envriplus deliverable ref. ares(2016)6209899 - 31/10/2016 · 6 2. phytoplankton blooms from coastal...

12
ENVRI plus DELIVERABLE 1 A document of ENVRI plus project - www.envri.eu/envriplus This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 654182 D4.1 Report on crosscutting issues, associated existing monitoring capacities and selected open case studies resulting from the Interdisciplinary workshop WORK PACKAGE 4– Joint operations across the Research Infrastructure domains LEADING BENEFICIARY: INRA Author(s): Beneficiary/Institution Abad Chabbi, Cathrine Lund Myhre, Gregory Starr, Henry Loescher, Nicholas Meskhidze, Nicolas Bellouin, Silvano Fares, Wilfried Winiwarter, Abad Chabbi INRA [ANAEE], Karine Selegeri CNRS [ACTRIS], Jean-Daniel Paris CEA[ICOS], Vito Vitale + Mauro Mazzola CNR [SIOS] Michael Cunliffe MBA [EMBRC], Richard Lampitt NERC/NOC, Sylvie Pouliquen EURO- ARGO, Michael Mirtl EAA, Cathrine Lund Myhre (NILU) Accepted by: Jean-Daniel Paris (WP 4 leader Deliverable type: REPORT Deliverable due date: 31.10.2016/M18 Actual Date of Submission: 31.10.2016/M18 Ref. Ares(2016)6209899 - 31/10/2016

Upload: others

Post on 10-Aug-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ENVRIplus DELIVERABLE Ref. Ares(2016)6209899 - 31/10/2016 · 6 2. Phytoplankton blooms from coastal to open ocean 2.1 Oceanic Emissions, Marine Aerosols and Clouds Atmospheric aerosols

ENVRIplus DELIVERABLE

1

A document of ENVRIplus project - www.envri.eu/envriplus

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 654182

D4.1 Report on crosscutting issues,

associated existing monitoring capacit ies and selected open case studies result ing

from the Interdisciplinary workshop

WORKPACKAGE4–JointoperationsacrosstheResearchInfrastructuredomainsLEADINGBENEFICIARY:INRA

Author(s): Beneficiary/Institution

AbadChabbi,CathrineLundMyhre,GregoryStarr,HenryLoescher,NicholasMeskhidze,NicolasBellouin,SilvanoFares,WilfriedWiniwarter,

AbadChabbiINRA[ANAEE],KarineSelegeriCNRS[ACTRIS],Jean-DanielParisCEA[ICOS],VitoVitale+MauroMazzolaCNR[SIOS]MichaelCunliffeMBA[EMBRC],RichardLampittNERC/NOC,SylviePouliquenEURO-ARGO,MichaelMirtlEAA,CathrineLundMyhre(NILU)

Acceptedby:Jean-DanielParis(WP4leader

Deliverabletype:REPORT

Deliverableduedate:31.10.2016/M18

ActualDateofSubmission:31.10.2016/M18

Ref. Ares(2016)6209899 - 31/10/2016

Page 2: ENVRIplus DELIVERABLE Ref. Ares(2016)6209899 - 31/10/2016 · 6 2. Phytoplankton blooms from coastal to open ocean 2.1 Oceanic Emissions, Marine Aerosols and Clouds Atmospheric aerosols

2

ABSTRACTTheworkshopaimstobuildbridgesacrossnetworksofobservatoriesandtodeterminehowemergingenvironmentalresearchquestionscanbenefitfromthesenewinteractions.Theworkshopidentifykeyinterdisciplinarychallengesacrosssubdomainsthatwewilladopt,promoteandimplementwithintheENVRIplus.Specialattentionwasgivenoncombiningdifferentnetworksofobservatories,focusingonafewcurrentscientificissuesforsocietalbenefit.

Projectinternalreviewer(s):

Projectinternalreviewer(s): Beneficiary/Institution

WernerLeoKutsch UniversityofHelsinki/ICOSHeadOfficePOBox4800014UniversityofHelsinkiFinland

Jean-DanielParis

ICOS-RAMCESLaboratoiredesSciencesduClimatetdel'Environnement,CEASaclay,OrmedesMerisiers91191GifsurYvette,France

Documenthistory:

Date Version

8.10.2016 Draftforcomments

27.10.2016

Correctedversion

31.10.2015

AcceptedbyWPJean-DanielParis(WPLeader)

DOCUMENTAMENDMENTPROCEDUREAmendments,commentsandsuggestionsshouldbesenttotheauthors(AbadChabbi,[email protected])

TERMINOLOGYAcompleteprojectglossaryisprovidedonlinehere:https://envriplus.manageprojects.com/s/text-documents/LFCMXHHCwS5hh

Page 3: ENVRIplus DELIVERABLE Ref. Ares(2016)6209899 - 31/10/2016 · 6 2. Phytoplankton blooms from coastal to open ocean 2.1 Oceanic Emissions, Marine Aerosols and Clouds Atmospheric aerosols

3

PROJECTSUMMARYENVRIplusisaHorizon2020projectbringingtogetherEnvironmentalandEarthSystemResearchInfrastructures,projectsandnetworkstogetherwithtechnicalspecialistpartnerstocreateamorecoherent,interdisciplinaryandinteroperableclusterofEnvironmentalResearchInfrastructuresacrossEurope.Itisdrivenbythreeoverarchinggoals:1)promotingcross-fertilizationbetweeninfrastructures,2)implementinginnovativeconceptsanddevicesacrossRIs,and3)facilitatingresearchandinnovationinthefieldofenvironmentforanincreasingnumberofusersoutsidetheRIs.

ENVRIplusalignsitsactivitiestoacorestrategicplanwheresharingmulti-disciplinaryexpertisewillbemosteffective.TheprojectaimstoimproveEarthobservationmonitoringsystemsandstrategies,includingactionstoimproveharmonizationandinnovation,andgeneratecommonsolutionstomanysharedinformationtechnologyanddatarelatedchallenges.ItalsoseekstoharmonizepoliciesforaccessandprovidestrategiesforknowledgetransferamongstRIs.ENVRIplusdevelopsguidelinestoenhancetransdisciplinaryuseofdataanddata-productssupportedbyapplieduse-casesinvolvingRIsfromdifferentdomains.Theprojectcoordinatesactionstoimprovecommunicationandcooperation,addressingEnvironmentalRIsatalllevels,frommanagementtoend-users,implementingRI-staffexchangeprograms,generatingmaterialforRIpersonnel,andproposingcommonstrategicdevelopmentsandactionsforenhancingservicestousersandevaluatingthesocio-economicimpacts.

ENVRIplusisexpectedtofacilitatestructurationandimprovequalityofservicesofferedbothwithinsingleRIsandatthepan-RIlevel.Itpromotesefficientandmulti-disciplinaryresearchofferingnewopportunitiestousers,newtoolstoRImanagersandnewcommunicationstrategiesforenvironmentalRIcommunities.Theresultingsolutions,servicesandotherprojectoutcomesaremadeavailabletoallenvironmentalRIinitiatives,thuscontributingtothedevelopmentofacoherentEuropeanRIecosystem.

TABLEOFCONTENTS

INTRODCUCTION..................................................................................................41. Nitrogen,fromagriculturalfieldstothecoastalocean:theconceptofnitrogenbudgetsandcorollaryresearchinfrastructurescontributions..............52. Phytoplanktonbloomsfromcoastaltoopenocean....................................62.1OceanicEmissions,MarineAerosolsandClouds.......................................62.2ObservationsforEarthSystemmodelling..................................................7

3. Arcticobservation,withspecialfocusonCH4.............................................94. SimulatingandmonitoringO3andCO2deposition/coupling/interaction 11CONCLUSIONS....................................................................................................12IMPACTONPROJECT......................................................................................12IMPACTONSTAKEHOLDERS...........................................................................12

Page 4: ENVRIplus DELIVERABLE Ref. Ares(2016)6209899 - 31/10/2016 · 6 2. Phytoplankton blooms from coastal to open ocean 2.1 Oceanic Emissions, Marine Aerosols and Clouds Atmospheric aerosols

4

Reportoncrosscuttingissues,associatedexistingmonitoringcapacitiesandselectedopencasestudiesresultingfromtheInterdisciplinaryworkshopINTRODCUCTIONTheScienceAcrossObservatoryNetworksinternationalworkshopwasheldinZandvoort,

NetherlandsonMay9th,asparttheENVRIPlusWeek.TheworkshopwascoordinatedbyacommitteeincludingAbadChabbi,INRA,France;AriAsmi,U.Helsinki,FinlandandJean-DanielParis,CEA,France)andaScientificCommittee(included;AbadChabbi,INRA,France;HankLoescher,NEON,USA;GelsominaPappalardo,CNR,Italy;Jean-DanielParis,CEA,France;Jean-FrançoisRolin,IFREMER,France;KarineSelegri,CNRS,France;MichaelCunliffe,MBA/NOC,UKandThomasDirnboeck,Umweltbundesamt,Austria.

Thegoaloftheworkshopwastobuildbridgesandassesssynergiesacrossobservatorynetworks--andhowemergingenvironmentalresearchquestionsstandtobenefitfromsuchinteractions.Keyinterdisciplinarychallengeswereidentifiedacrossscientificsubdomains,aswellasstrategicopportunitiesacrossResearchInfrastructures.Specialattentionwasgiventocombiningdifferentobservatorynetworkstoadvancefrontiersciences,focusingonthepre-selectedscientificthemesidentifiedbyENVRI+communitiesmembersintheformofthefollowing4casestudies:

1. Nitrogenfromthefieldtothecoastalocean2. Phytoplanktonbloomsfromcostaltoopenocean3. Arcticobservation,withspecialfocusonCH44. SimulatingandmonitoringO3andCO2deposition/coupling/interaction

Morethan70participantswereinattendancewhentopkeynotespeakerswereaskedtoprovideacomprehensiveandin-depthanalysisofeachofthecasestudiesthatincludedwhatmaybenewdirectionsforfutureresearchandinfrastructures.Eachcasestudypresentationledtoimportantfollow-updiscussionsregardingi)whereresearchinfrastructureshaveyettobecreatedtocombinesubdomains(gapanalyses)andii)wherefurthercross-disciplinarycollaboration,interoperabilityandinfrastructureimprovementsmayberequiredforexistinginfrastructurestobesuccessful.

Page 5: ENVRIplus DELIVERABLE Ref. Ares(2016)6209899 - 31/10/2016 · 6 2. Phytoplankton blooms from coastal to open ocean 2.1 Oceanic Emissions, Marine Aerosols and Clouds Atmospheric aerosols

5

1. Nitrogen,fromagriculturalfieldstothecoastalocean:theconcept

ofnitrogenbudgetsandcorollaryresearchinfrastructurescontributions

Overtherecentyears,nitrogenbudgetshavebeendevelopedinsuchawayastobecomeapracticalpolicy-makingtool.Originallyacompilationofspecificyetunconnectedindicators,nationalNbudgetsarenowcomprisedofacompletesetofNflowsthroughanation’s“metabolism”.Comprehensiveoperationaldatacollectionandcompilationhasnotbeenperformedsystematicallyyet.Growingnationalobligationstoinventoryairpollutantsandgreenhousegasemissionsalreadynowprovidethelargestshareofinformationneeded,thusfullimplementationwillrequireratherlittleextraeffort.

Intheory,Nbudgetsarefoundedontheconservationofmatter.However,morethan99%ofNstocksmaybesafelyignored,asitisunreactiveintheformofmolecularN2(themainconstituentoftheatmosphere).The“Activation”ofNisthecentral,energy-intensivestepoftheprocess,sothatonlythereactiveN(Nr)needstobeconsideredinthebudgetsofstocksandflows.SuchNrbudgetshaveprovenvaluableinprioritizingNflowsandbetterunderstandingtemporaltrendsandspatialdistributionamongecosystemtypes.

Whiletheconceptandguidancearelargelyinplace,thefewnationalbudgetscurrentlyavailablearescientificexercises.SupportfromenvironmentalagenciesandadministrationwillberequiredtocollectdataneededforabetterunderstandingoftheanthropogenicimpactontheNcycle.Thisbasicknowledgewillallowtodesignabatementactionplansaimingforalleviatingenvironmentaldamage(humanhealth,biodiversity,climatechange...)generatedbyanexcessNrintheenvironment.

InfrastructuresareinplaceintheEUtoroutinelymonitorNrcompoundsintheatmosphere(NOx,PM)aswellasingroundwater(nitrate)aspartofEUenvironmentallegislation.Talltowerstationshavebeenhavebeenlinkedtoallowinversemodellingofgreenhousegasemissions(asofN2O)inscientists’activities(TTORCH,InGOS)whichcanbeextendedbysatelliteinformationonNOxandN2OfromplatformslikeENVISAT.Biosphere-pedosphereinteractiononNrcompoundsinsoilsandgroundwaterarebeinginvestigatedinnaturalecosystems(LTER)butaremuchmorerelevantinagriculturalsystemsthatareexposedtohighlevelsoffertilizerN.ManyagriculturalresearchinstitutesoverEuropesportcollectingthisinformation,butlittlesystematicinteractioncanbeobservedacrossnationalborders.Alltheseexistingactivitiesaresectoral,butrequireanoverarchingapproach.Nitrogenbudgetsasdescribingallthelinkingelementsbetweenpoolsorsectorscanserveasthelinkurgentlyneeded.

Page 6: ENVRIplus DELIVERABLE Ref. Ares(2016)6209899 - 31/10/2016 · 6 2. Phytoplankton blooms from coastal to open ocean 2.1 Oceanic Emissions, Marine Aerosols and Clouds Atmospheric aerosols

6

2. Phytoplanktonbloomsfromcoastaltoopenocean

2.1OceanicEmissions,MarineAerosolsandClouds Atmosphericaerosolsplayalargeroleinairqualityandhuman-inducedclimatechange.Afterdecadesofresearch,aerosol–cloudinteractions(ACI)remainthelargestsourceofuncertaintyincurrentestimatesofglobalradiativeforcing.Thisismainlyduetothefactthataerosols,cloudsandecosystemelementsareintricatelylinkedintheEarthSystem,viamultipleinterrelatedforcingandfeedbacks.NarrowingtheuncertaintiesinACIwouldthereforerequireconsideringallelementstogether,frombothamechanisticandobservationalstandpoint.Becauseeffectsonclimateareestimatedfromthedifferencebetweenmodelsimulations,present-dayobservationsandpreindustrialaerosolandprecursoremissions,anaccuraterepresentationofnumberconcentrationsofcloudcondensationnuclei(CCN)andicenucleatingparticles(INP)associatedwithbothnaturalbackgroundandman-madeaerosolsseparatelyiscriticalindevelopingabetterassessmentofanthropogenicaerosoleffects.Asmarineaerosolscontributesubstantiallytothepreindustrial,naturalbackgroundwhichprovidesthebaseline–ontopofwhichanthropogenicforcingshouldbequantified–andbecausetheoceancoversover70%oftheEarth’ssurface,therepresentationofmarineaerosolsinclimatemodelsstronglyinfluencesthepredicteddirectandindirectimpactsofanthropogenicaerosolsonclimate.

CurrentEarthSystemSciencemodelsexhibitalargediversityintheirrepresentationofmarineaerosolsourcesandsinks,aswellastheprocessesbywhichtheseaerosolsimpactcloudwaterandiceformation.Thisdiversityisdue,inpart,tothelackofmeasurementsneededtoconstrainthemodelsandtheabsenceofacentralizednetwork,whereallavailabledatamaybeaccessed.Measurementsofmarineaerosolsarechallengingbecauseoftheirvastspatiotemporalvariability,lowconcentrationandtotheinherentdifficultyinreproducingthephysicalscalesinwhichtheyoccur.However,eventheavailabledataishardtousebecauseofdifferencesintheconditionsiswhichtheyarecollectedandthemethodologyandinstrumentationemployedbydifferentinvestigators.Today,keyquestionsremainunansweredregardingthesourcesandsinksofmarineaerosolsandtheirimpactsonclouds,limitingourabilitytoquantitativelypredicthowtheclimatewillrespondtocontinuedandincreasinggreenhouse-gasandfine-particleemissionsinthefuture.

WeproposethatENVRI+developtheintegrativeframeworktocompileandmakeaccessibleallavailablesatellite-borne,ambientandlaboratorydataofmarineaerosolchemicalcomposition,CCNandINPs,meteorological,oceanphysicochemicalandbiologicalstate,aswellasthetracegasconcentrationsaffectingparticleproductionandtheoxidizingpotentialofthemarineatmosphere.Thisisnoteasy;thecompilationofsuchcomprehensivedatasetsinaformatsuitableformodel/datacomparisonwouldrequireacoordinatedandmultidisciplinaryresponseandtheinvolvementandexpertiseofabroadrangeofscientificcommunities.However,oncethedataiscategorizedandmadeaccessiblethroughauser-friendlynetwork,thescientificcommunitystandstosavevastamountsoftimeandenergybyavoidingunnecessaryduplications.Theexistenceofsuchdatasetswouldalsoallowresearcherstoconcentrateondataanalyses,capturingpotentiallyimportantradiativeandclimatefeedbacksanddevelopingsubsequentdiscoveries.

Page 7: ENVRIplus DELIVERABLE Ref. Ares(2016)6209899 - 31/10/2016 · 6 2. Phytoplankton blooms from coastal to open ocean 2.1 Oceanic Emissions, Marine Aerosols and Clouds Atmospheric aerosols

7

2.2ObservationsforEarthSystemmodelling

Theuseofmodelstorepresentourunderstandingoftheclimatesysteminvolvescouplingradiationandwatercycleparameters(includingcloudformationandthecryosphere),withatmosphericandoceanicdynamics.Theoverarchinggoalistodevelopaclimatebaselinetobetterassesstheimpactofperturbations–anthropogenic,solar,astronomicalorvolcanic–onclimateandexplainnon-linearbehaviorsinvariousfeedbackmechanisms(which,inturn,couldenhanceorlimitsaidperturbations).

Inthepast,climatemodelswerelimitedintheirabilitytorepresentfeedbacksbecausevariousaspectsofthesystem–suchasatmosphericcompositionorvegetation–wererepresentedasfixedstaticentities.However,theEarthSystem(ES)modelsthathaveemergedoverthepastdecadeincludetherepresentationofdynamicclimatefeedbackinrelationstothecarboncycle,atmosphericaerosolsandchemistry.ThankstoESmodelling,wecannowstudyclimate-drivenchangesinoceanicCO2solubility,thebiologicalcarbonpump,landproductivitydistribution,soilrespirationandtheirultimateroleinclimatechange.

Morerecently,ESmodellinghasfocusedonvegetationandsoilsemissions(volatileorganiccompounds,methane,andnitrogenoxides)andcouplingsbetweenatmosphericcompositionandradiation-drivencomponents,suchasvegetationandcoralgrowth,evapotranspirationandriverrun-off,monsoonsystemsandpermafrostthawing.State-of-the-artESmodelstypicallyincluderepresentationsofthecarboncycle,ozonechemistry,wetlandsandpermafrost,sulfate,carbonaceous,mineraldustsandsea-saltaerosols.Themostsophisticatedmodelsalsoincludeoceanbiogeochemistry,stratosphericozonechemistryandfiremodelling,aswellasnitrateandsecondaryorganicaerosols.Researchershaveyettodevelopsatisfyingrepresentationsofthenitrogencycleandoceancalciumcarbonates,however.

Itoftentakesupto5yearstoimprovesuchmodels,seeingasextensiveobservationisrequiredtoprovideinsightsintotheprocess,developnumericalparameterizationsandultimatelytestandvalidatesubsequentresultsagainstin-situobservations.Comparativemodel-dataevaluationsmayincludestatisticsonthefrequency,strengthandtrendsofperturbations,aprioriandaposteriparameterdistributions,uncertaintybudgetcomparisons,etc...Thisensuresthatthemodelaptlyreflectstheclimatebaselineandperturbations—orinformsgapsintheory,observationsormodel(s).Spatialandtemporalscalesmismatchesareoftenachallengeinsuchcomparisons,somethingtheresearchcommunityhasnotbeenabletofullyresolve.Observationstypicallycoverhundredsofkilometersandlongtime-seriestofullysupportmodelvalidation;incontrast,processunderstandingisoftenbasedonveryfinescales.

Modelersareoftenpragmatic,ifnotopportunistic,whenseekingobservationdatasetstosupporttheirmodeldevelopmentandpredictions.Table1providesanon-exhaustivelistofdatasourcesfrequentlyusedbyatmosphericcompositionmodelers.Nevertheless,initiativesthelikesoftheObservationsforModelIntercomparisonProjectsandAerosolComparisonsbetweenObservationsandModelsprojectstrivetomakeobservationseasiertousebyprovidingmodelerswithdatasetsingriddedform,astimeseriesandinmodel-friendlyformats.BecausemanyoftherelevantprocessesoccurininterfacewithvariousEScomponents,

Page 8: ENVRIplus DELIVERABLE Ref. Ares(2016)6209899 - 31/10/2016 · 6 2. Phytoplankton blooms from coastal to open ocean 2.1 Oceanic Emissions, Marine Aerosols and Clouds Atmospheric aerosols

8

ground-basedandin-situobservationsareoftenmostvaluabletomodelers,insofarastheyalsoinformonprocessesinvisibletospace-borneremotesensors.Forthatreason,astrongcaseshouldbemadetobetterpositionENVRI+networksintheglobalclimatemodellinglandscape.

Climatevariables Examplesofdatasource

Surfaceconcentrations(total,e.g.PMandspeciated)

Airqualitymonitoringnetworks(CREATE,EMEP,IMPROVE,NARSTO,STN),GAW-WDCAsites,fieldcampaigns

Aerosolopticaldepth Ground-basedsunphotometernetworks(AERONET),satelliteretrievals(MODIS,MISR,POLDER/PARASOL,VIIRS,AVHRR),reanalyses(MACC,NCEP),fieldcampaigns

Aerosolsizedistribution,fine-modefraction,Angstromexponent

EUSAAR/GUANsupersites,ground-basedsunphotometernetworks(AERONET),satelliteretrievals(MODIS,MISR,POLDER/PARASOL,VIIRS),fieldcampaigns

Totalcolumnozone Surfacespectrophotometernetwork(GMD),satelliteretrievals(SCIAMACHY,GOME,OMI)

Greenhousegases Databases(AGAGE,ESRL),satelliteretrievals(GOSAT,IASI,MOPITT,TROPOMI)

Verticalprofilesofaerosolsandozone

Lidarnetworks(EARLINET,MPLNET),satelliteretrievals(GOME,OMI),activeremotesensing(CALIPSO),aircraftcampaigns(HiPPO)

Page 9: ENVRIplus DELIVERABLE Ref. Ares(2016)6209899 - 31/10/2016 · 6 2. Phytoplankton blooms from coastal to open ocean 2.1 Oceanic Emissions, Marine Aerosols and Clouds Atmospheric aerosols

9

3. Arcticobservation,withspecialfocusonCH4

TheArctichasbeenshowntohaveincreasedintemperatureby0.6oCelsiuseachdecadeforthepast30years.Thischangeisapproximatelydoubletheglobalaverageandisprojectedtoincreaseatevenfasterratesinthefuture(IPCC2013)aspartofaphenomenonreferredtoastheArcticamplification.Thiswillhaveunprecedentedeffectsonboththeoceanicandcontinentalsystemsoftheregionandmitigationhasbecomealargescientificandsocietalimperative—particularlyforArcticnativeswhorelyonsubsistenceharvests(fish,caribou,seal,walrus,waterfowl,etc.)andwhoseshorelineandhuntingandfishinghabitatarerapidlydisappearing.

IntheArcticterrestrialenvironment,permafrostdynamicsareattheheartofsuchchanges.Thetop30orsocentimetersofpermafrostnaturallythaweachyearduringthesummer.However,duetoincreasedtemperatures,thethawingofthepermafrostreachesdeepersoildepths,directlyaffectinganumberofecologicalprocesses,including

i. changesinthetemporaldynamicsanddepthofthethawoftheactivelayer,resultingin‘old’carbontorespireandeffluxmoreintotheatmosphere;

ii. subsequentchangesinsurfacehydrology;

iii. alargeportionof‘old’carbonbeingsubjecttoanaerobicmetabolismpathways,whichincreaseCH4efflux;

iv. additionalnutrientavailabilitycausingshiftsinplantcommunitycomposition,peakproductivityandwoodyencroachment;

v. increasedstorageofgroundheatfluxanddarkeralbedo,whichinturninitiateconvectiveboundarylayers,lightningandlightning-inducedtundrafires(furtherconvertingcarbonintotheatmosphere);

vi. anincreaseinthelengthofsummerandinducedseasonal‘edgeeffects’onecosystemprocesses;

vii. lakeCH4productionundericeandtheconcentrationofCH4‘bubbles’aswellas

viii. strongevidenceofCH4consumptionbysoils.

ThecontinentalscalespatialdynamicsofCH4athighlatitudesarealsopoorlyunderstood.Modelandmeasuredresultsshow‘tippingpoint’temperatures–inwhichmasspermafrostthawsandCH4productionoccurs–differintheNorthAmericancontinentandinAsia.Moreover,meanannualtemperaturesinNorthernSiberiaareincreasing,whiletheyarecoolinginSouthernSiberiabutthemechanismatplayisnotknown.

Page 10: ENVRIplus DELIVERABLE Ref. Ares(2016)6209899 - 31/10/2016 · 6 2. Phytoplankton blooms from coastal to open ocean 2.1 Oceanic Emissions, Marine Aerosols and Clouds Atmospheric aerosols

10

MethanehasahigherglobalwarningpotentialthanCO2,circa28timesstrongerovera100-yearperiodandwithanaverageten-yearlifetimeintheatmosphere.TheprocessesresponsibleforthedevelopmentofCH4fromnaturalsourceshaveyettobeexplained,thoughtheyappeartobecloselylinkedtotemperatureandprecipitationandvulnerabletoclimatechange.SuchatmosphericprocessesareconsiderableandmorecomplexthanforCO2.Assuch,theprocessesanddriversthatgovernmethanogenesisandCH4reductionandconsumptionarestillthesubjectofactiveresearch.Alsohamperingground-basedmeasuresisourinabilitytodiscerntowhichextentdifferentphysicalmechanismstransportCH4fromthesoilandthebiosphereintotheatmosphere(i.e.,ebullition,diffusion,aerenchymapumping,orpressurepumping).NewaerialmeasuresofCH4derivedfromtheCARVEprojectdemonstrateemissionsarenotregionallyhomogenous,butshowhigherconcentrationsalonglargeriverbedsanddifferentgeologicsubstrates,whichthemselveswouldrequireadditionalresearchintheirownright.

ThecurrentterrestrialinfrastructureintheArcticislimited,primarilyduetoroughlogisticalandclimaticconditions.ConstrainedtoaselectnumberofcountriestheyincludetheInteract(pan-Arcticfieldstations),theITEX(pan-Arcticheatingexperiment(nowretired),theSwedishICOStower-basedproject,theNorwegianICOSstudyoffluxesfromterrestrialregions,oceanandatmosphericlevels,theNSFNEONandUSNSFAEONtower-basedprojects,theUSDOENGEEbio-geochemistrystudy,theUSNASACarveboundarylayerflightsresearch(nowretired,theUSNASAABOVEintegratedaircraftandtowersproject(intheUSandCanada)andtheEMSOEuropeanMultidisciplinarySeafloorandwater-columnObservatory.

IntheArcticoceanicandcoastalenvironments,arelativelynewsourceofCH4hasbeenreportedinmethanehydrateproduction,whichisventingthroughtheoceansandcouldpotentiallysignificantlycontributetoatmosphericconcentrations.TherearelargeamountsofCH4storedintheworld’soceansandseafloor(particularlyathigher,colderlatitudes)inasolidhydrateform(clathrates).Theyarethoughttobelocatedonoceanfloorswheresedimentscanbio-accumulateandassuch,areextremelyspatiallyheterogeneousanddifficulttodetect.Itisconsideredcoldwatertemperatures(slowreactionrates),nearcoastalareas(bio-accumulationsources)anddeepwater(pressure)areessentialtotheformationofthesedeposits.Butasoceantemperaturewarm,thereisrealconcernregardingadditionalandpossiblyrapidreleaseofsolidCH4duetoitsdestabilizationintogaseousform.AttemptstoestimatemethanehydratesfluxesareevenmoredifficultthanterrestrialCH4research,ashydratesrequireships,shiptimeandseafloorobservatories(EMSO).Becauseofsuchconstraints,measuresarecollectedthroughad-hoccruisesandevenwhenlargedepositsareformed,theirfluxesintotheatmospherearespatiallyheterogeneous.However,Methanehydratesbeingapotentialenergysource,,energyexplorationmayserendipitouslyhelpscientistsaccessandstudytheseCH4reserves.

Neverthelesslong-term,consistentmeasurements(groundandairandsea)arelacking,asareconsistentCH4measurementmethodologies(i.e.,CH4filtering,gap-fillingprocedures,spatialdistributionoftalltowerswhichcurrentlydonotexistandflasksampling,etc...).ThelogisticstoconductscienceintheArcticareclearlychallenging,withlimitedaccess,coldtemperaturesand24hofdaylightduringthesummer(andconverselyinthewinter).Theseresearchquestionsanswerstrongsocietalimperatives,andwouldwarrantthereleaseofnewandimmediateresourcesdespitethechallengesfacingresearchersworkingintheArctic.CH4releasesintotheArcticwayhaveinternationalimplicationsforoursociety,asmanycircumpolarcountrieshaveastakeinthisissue.ThroughtheArcticCouncilandinaccordancewiththeGalwaydeclaration,

Page 11: ENVRIplus DELIVERABLE Ref. Ares(2016)6209899 - 31/10/2016 · 6 2. Phytoplankton blooms from coastal to open ocean 2.1 Oceanic Emissions, Marine Aerosols and Clouds Atmospheric aerosols

11

intergovernmentalcooperationtoolsshouldbeexploitedtoovercomelegalandgeopoliticalbarriersandconducttheappropriateresearch.

4. SimulatingandmonitoringO3andCO2deposition/coupling/interaction

Ozoneisahighlyreactive,toxicoxidantforplantsandisresponsibleforadecreaseinthecarbonassimilationofplantecosystems.Thissecondarypollutantisphotochemicallyformed,especiallyinareasinwhichhighUVradiationsareassociatedtohightemperaturesandthepresenceofvolatileprecursors,suchasNOxandVOCs.

Thismoleculeispresentintheatmosphereintraceconcentrations(lessthan100ppbv)andiscapableofinhibitingcarbonassimilationinagriculturalandforestecosystems.Ozoneisalotmoredifficulttomeasurethanothernon-reactivegreenhousegases.However,UV-basedandnewchemiluminescencesensorsenablepreciseandfastmeasurementsandtheiruseinexperimentalinfrastructuresishighlydesired.

Directfluxmeasurementsinthefield,usingmicrometeorologicaltechniquesinassociationwithlatentheatfluxmeasurements,allowforthepartitionofozonefluxesintodifferentsinksonthesoil-plantcontinuum:i)Stomata,ii)adsorptiononplantsurfacesandiii)gas-phasereactionswithreactiveVOCsandNOx.Experimentalevidencesuggestsstomataaloneareresponsiblefor40to80%oftheozoneremovedbyvegetation.TroposphericO3formationgeneratedbyphotochemicalreactionsinvolvingBVOCandO3mustbealsotakenintoaccountinO3budgets.

Sofar,ozoneriskassessmentshavebeenbasedonmanipulativeexperiments.Presentregulationsinassessingcriticalozonelevelsaremostlybasedonestimatedaccumulatedexposureoverathresholdconcentration.Thereishoweverascientificconsensusonfluxestimatesbeingmoreaccurate,becausetheyincludeplantphysiologyanalysesanddifferentenvironmentalparametersthatcontroltheuptake–andnotjusttheexposure--ofozone.

Long-termEddyCovariancemeasurementsofferagreatopportunitytoestimatecarbonassimilationathightemporalresolutions,soastostudytheeffectofclimatechangeonphotosyntheticmechanisms.Recentstudiessuggestwaveletandmultivariatestatisticalanalysesmaysupportourinterpretationofozonedamagetovegetation–providedozonecovariationswithenvironmentalfactors(suchaslightandtemperature)areproperlytakenintoaccount.

Whilethescientificcommunityisinvolvedinestablishinglong-termresearchinfrastructurestomeasurecarbonassimilationinresponsetoclimatechanges(e.g.ICOSnetwork),theadoptionoflow-costfastozonesensorsforEddyCovariancemeasurementswouldconstituteavaluableeffortinbetteringourunderstandingofcarbonassimilationinresponsetoenvironmentalstresses.

Page 12: ENVRIplus DELIVERABLE Ref. Ares(2016)6209899 - 31/10/2016 · 6 2. Phytoplankton blooms from coastal to open ocean 2.1 Oceanic Emissions, Marine Aerosols and Clouds Atmospheric aerosols

12

CONCLUSIONS

IMPACTONPROJECTTheworkshopwasakeyelementinfindingoutsomeofthemostpressingscientificquestionswhichcouldbeansweredviainterdiciplinarycollaboration.TheworkshopresultsareparticularlyusefulfortherestoftheThemeIworkpackagesintechnicaldevelopmenprioritiesandtotheclusterstrategicprioritizationactionsinWP18.

IMPACTONSTAKEHOLDERSThedeliverableisalsoimportantfactorfortheRIprioritization,particularlyinthecontextofinternationalandcross-diciplinarycollaboration.