation

75

Page 76: EQUILIBRIUM · Web viewa. Write the equilibrium constant expression for the dissociation of HF(aq) in water. b. Calculate the molar concentration of H3O+ in a 0.40 M HF(aq) solution

AP Chemistry – NUCLEAR QUESTIONS

2003B # 8

The decay of the radioisotope I-131 was studied in a laboratory. I-131 is known to decay by beta (-1

0e) emission.

a. Write a balanced nuclear equation for the decay of I-131.

b. What is the source of the beta particle emitted from the nucleus?

The radioactivity of a sample of I-131 was measured. The data collected are plotted on the graph below.

c. Determine the half-life, t1/2, of I-131 using the graph above.

d. The data can be used to show that the decay of I-131 is a first-order reaction, as indicated on the graph below.

76

Page 77: EQUILIBRIUM · Web viewa. Write the equilibrium constant expression for the dissociation of HF(aq) in water. b. Calculate the molar concentration of H3O+ in a 0.40 M HF(aq) solution

i. Label the vertical axis of the graph above.

ii. What are the units of the rate constant, k, for the decay reaction?

iii. Explain how the half-life of I-131 can be calculated using the slope of the line plotted on the graph.

e. Compare the value of the half-life of I-131 at 25 oC to its value at 50 oC

8 pointsa. 1 pointb. A neutron spontaneously decays to an electron and a proton.

1 point for identifying a neutron as the source of the beta emissionc. The half life is 8 days. That is the time required for the disintegration rate

to fall from 16,000 to one half its initial value, 8000 1 pointd. i) The label on the y axis should be ln or log of one of the following:

disintegrations or moles or atoms of [I-131] or disintegration rate 1 pointii) From the graph, the units on the rate constant are days-1 (Units of time-

1 are acceptable) 1 pointiii) The slope of the line is –k. The slope is negative, so k is a positive number. The half life can then be calculated using the relationship, t1/2 = 0.693 / k.1 point for indicating slope is k1 point for half life equation

e. The half life will be the same at the different temperatures. The half life of a nuclear decay process is independent of temperature 1 point

77