epr paradox and bell inequality -...

12
EPR paradox and Bell inequality Anton´ ın ˇ Cernoch RCPTM, Joint Laboratory of Optics of Palack´ y University and Physical Institute of Academy of Sciences of the Czech Republic A. ˇ Cernoch (RCPTM/JLO) EPR & Bell inequality 31.8.2016 1 / 12

Upload: others

Post on 05-Nov-2019

7 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: EPR paradox and Bell inequality - jointlab.upol.czjointlab.upol.cz/soubusta/2017/PPT/05_QI_EPRvsBell.pdfNiels Bohr and Werner Heisenberg Wavefunction physical systems have not definite

EPR paradox and Bell inequality

Antonın Cernoch

RCPTM, Joint Laboratory of Optics of Palacky University and Physical Institute of Academyof Sciences of the Czech Republic

A. Cernoch (RCPTM/JLO) EPR & Bell inequality 31.8.2016 1 / 12

Page 2: EPR paradox and Bell inequality - jointlab.upol.czjointlab.upol.cz/soubusta/2017/PPT/05_QI_EPRvsBell.pdfNiels Bohr and Werner Heisenberg Wavefunction physical systems have not definite

Quantum physics

MilestonesPlanc - black-body radiation

Einstein - photoelectric effectHeisenberg - uncertainty principle

Compton, Raman, Zeeman, Millikan, Bohr, Moseley, Debye,Sommerfeld, de Broglie, Schrodinger, Born, von Neumann, Dirac,Fermi, Pauli, von Laue, Dyson, Hilbert, Wien, Bose, Sommerfeld, . . .

Two main principlesrandomnesssuperposition principle

A. Cernoch (RCPTM/JLO) EPR & Bell inequality 31.8.2016 2 / 12

Page 3: EPR paradox and Bell inequality - jointlab.upol.czjointlab.upol.cz/soubusta/2017/PPT/05_QI_EPRvsBell.pdfNiels Bohr and Werner Heisenberg Wavefunction physical systems have not definite

Copenhagen interpretationNiels Bohr and Werner Heisenberg

Wavefunctionphysical systems have not definite propertiesbefore they are measuredquantum mechanics only predict the probabilitiesof measurements outputswavefunction is non-localmeasurement changes the system→ collapse ofwavefunction

Other theoriesmany-worlds interpretationthe De Broglie-Bohm (pilot-wave) interpretationquantum decoherence theorie

A. Cernoch (RCPTM/JLO) EPR & Bell inequality 31.8.2016 3 / 12

Page 4: EPR paradox and Bell inequality - jointlab.upol.czjointlab.upol.cz/soubusta/2017/PPT/05_QI_EPRvsBell.pdfNiels Bohr and Werner Heisenberg Wavefunction physical systems have not definite

EPR paradox

Albert Einstein, Boris Podolsky and Nathan RosenCan quantum-mechanical description of physical reality beconsidered complete? Phys. Rev. 47, 777 (1935)

wave function does not provide a completedescription of physical reality”element of reality” determines the measurementresultsthese hidden variables are local

”God does not play dice withthe universe”

A. Cernoch (RCPTM/JLO) EPR & Bell inequality 31.8.2016 4 / 12

Page 5: EPR paradox and Bell inequality - jointlab.upol.czjointlab.upol.cz/soubusta/2017/PPT/05_QI_EPRvsBell.pdfNiels Bohr and Werner Heisenberg Wavefunction physical systems have not definite

Bell inequality

John Stewart Bell ”On the Einstein Podolsky Rosen Paradox”.Physics 1, 195–200 (1964)

local realism cannot reproduce all the predictionsof quantum mechanical theory

If EPR are rightdifferent measurements (a, b, c) on two distant particles (A and B)measurement results on A is not affected by setting ofmeasurement on B and vice versameasurement result ±1statistics over many realizations→ correlation Cthen C(a, c)− C(b,a)− C(b, c) ≤ 1

A. Cernoch (RCPTM/JLO) EPR & Bell inequality 31.8.2016 5 / 12

Page 6: EPR paradox and Bell inequality - jointlab.upol.czjointlab.upol.cz/soubusta/2017/PPT/05_QI_EPRvsBell.pdfNiels Bohr and Werner Heisenberg Wavefunction physical systems have not definite

CHSH inequality

John Clauser, Michael Horne, Abner Shimony and Richard A. Holt”Proposed experiment to test local hidden-variable theories”. Phys. Rev. Lett. 23,880–4 (1969)

generalization of Bell inequality – works also for not-perfectlycorrelated (anti-correlated) pair

−2 ≤ C(a,b)− C(a,b′) + C(a′,b) + C(a′,b′) ≤ 2 ∀a,b

C =N++ − N+− − N−+ + N−−N++ + N+− + N−+ + N−−

1 2

1. photon 2. photon

PBS PBS

+1

−1

+1

−1

A. Cernoch (RCPTM/JLO) EPR & Bell inequality 31.8.2016 6 / 12

Page 7: EPR paradox and Bell inequality - jointlab.upol.czjointlab.upol.cz/soubusta/2017/PPT/05_QI_EPRvsBell.pdfNiels Bohr and Werner Heisenberg Wavefunction physical systems have not definite

Proof

four random independent variables a,a′,b,b′

with possible values ±1B = ab + ab′ + a′b − a′b′

a +1 +1 +1 +1 +1 +1 +1 +1 −1 −1 −1 −1 −1 −1 −1 −1a′ +1 +1 +1 +1 −1 −1 −1 −1 +1 +1 +1 +1 −1 −1 −1 −1b +1 +1 −1 −1 +1 +1 −1 −1 +1 +1 −1 −1 +1 +1 −1 −1b′ +1 −1 +1 −1 +1 −1 +1 −1 +1 −1 +1 −1 +1 −1 +1 −1B +2 +2 −2 −2 +2 −2 +2 −2 −2 +2 −2 +2 −2 −2 +2 +2

B = ±2

statistical outcomes⇒

−2 ≤ 〈B〉 ≤ +2

A. Cernoch (RCPTM/JLO) EPR & Bell inequality 31.8.2016 7 / 12

Page 8: EPR paradox and Bell inequality - jointlab.upol.czjointlab.upol.cz/soubusta/2017/PPT/05_QI_EPRvsBell.pdfNiels Bohr and Werner Heisenberg Wavefunction physical systems have not definite

Previous measurements

quantum limit

2√

2 ≈ 2.8284271

Poh et al., Singapore

2.82759± 0.00051

my yesterdays value

2.599± 0.015

A. Cernoch (RCPTM/JLO) EPR & Bell inequality 31.8.2016 8 / 12

Page 9: EPR paradox and Bell inequality - jointlab.upol.czjointlab.upol.cz/soubusta/2017/PPT/05_QI_EPRvsBell.pdfNiels Bohr and Werner Heisenberg Wavefunction physical systems have not definite

Standard deviation σ

longer accumulation of data→ higher precision (µ/σ)

A. Cernoch (RCPTM/JLO) EPR & Bell inequality 31.8.2016 9 / 12

Page 10: EPR paradox and Bell inequality - jointlab.upol.czjointlab.upol.cz/soubusta/2017/PPT/05_QI_EPRvsBell.pdfNiels Bohr and Werner Heisenberg Wavefunction physical systems have not definite

Bell states

Maximally entangled states

|Φ+〉 = 1√2

(|HH〉+ |VV 〉) |Ψ+〉 =1√2

(|HV 〉+ |VH〉)

|Φ−〉 = 1√2

(|HH〉 − |VV 〉) |Ψ−〉 =1√2

(|HV 〉 − |VH〉)

Angles which maximize Bell inequality violation→ Bmax

−C(0◦,22.5◦) + C(0◦,67.5◦) + C(45◦,22.5◦) + C(45◦,67.5◦)4 coincidence measurement for each correlation⇒ 16 measurementsif you change measurement basis by HWP – rotate it by half angle!

A. Cernoch (RCPTM/JLO) EPR & Bell inequality 31.8.2016 10 / 12

Page 11: EPR paradox and Bell inequality - jointlab.upol.czjointlab.upol.cz/soubusta/2017/PPT/05_QI_EPRvsBell.pdfNiels Bohr and Werner Heisenberg Wavefunction physical systems have not definite

Table of HWP settings

C(0◦,22.5◦)

ϑ1 ϑ2N++ 0◦ 11.25◦

N+− 0◦ 56.25◦

N−+ 45◦ 11.25◦

N−− 45◦ 56.25◦

C(45◦,22.5◦)

ϑ1 ϑ2N++ 22.5◦ 11.25◦

N+− 22.5◦ 56.25◦

N−+ 67.5◦ 11.25◦

N−− 67.5◦ 56.25◦

C(0◦,67.5◦)

ϑ1 ϑ2N++ 0◦ 33.75◦

N+− 0◦ 78.75◦

N−+ 45◦ 33.75◦

N−− 45◦ 78.75◦

C(45◦,67.5◦)

ϑ1 ϑ2N++ 22.5◦ 33.75◦

N+− 22.5◦ 78.75◦

N−+ 67.5◦ 33.75◦

N−− 67.5◦ 78.75◦

A. Cernoch (RCPTM/JLO) EPR & Bell inequality 31.8.2016 11 / 12

Page 12: EPR paradox and Bell inequality - jointlab.upol.czjointlab.upol.cz/soubusta/2017/PPT/05_QI_EPRvsBell.pdfNiels Bohr and Werner Heisenberg Wavefunction physical systems have not definite

Bell factor calculation

Bmax

Nu = N++ − N+− − N−+ + N−−Nl = N++ + N+− + N−+ + N−−

C =Nu

Nl

Bmax = −C1 + C2 + C3 + C4

σ(Bmax )

σ2(Nu) = σ2(Nl) =∑

σ2(N±±)

σ2(C) =1

N4l

(N2u + N2

l )σ2(Nu)

σ2(Bmax ) =4∑

n=1

σ2(Cn)

A. Cernoch (RCPTM/JLO) EPR & Bell inequality 31.8.2016 12 / 12