enzyme_revised 2011 chatchawin

Upload: chatchawin

Post on 07-Apr-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    1/111

    EnzymeEnzyme

    Chatchawin Petchlert, Ph.D.

    Department of Biochemistry

    Faculty of Science, Burapha University

    ChymotrypsinChymotrypsin

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    2/111

    OUTLINEOUTLINE

    xGENERAL PROPERTIES

    xCOFACTORS

    xCHEMISTRY OF CATALYST

    xENZYME KINETICS

    xENZYME INHIBITION

    xENZYME REGULATIONS

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    3/111

    3

    Binding of asubstrate to anenzyme at the activesite.The enzymechymotrypsin, withbound substrate inred (PDB ID 7GCH).Some key active-siteamino acid residuesappear as a redsplotch on theenzyme surface.

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    4/111

    4

    EnzymeEnzyme

    Enzyme-substrate complex

    Ribozyme

    Abzyme

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    5/111

    5

    History of EnzymologyHistory of Enzymology

    Kuhne, 1878 Enzyme inyeastBuchner, 1897

    Sumner, 1926 urease Jackbean Moore Stein, 1963 (aminoacid sequence)

    ribonucleasePhillips, 1965 (three

    dimensional structure) l soz me

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    6/111

    6

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    7/111

    GENERAL PROPERTIESGENERAL PROPERTIES

    t DEFINITION

    Enzyme : a biological catalyst with

    *small amount

    ** G Keq *high efficiency and high specificity

    *Almost all enzymes are globular proteins.

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    8/111

    8

    10-5 M

    10-4 10-3 M

    Turnover number (S)

    (P)

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    9/111

    9

    S P k = rateconstant equilibrium k1 = 10-3 min-1, k-1 = 10-5 min-1

    vf = k1 [S] = vr = k-1 [P]Keq = = = = 100

    k1 k-1 106

    K

    eq= = = =

    100

    k1

    k-1

    [P][S] k1k-110

    -3

    10-5

    [P][S]

    k1k-1

    10310

    (Free energy change, G) (Equilibrium constant, Keq)

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    10/111

    10

    (High specificity)

    2 - (substrate

    specificity)- (reaction

    specificity)

    - (chemical catalyst)

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    11/111

    veravera

    reactionreactionE (enzyme) +S (substrate) Step I :

    Binding

    ES(enzyme-substratecomplex)

    Step II :Transformation

    E +P roduct

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    12/111

    t SPECIFICITY OF ACTIONSPECIFICITY OF ACTION

    1. Absolute specificity E S

    2. Relative specificity E S Proteolytic enzyme

    t ENZYME NOMENCLATUREENZYME NOMENCLATURE

    Trivial namerefer reaction and/or substrate specificity

    Hexokinase, glucose phosphotransferaseSystematic name 4 (E.C. number)

    1.4.3.4 Monoamine : O

    2oxidoreductase

    The 1st number : ClassThe 2nd figure : Subclass

    The 3rd figure : Sub-subclassThe 4th figure : Serial number of the enzyme in the sub-

    subclass

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    13/111

    13

    6 oxidoreductase dehydrogenase, transferase, hydrolase, lyase,isomerase ligase 3 (trivial name) (systematicname)

    1 : 2 ase lactatepyruvate NAD+ 2

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    14/111

    14

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    15/111

    15

    6

    1 Oxidoreductase (oxidation-reduction) (redox reaction)

    Aox + Bred Ared + Box

    2 Transferase

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    16/111

    16

    ()

    3 Hydrolase (hydrolysis)

    AB + H2O AOH + BH

    4 Lyase

    ABC AB + C

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    17/111

    17

    ()

    5 Isomerase

    ABC BAC

    6 Ligase 2

    ATP

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    18/111

    COFACTORCOFACTOR : Non-protein substances for optimum activitywith loosely bound or covalently bound

    PROSTHETIC GROUPPROSTHETIC GROUP : cofactor when covalently bound,become a permanent part of enzyme molecule

    INORGANIC IONSINORGANIC IONS : Zn2+

    , Mg2+

    , Mn2+

    , Fe2+

    COENZYMECOENZYME : organic substance - water soluble vitamin

    COFACTORSCOFACTORS

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    19/111

    COFACTORSCOFACTORS

    HOLOENZYME(Protein~cofactor)(optimally active catalyst)

    ease ofdissociation is variable

    Protein Cofactor(apoenzyme ;inactive or less

    active)

    (inorganic ion or

    organic substance ;

    inactive as a catalyst)

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    20/111

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    21/111

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    22/111

    tACTIVE SITEACTIVE SITE

    EnzymeEnzyme ACTIVE SITE Binding site Catalytic site

    Binding site : substrate

    ionic bond, H-bond, Van de Waals forces,hydrophobic interaction

    Catalytic site : binding site

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    23/111

    t ACTIVE SITEACTIVE SITE

    1. Active site

    2. Active site 3

    3. Substrate active site non-covalent bonding active site

    substrate

    4. active site substrate

    active site

    substrate St S ifi it (O t 1948)

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    24/111

    Stereo Specificity (Ogston, 1948)

    B

    C

    D

    B

    C

    DBC

    D

    These two triangles are

    not identical

    A

    The tetrahedral structure

    of carbon orbital has rigid

    steric strain which makes

    the basic building unit of

    protein conformation

    Juang RH (2004) BCbasics

    sp3

    Enzyme surface

    Three point attachmentThree point attachment 3 3

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    25/111

    t ENZYME SPECIFICITYENZYME SPECIFICITY

    Model enzyme substrate

    1. Lock and Key Model - Fischer (1890) E-S 2. Induced Fit Model - Koshland (1958) E change

    3. Strain or Transition State Stabilization Model

    - Haldane (1930), Pauling (1948) S change

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    26/111

    Induced fit modelInduced fit model

    E i ti 2 t iti

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    27/111

    Paulings Hypothesis

    I think that enzymes are molecules that arecomplementary in structure to the activated complexes of

    the reactions that they catalyse, that is, to the molecular

    configuration that is intermediate between the reacting

    substances and the products of reaction for these

    catalysed processes.

    The attraction of the enzyme molecule for the activated

    complex would thus lead to a decrease in its energy andhence to a decrease in the energy of activation and to an

    increase in the rate of reaction. Linus PaulingNature161, 707 (1948)

    Enzymes in action 2: transition

    state stabilisation

    (Binding energy)

    (strain) (Distortion)

    27

    Th N t f E C t l i

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    28/111

    The Nature of Enzyme Catalysis

    Enzyme provides a catalytic surfaceEnzyme provides a catalytic surface This surface stabilizes transition stateThis surface stabilizes transition state

    Transformed transition state to productTransformed transition state to product

    B

    BA Catalytic surface

    A

    Juang RH (2004) BCbasics

    E St bili T iti St t

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    29/111

    Enzyme Stabilizes Transition State

    S

    P

    ES

    EST

    EP

    ST

    Reaction direction

    Energy change

    Energyrequired(nocatalysis)

    Energydecr

    eases(undercatalysis)

    Whats the difference?T = Transition state

    Adapted from Alberts et al (2002) Molecular Biology of the Cell (4e) p.166

    A ti Sit I D B i d P k t

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    30/111

    Active Site Is a Deep Buried Pocket

    Why energy required to reach transition state is

    lower in the active site?

    It is a magic pocket

    (1) Stabilizes transition

    (2) Expels water

    (3) Reactive groups

    (4) Coenzyme helps

    (2)

    (3)

    (4)(1)CoE

    +

    -

    Juang RH (2004) BCbasics

    Stickase

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    31/111

    Stickase

    Substrate

    If enzyme just binds substrate

    then there will be no further reaction

    Transition state Product

    Enzyme not only recognizes substrate,

    but also induces the formation of transition stateAdapted from Nelson & Cox (2000) Lehninger Principles of Biochemistry (3e) p.252

    X

    Enzyme Active Site Is Deeper than Ab Binding

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    32/111

    Enzyme Active Site Is Deeper than Ab Binding

    Instead, active site on enzyme

    also recognizes substrate, butactually complementally fits thtransition state and stabilized it

    binding site on Ab binds to Agplementally, no further reaction

    urs.

    Adapted from Nelson & Cox (2000) Lehninger Principles of Biochemistry (3e) p.252

    X

    Active Site Avoids the Influence of Water

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    33/111

    Active Site Avoids the Influence of Water

    g the influence of water sustains the formation of stable io

    Adapted from Alberts et al (2002) Molecular Biology of the Cell (4e) p.115

    -+

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    34/111

    Enzyme KineticsEnzyme Kinetics

    Enzyme Kinetics

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    35/111

    Enzyme Kinetics

    Increase the substrate concentration,

    observe the change of enzyme activity

    Substrate concentrationExam Chapters

    Scor

    e

    Enzy

    mea

    cti vity

    Student A

    Student B

    Student C

    0 1 2 3 4 0 1 2 3 4

    Juang RH (2004) BCbasics

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    36/111

    36

    Invertase (IT)

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    37/111

    Invertase (IT)

    ITSucrose

    Non-reducing sugarReducing

    sugars

    Glucose Fructose

    Reducing Power

    +

    HOCH2

    O

    OH

    1

    2

    34

    5

    66

    5

    4

    32

    1

    1

    2

    3

    4

    5

    6

    HOCH2

    O

    OH

    O

    HOCH2 HOCH2

    OH

    H2O

    O

    HOCH2HOCH2

    HO

    O

    HOCH2

    OHOCH2HOCH2

    O

    CHO

    H-C-OHHO-C-H

    H-C-OH

    H-C-OH

    H2-C-OH

    H2C-OH

    C=OHO-C-H

    H-C-OH

    H-C-OH

    H2-C-OHJuan

    gRH

    ( 2004)BCbasics

    1 2

    In

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    38/111

    ncreaseSubstr

    ateConc

    entration

    21 3 4 5 6 7 80

    0 2 4 6 8

    Substrate mole

    Product

    80

    60

    40

    20

    0

    S

    +E

    P(inafixedperiod

    oftJuang RH (2004) BCbasics

    Essential of Enzyme Kinetics

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    39/111

    Essential of Enzyme Kinetics

    E S+ P+

    Steady State TheorySteady State Theory

    In steady state, the production and consumption of

    the transition state proceed at the same rate. So the

    concentration of transition state keeps a constant.

    SE E

    Juang RH (2004) BCbasics

    Constant ES Concentration at Steady State

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    40/111

    Constant ES Concentration at Steady State

    S P

    EES

    Reaction Time

    Con

    centra

    tion

    Juang RH (2004) BCbasics

    An Example for Enzyme Kinetics (Invertase)

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    41/111

    An Example for Enzyme Kinetics (Invertase)

    Vmax

    Km S

    vo

    1/S

    1vo

    Double reciprocal Direct plot

    1)1)Use predefined amount ofEnzyme E

    2)2)Add substratein various concentrations S (x)3)3)Measure Productin fixed Time (P/t) vo(y)

    4)4)(x, y)plot get hyperbolic curve, estimateVmax

    5)5)Wheny = 1/2 Vmax calculate x ([S]) Km

    1

    Vmax

    - 1

    Km

    1/2

    Juan

    gRH

    ( 2004)BCbasics

    A Real Example for Enzyme Kinetics

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    42/111

    A Real Example for Enzyme Kinetics

    Data

    no

    12

    3

    4

    0.250.50

    1.0

    2.0

    0.420.72

    0.80

    0.92

    Absorbancev (mole/min)[S]0.210.36

    0.40

    0.46

    (1) The product was measured by spectroscopy at 600 nm for 0.05 per mole(2) Reaction time was 10 min

    VelocitySubstrate Product Double reciprocal

    1/S 1/v

    42

    1

    0.5

    2.081.56

    1.35

    1.16

    1.0

    0.5

    0

    v

    Directplot

    Doublerec

    iproca

    l2.0

    1.0

    0

    1/v

    -4 -2 0 2 41/[S]0 1 2 [S]

    1.0

    -3.8

    Juan

    gRH

    ( 2004)BCbasics

    Enzyme Kinetics

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    43/111

    Enzyme Kinetics

    vo=

    Vmax [S]

    Km+[S]

    KmVmax &

    E1E2E3

    1st order

    zero order

    Competitive

    Non-competitive

    Uncompetitive

    Direct plot

    Double reciprocal

    Bi-substrate reaction alsofollows M-M equation, butone of the substrate shouldbe saturated when estimatethe other

    Affinity with

    substrate

    Maximum

    velocity Inhibition

    Activity

    Observe vo change

    under various [S],resulted plotsyield Vmax andKm

    k3 [Et]

    kcatTurn overnumber

    kcat /Km

    Activity Unit

    1molemin

    Specific Activity

    unitmg

    Significance

    Juang RH (2004) BCbasics

    Significance of Enzyme Kinetics

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    44/111

    Significance of Enzyme Kinetics

    vo = Vmax [S]

    Km+[S]ObtainVmax andKm

    [S] = Low High [S] = Fixed concentration

    zero order

    1st order

    E3

    E2E1

    Proportio

    nalto

    enzymeconcen

    tration

    v0 = Vmax K = k3 [Et] K

    Juang RH (2004) BCbasics

    K : Affinity with Substrate

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    45/111

    Km= [S]

    Km+[S] = 2[S]

    Vmax2

    =Vmax [S]Km+[S]

    Km: Affinity with Substrate

    Ifvo =Vmax

    2

    S2S1 S3

    S1S2 S3

    Vmax

    1/2

    When using different substrate

    Affinity changesKm

    vo =

    Vmax [S]

    Km+[S]

    Juan

    gRH

    ( 2004)BCbasics

    K : Hexokinase Example

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    46/111

    Km: Hexokinase Example

    Glucose + ATP Glc-6-P + ADP

    1

    2

    3

    4

    5

    6

    Glucose Allose MannoseSubstratnumber

    Km

    = 8 8,000 5 M

    CHO

    H-C-OHHO-C-H

    H-C-OH

    H-C-OH

    H2-C-OH

    CHO

    H-C-OH

    H-C-OH

    H-C-OH

    H-C-OH

    H2-C-OH

    CHOHO-C-HHO-C-H

    H-C-OH

    H-C-OH

    H2-C-OH

    Juang RH (2004) BCbasics

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    47/111

    Turn Over Numbers of Enzymes

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    48/111

    Turn Over Numbers of Enzymes

    Catalase H2O2

    Carbonic anhydrase HCO3-

    Acetylcholinesterase Acetylcholine

    40,000,000

    400,000

    140,000

    -Lactamase Benzylpenicillin 2,000Fumarase Fumarate 800

    RecA protein (ATPase) ATP 0.4

    Enzymes Substrate kcat (s-1

    )

    The number of product transformed from substrate

    by one enzyme molecule in one second

    Adapted from Nelson & Cox (2000) Lehninger Principles of Biochemistry (3e) p.263

    Chymotrypsin Has Distinct k t /K to

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    49/111

    Chymotrypsin Has Distinct kcat /Km to

    Different SubstratesO R O

    H3CCNCCOCH3

    H H

    = =

    HGlycine

    kcat / Km

    1.3 10-1

    CH2CH2CH3Norvaline 3.6 102

    CH2CH2CH2CH3Norleucine 3.0 103

    CH2Phenylalanine 1.0 105

    (M-1

    s-1

    )

    R =

    Adapted from Mathews et al (2000) Biochemistry (3e) p.379

    Enzyme Activity Unit

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    50/111

    Enzyme Activity Unit

    Reaction time(min)

    P

    roduct[P

    ]

    0 10 20 30 40

    Slope

    tan

    S Pmole

    vo = [P]/min

    Unit =

    Activity Units

    Protein (mg)

    t

    mole

    /min

    y

    x

    y

    x

    = tan

    Juan

    gRH

    ( 2004)BCbasics

    SpecificActivity =

    Enzyme Inhibition (Mechanism)

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    51/111

    Enzyme Inhibition (Mechanism)

    I

    I

    S

    S

    S II

    I II

    S

    CompetitiveNon-competitiveUncompetitiv

    EE

    Different siteCompete foractive siteInhibitor

    Substrate

    Cartoo

    nGuide

    E

    quat

    ion

    and

    Des

    cription

    [II] binds to free [E] only,

    and competes with [S];

    increasing [S] overcomes

    Inhibition by [II].

    [II] binds to free [E] or [ES]

    complex; Increasing [S] can

    not overcome [II] inhibition.

    [II] binds to [ES] complex

    only, increasing [S] favors

    the inhibition by [II].

    E + SESE + P

    +II

    EII

    E + SESE + P

    + +II II

    EII+SEIIS

    E + SESE + P

    + II

    EIIS

    E

    I

    S X

    Juang RH (2004) BCbasics

    Enzyme Inhibition (Plots)

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    52/111

    Km

    Enzyme Inhibition (Plots)

    I IICompetitiveNon-competitiveUncompetitiv

    D

    irect

    Plots

    Double

    Rec

    iprocal

    Vmax Vmax

    Km Km [S], mM

    vo

    [S], mM

    vo

    II II

    Km [S], mM

    Vmax

    II

    Km

    Vmax Vmax

    Vmax unchanged

    Km increased

    Vmax decreased

    Km unchangedBoth Vmax & Km decreased

    II

    1/[S]1/Km

    1/vo

    1/Vmax

    II

    Two parallellines

    II

    Intersectat X axis

    1/vo

    1/Vmax

    1/[S]1/Km 1/[S]1/Km

    1/Vmax

    1/vo

    Intersectat Y axis

    =Km

    Juang RH (2004) BCbasics

    Competitive Inhibition

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    53/111

    Competitive Inhibition

    Succinate Glutarate Malonate Oxalate

    Succinate Dehydrogenase

    Substrate Competitive InhibitorProduct

    Adapted from Kleinsmith & Kish (1995) Principles of Cell and Molecular Biology (2e) p.49

    C-OO-

    C-HC-H

    C-OO-

    C-OO-

    H-C-HH-C-H

    C-OO-

    C-OO-

    H-C-HH-C-H

    H-C-H

    C-OO-

    C-OO-

    C-OO-

    C-OO-

    H-C-H

    C-OO-

    Sulfa Drug Is Competitive Inhibitor

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    54/111

    Sulfa Drug Is Competitive Inhibitor

    -COOHH2N-

    -SONH2H2N-

    Precursor Folicacid Tetrahydro-folic acid

    Sulfanilamide

    Sulfa drug (anti-inflammation)

    Para-aminobenzoic acid (PABA)

    Bacteria needs PABA for

    the biosynthesis of folic acid

    Sulfa drugs has similar

    structure with PABA, andinhibit bacteria growth.

    Adapted from Bohinski (1987) Modern Concepts in Biochemistry (5e) p.197

    Domagk (1939)

    Enzyme Inhibitors Are Extensively Used

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    55/111

    Enzyme Inhibitors Are Extensively Used

    Sulfa drug (anti-inflammation)

    Pseudo substratePseudo substrate competitive inhibitor

    Protease inhibitorPlaques in brain contains protein inhibitor

    HIV protease is critical to life cycle of HIV

    HIV proteaseHIV protease(homodimer):(homodimer):

    inhibitor is used to treat AIDS Symmetr

    Notsymmetr

    Human aspartyl protease:(monodimer)

    domain 1

    Asp Asp

    domain 2

    subunit 2

    Asp

    subunit 1

    Asp

    Juang RH (2004) BCbasics

    Alzheimer's disease

    HIV protease vs Aspartyl protease

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    56/111

    p p y p

    Asymmetrimonomer

    HIV proteaseHIV protease (homodimer)

    HIV Proteaseinhibitoris used in treating AIDS

    Symmetricdimer

    Asp

    subunit 2

    Aspartyl protease (monomer)

    subunit 1

    Asp

    domain 1 domain 2

    Asp Asp

    Juang RH (2004) BCbasics

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    57/111

    Enzyme CatalysisEnzyme Catalysis

    Chymotrypsin Catalytic Mechanism A1

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    58/111

    Asp102

    His57

    Ser195

    Catalytic TriadCatalytic Triad

    HH

    y yp y

    N

    C

    C

    N

    [HOOC]H

    O

    C

    C

    N

    C

    C

    [NH2]

    CC

    O

    Check substrate specificity

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    59/111

    Chymotrypsin Catalytic Mechanism A3

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    60/111

    HH

    y yp y

    N

    C

    C

    N

    [HOOC]H O

    C

    C

    N CC

    [NH2]CC

    O

    Acyl-Enzyme Intermediate

    Chymotrypsin Catalytic Mechanism D1

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    61/111

    H

    y yp y

    N-H

    C

    C

    N

    [HOOC]H

    O

    C

    C

    N CC

    [NH2]CC

    O

    HO

    H

    Acyl-Enzyme Water Intermediate

    Chymotrypsin Catalytic Mechanism D2

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    62/111

    H

    y yp y

    O

    O

    C

    C

    N CC

    [NH2]CC

    H

    Second Transition State

    OH

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    63/111

    Chymotrypsin Is Activated by Proteolysis

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    64/111

    y yp y y

    Ada

    ptedfro

    m

    Campbell(19

    99)B

    iochemistr

    y

    (3d)p

    .179

    245

    R15-I16

    Chymotrypsinogen (inactive)

    -Chymotrypsin(active)

    S14-R15 T147-N148

    Trypsin

    -Chymotrypsinactive

    -Chymotrypsin

    I16L13 A149Y146

    Disulfide bonds

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    65/111

    pH Influences Chymotrypsin Activity

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    66/111

    5 6 7 8 9 10 11

    pH

    RelativeAc

    tivity

    Adapted from Dressler & Potter (1991) Discovering Enzymes, p.162

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    67/111

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    68/111

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    69/111

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    70/111

    Chymotrypsin Ser195 Inhibited by DIFP

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    71/111

    O

    (CH3)2CHOPOCH(CH3)2

    F

    =

    Diisopropyl-fluorophosphate (DIFP)

    Adapted from Dressler & Potter (1991) Discovering Enzymes, p.167

    O-H

    CH2

    Ser 195

    O

    (CH3)2CHOPOCH(CH3)2

    =

    O

    CH2

    Ser 195

    XXXX

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    72/111

    Chymotrypsin Also Catalyzes Acetate

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    73/111

    O

    -C N-

    H

    O

    -C O-

    Peptide bond

    Ester bond

    OCH3CO NO2

    Nitrophenol acetate

    HO NO2

    O

    CH3COH

    Hartley & Kilby

    Chymotrypsin+ H2O

    Nitrophenol

    Acetate

    No acetate was detected at early stage

    Adapted from Dressler & Potter (1991) Discovering Enzymes, p.168

    Two-Stage Catalysis of Chymotrypsin

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    74/111

    O-

    C

    Time (sec)

    Nitrophenol

    O

    CH3CO NO2

    Nitrophenol acetate

    O

    C

    O

    CH3C HO NO2

    + H2O

    O-HC

    CH3COOH

    Kineticsofreactio

    n

    Two-phasereaction

    Acylation

    Deacylation (slow step)

    Adapted from Dressler & Potter (1991) Discovering Enzymes, p.169

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    75/111

    Active Site Stabilizes Transition State

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    76/111

    Asp 102

    His 57

    Met 192

    Gly 193

    Asp 194Ser 195

    Cys 191

    Catalytic Triad

    Thr 219

    Ser 218Gly 216

    Ser 217

    Trp 215

    Ser 214

    Cys 220

    Specificity Site

    Active Site

    Ada

    ptedfrom

    Dressle

    r&Po

    tter

    (1991)Discovering

    Enzymes

    ,p.197

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    77/111

    Basic Mechanism of Catalysis

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    78/111

    3 basic types 1) Bond Strain

    2) Acid-base transfer3) Orientation

    Conformational chan

    Chemical reaction

    Space arrangement

    Carboxypeptidase ACarboxypeptidase BCarboxypeptidase Y

    Concert

    equentialChymotrypsinTrypsinElastase

    non-polarRK

    non-specific

    YFWRK

    GA

    Ser-proteaseEndopeptidase

    Metal proteaseExopeptidase

    Juang RH (2004) BCbasics

    Concerted Mechanism of Catalysis

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    79/111

    1

    2

    3 4

    5O

    -

    H+

    H

    COO-

    (270)Glu

    (248)Tyr

    O-

    H

    His(196)

    His (69)

    Glu(72)

    +Arg (145)

    Carboxypeptidase A

    C-terminus

    ACTIVESITE

    ACTIVESITE

    Check for

    C-terminal

    Site forspecificit

    Activesitepocket

    Substrate

    peptidechain

    RNCN C

    COO-O-

    C

    +Zn

    J

    uangRH

    ( 2004)BCbas

    ics

    Chymotrypsin Has A Site for Specificity

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    80/111

    O ONCCNCC NCCNCC

    R H R

    O-

    C

    Ser

    Active SiteActive Site

    Specificity

    Site

    Specificity

    Site Catalytic Site

    Juang RH (2004) BCbasics

    Specificity of Ser-Protease Family

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    81/111

    COO-

    C

    Asp

    COO-

    C

    Asp

    Active Site

    Trypsin Chymotrypsin Elastase

    cut at Lys, Arg cut at Trp, Phe, Tyr cut at Ala, Gly

    Non-polarpocket

    Deepand

    ne

    gativel y

    charge

    dpocket

    Shallow andnon-polar

    pocket

    O O

    CNCCN

    C

    CC

    C

    NH3

    +

    O O

    CNCCN

    C

    O O

    CNCCN

    CH3

    Jua

    ngRH

    ( 2004)BCbasics

    Control Points of Gene Regulation

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    82/111

    Prokaryotics

    DNA

    ribosomemRNA

    proteins

    Post-translationalcontrol

    Eukaryotics

    proteins

    cap5 3

    tail

    maturemRNA

    DNA

    53process

    mRNA

    Juang RH (2004) BCbasics

    Translation

    Activity

    Proteolysis

    TranscriptionRNA Processing

    RNA Transport

    RNA Degradation

    Regulation of Enzyme Activity

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    83/111

    xRegulatory

    subunit

    o

    o x

    S I

    x o

    S

    S

    x

    S

    o

    S

    AA

    Po R x

    R

    +

    I

    II

    or

    inhibitor

    proteolysis

    phosphorylation

    cAMP orcalmodulin

    or

    regulatoreffector

    P

    (-)

    (+)

    Inhibitor Proteolysis

    Phosophorylation

    ignal transduction

    eedback regulation

    Jua

    ngRH

    ( 2004)BCbasics

    Cascade Amplification of Signals

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    84/111

    Cascade

    nS nP1 Enzyme

    Juang RH (2004) BCbasics

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    85/111

    85

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    86/111

    86

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    87/111

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    88/111

    88

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    89/111

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    90/111

    90

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    91/111

    91

    Two views of the regulatory enzyme aspartate trans-carbamoylase (derived from PDB ID 2AT2) The regulatory

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    92/111

    92

    carbamoylase (derived from PDB ID 2AT2). The regulatoryclusters form the points of a triangle surrounding the

    catalytic subunits. Binding sites for allosteric modulatorsare on the regulatory subunits. Modulator binding produces

    large changes in enzyme conformation and activity.

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    93/111

    Phosphorylation

    Fischer Kreb (1978)

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    94/111

    Conformational

    ChangedephosphorylastionPhosphatase

    P

    Protein

    OH

    SerSerThr Tyr(His)

    Active Inactive

    Inactive Active

    Glycogen phosphorylase b Glycogen phosphorylase a

    Fischer, Kreb (1978)

    Juang RH (2004) BCbasics

    Kinasephosphorylation

    Regulation of Blood Sugar

    Cori & Cori (1947)

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    95/111

    gh blood sugargh blood sugarInsulin

    Pancreas Glycogen Glucose

    Decrease

    Glycogen

    synthase

    IncreaseIncrease

    Hormone

    Signal TransductionSignal Transduction

    Blood

    LiverLiver

    w blood sugarGlucagon

    GTP-protein-linked receptor

    Tyrosine-kinase-linked receptor

    Glycogen

    phosphorylase

    Cori & Cori (1947)

    Juang RH (2004) BCbasics

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    96/111

    Glycogen Phosphorylase, GP

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    97/111

    Glycogen

    n n-1

    Glc-1-P Glc-6-P Glycolysis

    Glycogenphosphorylase a*

    Ph

    osp

    ha

    ta

    se

    GPkinase

    Glycogenphosphorylase b

    (inactive)

    ATP

    Proteinkinase A

    cAMP

    Phosphorylase

    +

    +

    AMP (+)

    ATP (-)

    Glc-6-P (-)

    Glucose (-)

    Caffeine (-)

    P

    RT6.2

    6.3

    6.4

    P

    P

    Juang RH (2004) BCbasics

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    98/111

    cAMP Is the Second Messenger

    GlSutherland (1971)

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    99/111

    G protein

    Glycogen Glc-1-P

    PGP1 aGP b

    PGP KinaseGP Kinase

    Protein Kinase AProtein Kinase A

    cAMPATP

    CyclaseG protein

    Adenylate cyclase

    A Cyclic AMP (second messenger)

    GP kinase

    GP

    ReceptorGlucagonSutherland (1971)

    Cascade

    Inactive

    Active

    JuangRH

    ( 2004)BCbasics

    Receptors on Cell Membrane

    G protein linked ReceptorGilman Rodbell (1994)

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    100/111

    SH2domain

    G protein

    GDP

    + Signal

    -GDP

    +GTP

    GDP

    GTP

    GTP

    Adenylate cyclase

    + Signal

    ActivationP

    ProteinPhosphatase

    GlycogenSynthase

    GlycogenSynthase

    P

    active

    Insulin

    P P

    PP kinase

    Glucagon

    A

    G-protein-linked Receptor

    Enzyme-linked ReceptorThe third group:Ion-channel-linked Receptor

    Gilman, Rodbell (1994)

    Glycogen breadkdown

    Glycogen synthesis

    JuangRH

    ( 2004)BCbasics

    GP kinase Phosphatase

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    101/111

    P

    P

    A

    GP kinase

    GP a

    GP b

    Glycogen synthase

    Glycogen synthase P

    Protein phosphatase-1

    Protein phosphatase-1

    Protein phosphatase inhibitor-1

    Protein phosphatase inhibitor-1

    Glycogen

    PKA

    P

    active

    inactive

    Glu

    cago

    n

    Adapted from Kleinsmith & Kish (1995) Principles of Cell and Molecular Biology (2e) p.217

    Signal Transduction

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    102/111

    Receptor

    Hormone Signal

    G

    Cyclase

    Transducer

    Effector Enzyme

    Effector

    Effect

    G-protein

    Juang RH (2004) BCbasics

    Allosteric Enzyme ATCase

    Active relaxed form

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    103/111

    CCC

    +

    Active relaxed form

    Inactive tense form

    ATCase

    RR

    RR

    RR

    CCC

    COO-

    CH2HN-C-COO-

    H H

    -

    --

    -O

    H2N-C-O-PO32-=

    OH2N-C-

    =

    COO-

    CH2N-C-COO-

    H H

    -

    --

    -

    Catalytic subunits

    Catalytic subunits

    Regulatory subunits

    ATP

    CTP

    Nucleic acid

    metabolism

    Feedback

    inhibition

    AspartateCarbamoylphosphate

    Carbamoyl aspartate

    CTP

    CTP

    CTP

    CTP

    CTP

    CTP

    Juang RH (2004) BCbasics

    Quaternary structure

    Sigm

    Positive effector

    Noncooperative

    (Hyperbolic)

    vo

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    104/111

    moid

    alCurve

    Effect

    Sigmoidal curve

    Exaggeration ofsigmoidal curveyields a drastic

    zigzag line thatshows the On/Offpoint clearly

    Positive effector

    (ATP)

    brings sigmoidal

    curveback to hyperbolic

    Negative effector

    (CTP)

    keeps

    Consequently,

    Allosteric enzymecan sense theconcentration ofthe environment andadjust its activity

    Cooperative

    (Sigmoidal)

    CTPATP

    vo

    [Substrate]

    Off On

    Juang RH (2004) BCbasics

    Mechanism and Example of Allosteric Effect

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    105/111

    T

    T

    R

    T

    [S]

    voS

    S

    R

    R

    SS

    R

    S

    A

    I

    T[S]

    vo

    [S]

    vo

    (+)

    (-) X X

    X

    R = Relax(active)

    T = Tense

    (inactive)

    Allosteric site

    Homotropic(+)

    Concerted

    Heterotropic

    (+)

    Sequential

    Heterotropic

    (-)

    Concerted

    Allosteric site

    Kinetics CooperationModels

    (-)

    (+)

    (+)

    Juang RH (2004) BCbasics

    Activity Regulation of Glycogen Phosphorylase

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    106/111

    P

    A

    PA

    P

    P

    A

    A

    Covalent modificationCovalent modification

    P

    P

    GP kinase

    GP phosphatase 1

    Non-covalent

    Non-cov

    alent

    P

    A

    PA

    P

    PPA

    PAA

    A

    A

    AMP

    ATP

    Glc-6-P

    Glucose

    Caffeine

    Glucose

    Caffeine

    spontaneo

    usly

    R

    T

    R

    T

    Ga

    rrett&G

    risham

    (1999)Bioche

    mistry(2e)

    p.679

    Major Metabolic PathwayGlycolysis

    STAGE 1

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    107/111

    Citricacidcycle

    P

    P

    P 2

    1

    $ NADH$$

    ATPH3-C-H

    H3-C-OH

    H2-C=O

    H-COOH

    O=C=O

    HH4

    3

    2

    1

    0

    Mitochondria

    Kinase

    Oxidative phosphorylation

    Glycolysis

    A

    AcetylCoA

    Pyruvate Pyruvate

    STAGE 1

    Macromolecule Unit molecule

    STAGE 2 Unit molecule Key small molecule

    STAGE 3 Energy production

    H2O

    CO2

    6

    3

    3

    Change

    of carbonnumber

    xidation of Carbon

    Glc-6-P GlycogenGlc-1-PGlycogen phosphorylase

    OO0

    1

    1

    2

    2

    Glucose

    Starch

    digestion

    JuangRH

    ( 2004)BCbasic

    s

    Operon Expression Regulated by Its Metabolites

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    108/111

    ROperator Gene

    S S

    mRNA

    R

    S

    RNA

    Polymerase

    Operator Gene

    R

    RNA

    Polymerase

    R

    P

    P

    Upstream metabolite (S) inactivates

    repressor, and induces the expression

    Downstream metabolite (P)might bind and activate repressor,Then turns off the gene expression

    X

    ON

    OFF

    R

    S

    Juang RH (2004) BCbasics

    Cross Talk between Cells

    Direct contact Diffusion

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    109/111

    (R)

    Blood

    (R)

    (S) (R)

    Synaptic Endocrine

    Local paracrineDirect contact

    Neuron impulse

    Direct contact Diffusion

    S

    hortranged

    Longranged

    Signaling cell (S) Receptor cell (R)

    (S)

    (S)

    Ad

    aptedfro

    m

    Albertsetal

    (2002

    )MolecularBiolog

    yof

    theCell(4

    e)p.833

    How

    ShapeSi

    1 3 4 6 7 8 9 10 11 122 5

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    110/111

    wto

    Separa

    teThes

    eObjects

    1 2 3

    9 10 11 12

    6

    4 85

    7

    4

    5

    8

    wood stone cotton wood wood cotton stone wood stone cotton stone c

    cotton

    wood

    stone

    SizeDensity

    Shape

    Density

    Size

    Sieving different sizes Different sedimentationDifferent rolling speed

    4 6 7 85

    1 3 4 6 7 8 9 10 11 122 5

    Juang RH (2004) BCbasics

    Basic Principles of Protein Purification

  • 8/6/2019 Enzyme_revised 2011 Chatchawin

    111/111

    Ammonium sulfate fractionation

    Cell OrganelleHomogenization

    Macromolecule

    Nucleicacid

    Carbohydrate (Lipid)

    Size Charge Polarity Affinity

    Small moleculeCell

    DebrisProteinAmino acid,

    Sugar,

    Nucleotides,etc

    Gel filtration,SDS-PAGE,

    Ion exchange,Chromatofocusing,

    Disc PAGE

    Reverse phasechromatography,

    HIC

    Affinitychromatography,