environmental and occupational exposure to inorganic arsenic

4
31 ENVIRONMENTAL AND OCCUPATIONAL EXPOSURE TO INORGANIC ARSENIC Marie Vahter National Institute of Environmental Medicine, Stockholm, Sweden Key words: arsenic - metabolites - urine The urinary concentration of arsenic may be a useful indicator of the exposure to inorganic arsenic since the main route of excretion i s via the kidneys. However, it i s necessary to use an analytical method, which measures the meta- bolites of inorganic arsenic (inorganic AsIII and AsV, methylarsonic acid (MMA) and dimethylarsinic acid (DMA)) only, and not organic arsenic compounds Like arsenobetaine, which may be present i n high concentrations in certain fish and crustacea and which are excreted rather rapidly in the urine (Vahter et al, 1983; Marafante et at, 1984). I n the present study we have determined the concentrations of metabolites of inorganic arsenic (iAs-met) in urine of 99 subjects without known exposure to arsenic (randomly selected from the popula- tion in two Swedish cities, Stockholm and Vasteras), and in urine of 20 mate workers exposed to arsenic trioxide at a non-ferrous smelter i n northern Sweden. All urine samples were deepfrozen until analysis. The sum of metabolites of inorganic arsenic in urine were determined by arsine generation (Perkin Elmer MHS-20, addition of sodium borohydride to acidified urine samples) / atomic absorption (Perkin Elmer 303, equipped with EDL-Lamp and deuterium background correction system) (Norin and Vahter, 1981). Peak areas were used for quanti- tation. For quality control purposes 3 human urine samples spiked with a mixture of arsenate, MMA and DMA (19:25:56) were analyzed at the beginning an end of each run. Separation of the inorganic arsenic, MMA and DMA in the urine was carried out on ion exchange columns of AG 50W X8 (13 x 1 cm, B i o Rad, USA) (Tam et at 1978; Foa et aL, 1984). Arsenic in the fractions was determined by arsine generation1AAS. Recovery of arsenate, MMA and DMA, added t o human u r i n e was 106 f 8.0%. The concentrations of arsenic metabolites in the urine were skewely distributed (Figures 1 and 2). Among the unexposed subjects most values centered around 8.2 1J.g Aslg creatinine, the overall geometric mean, white four urine samples con- tained more than M pg Aslg creatinine, the highest being 52 pg Aslg creatinine (Figure 1). The geometric mean values were very similar to the median values, white the arithmetic means were about 30% higher, due to the skewed distribu- tion. Simi tar urinary concentrations of iAs-met have been reported from Finland (Valkonen et at, 19831, FRG (Apel and Stoeppler, 1983) and I t a l y (Foa e t at, 19841, and slightly higher from Belgium (Buchet et at, 1980). With the assump-

Upload: marie-vahter

Post on 27-Sep-2016

221 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: ENVIRONMENTAL AND OCCUPATIONAL EXPOSURE TO INORGANIC ARSENIC

31

ENVIRONMENTAL AND OCCUPATIONAL EXPOSURE TO INORGANIC ARSENIC

Marie Vahter Na t iona l I n s t i t u t e o f Environmental Medicine, Stockholm, Sweden Key words: a rsen ic - metabo l i t es - u r i n e

The u r i n a r y concent ra t ion o f a rsen ic may be a u s e f u l i n d i c a t o r o f t h e exposure

t o i no rgan ic a rsen ic s ince the main rou te o f e x c r e t i o n i s v i a t h e kidneys.

However, i t i s necessary t o use an a n a l y t i c a l method, which measures t h e meta-

b o l i t e s o f inorgan ic a rsen ic ( i no rgan ic A s I I I and AsV, methy la rson ic a c i d (MMA)

and d ime thy la rs in i c a c i d (DMA)) only, and no t o rgan ic a rsen ic compounds L ike

arsenobetaine, which may be present i n h igh concent ra t ions i n c e r t a i n f i s h and

crustacea and which are excre ted r a t h e r r a p i d l y i n t h e u r i n e (Vahter e t al,

1983; Marafante e t at, 1984). I n the present study we have determined t h e

concent ra t ions o f me tabo l i t es o f inorgan ic a rsen ic (iAs-met) i n u r i n e o f 99

sub jec ts w i thout known exposure t o a rsen ic (randomly se lec ted from the popula-

t i o n i n two Swedish c i t i e s , Stockholm and Vasteras), and i n u r i n e o f 20 mate

workers exposed t o a rsen ic t r i o x i d e a t a non-ferrous smelter i n n o r t h e r n Sweden.

A l l u r i n e samples were deepfrozen u n t i l ana lys is . The sum o f me tabo l i t es o f

inorgan ic a rsen ic i n u r i n e were determined by a rs ine genera t ion (Perk in Elmer

MHS-20, a d d i t i o n o f sodium borohydr ide t o a c i d i f i e d u r i n e samples) / atomic

absorp t ion (Perk in Elmer 303, equipped w i t h EDL-Lamp and deuter ium background

c o r r e c t i o n system) (Nor in and Vahter, 1981). Peak areas were used f o r quant i -

t a t i o n . For q u a l i t y c o n t r o l purposes 3 human u r i n e samples sp iked w i t h a m ix tu re

o f arsenate, MMA and DMA (19:25:56) were analyzed a t t h e beg inn ing an end o f

each run. Separat ion o f t he i no rgan ic arsenic, MMA and DMA i n t h e u r i n e was

c a r r i e d out on i o n exchange columns o f AG 50W X8 (13 x 1 cm, B i o Rad, USA) (Tam

e t a t 1978; Foa e t aL, 1984). Arsenic i n the f r a c t i o n s was determined by a r s i n e

generation1AAS. Recovery o f arsenate, MMA and DMA, added t o human u r i n e was 106

f 8.0%.

The concent ra t ions of a rsen ic me tabo l i t es i n the u r i n e were skewely d i s t r i b u t e d

(Figures 1 and 2 ) . Among the unexposed sub jec ts most values centered around 8.2

1J.g Aslg c rea t in ine , t he o v e r a l l geometric mean, wh i te fou r u r i n e samples con-

ta ined more than M pg Aslg c rea t in ine , the h ighes t be ing 52 pg Aslg c r e a t i n i n e

(Figure 1). The geometric mean values were very s i m i l a r t o the median values,

whi te the a r i t h m e t i c means were about 30% higher, due t o the skewed d i s t r i b u -

t i o n . S i m i t a r u r i n a r y concent ra t ions o f iAs-met have been repo r ted from F in land

(Valkonen e t at, 19831, FRG (Apel and Stoeppler, 1983) and I t a l y (Foa e t at,

19841, and s l i g h t l y h igher from Belgium (Buchet e t at, 1980). With the assump-

Page 2: ENVIRONMENTAL AND OCCUPATIONAL EXPOSURE TO INORGANIC ARSENIC

32

t i o n t h a t the d a i l y u r i n a r y e x c r e t i o n i s about 60% o f t h e dose (Buchet e t at,

1981), i t can be est imated t h a t the d a i l y i n t a k e o f i no rgan ic a rsen ic among t h e

general popu la t i on i s about 15-25 pg As i n most European count r ies .

U r ina ry concent ra t ion o f iAs-met were found t o be independent o f sex, p lace of

residence, smoking h a b i t s and consumption o f beer and wine. Sub jec ts who o f t e n

a te f l a t f i s h and crustacea had about 1.5 t imes h igher u r i n a r y concen t ra t i on o f

iAs-met than sub jec ts who a t e t h i s k i n d o f seafood less o f t e n (p<O.OI), o r

sub jec ts who a t e o ther k inds o f sea f i sh o r f reshwater f i s h . Th is would f i t w i t h

f i n d i n g s t h a t 2-10% o f the t o t a l a rsen ic may be i n form o f i no rgan ic a rsen ic

(Lunde, 1977; Brooke and Evans, 1981). However, separa t ion o f t he d i f f e r e n t

u r i n a r y me tabo l i t es showed t h a t DMA was the o n l y me tabo l i t e which c o r r e l a t e d

w i t h the t o t a l me tabo l i t e concen t ra t i on ( c o e f f i c i e n t o f c o r r e l a t i o n 0.996, compared t o 0.70 f o r i no rgan ic a rsen ic and 0.50 f o r MMA), i n d i c a t i n g t h a t t h i s

me tabo l i t e accounted f o r most o f the v a r i a t i o n o f iAs-met. When subd iv id ing t h e

sub jec ts w i t h respect t o degree o f exposure, i t was found t h a t t h e concen t ra t i on

o f i no rgan ic a rsen ic and MMA were r a t h e r constant independent o f t he degree o f

exposure, wh i te sub jec ts w i t h more than 10 pg iAs-met/g c r e a t i n i n e had more

than 6 t imes h igher u r i n a r y concent ra t ion o f DMA than those w i t h Less than 10 pg

iAs-met/g c r e a t i n i n e (Table 1). Subd iv id ing the sub jec ts according t o exposure

t o f i s h arsenic, i.e. t he concent ra t ion o f o rgan ic a rsen ic compounds ( t o t a l

a rsen ic minus iAs-met) i n the urine, showed t h a t u r i n a r y i no rgan ic a rsen ic and

MMA were independent o f t he degree o f exposure, w h i l e sub jec ts w i t h

Table 1. Concentrat ions o f inorgAs, MMA and DMA (pg As/g c r e a t i n i n e ) i n r e l a t i o n t o the concent ra t ion o f t o t a l iAsmet o r orgAs.

(10 pg iAs- >I0 1-19 iAs- (20 pg org- >20 pg org- met/g c rea t . met/g c rea t . As/g c rea t . As/g creat.

~ ~~~~~~~~~

N 8 5 6 7

i norgAs 1.0 i 0.41 1.6 f 0.93 1.1 i 0.43 1.4 f 0.90

MMA 0.8 i 0.37 1.4 i 1.4 0.9 i 0 . 4 3 1.2 f 1.2

DMA 4.0 f 1.4 24.8 i 10.2 3.6 f 0.86 19.2 f 12.8

more than 20 pg orgAs/g c r e a t i n i n e had more than 5 t imes h igher concent ra t ions

o f DMA i n the u r i n e than those w i t h tower u r i n a r y concent ra t ions o f orgAs. Th is

would suggest t h a t people a re exposed t o DMA from f l a t f i s h and crustacea r a t h e r

than t o i no rgan ic arsenic. However, i t may be a ques t i on o f exposure t o t r i -

methy la rs ine ox ide (TMO) a lso. TMO has been de tec ted i n f ish, e s p e c i a l l y a f t e r

Page 3: ENVIRONMENTAL AND OCCUPATIONAL EXPOSURE TO INORGANIC ARSENIC

33

4-

3-

2-

storage f o r some t ime i n freezer, probably as a consequence o f degradat ion o f

arsenobetaine (Nor in e t at, 1985). With t h e a n a l y t i c a l method used TMO w i l l

co-chromatograph w i t h DMA. We are now under way t o i n v e s t i g a t e whether o r no t

TMO i s present i n t h e ur ine .

- - -

1-- -

number of subjects

40 f

10 20 30 40 50 60 ug As/g creatinine

Figure 1. Concentrat ions o f iAs-met i n u r i n e o f t he genera l popu la t ion .

I n the study on occupa t iona l l y exposed sub jec ts the f i r s t - v o i d morning u r i n e was

c o l l e c t e d f o r seve ra l days d u r i n g the working week. The u r i n a r y concent ra t ions

of iAs-met increased du r ing the f i r s t day of exposure, whereaf te r t hey l e v e l l e d

o f f , i n d i c a t i n g a steady s t a t e between exposure .and excre t ion . The m a j o r i t y o f

t he samples contained Less than 200 pg As/g c rea t in ine , but 2 samples had over

300 pg As/g c rea t in ine , t he h ighes t 328 pg As/g c r e a t i n i n e (F igure 2). Separa-

t i o n o f u r i n a r y me tabo l i t es showed t h a t du r ing the steady state, i.e. a f t e r t h e

f i r s t day o f t he working week, on average 19% o f the u r i n a r y As-met was i o r g a n i c

arsenic, 20% MMA and 61% was DMA, which i s very s i m i l a r t o the d i s t r i b u t i o n o f

u r i n a r y metabo l i tes among the genera l popu la t i on (non-f ish ea ters ) w i t h con-

s i d e r a b l y Lower exposure (Table 2). Thus t h e me thy la t i on does no t seem t o be

sa tura ted even a t t he exposure l e v e l s found among the smelter workers. A f t e r t w o

days f ree from work as much as 80% o f t he u r i n a r y a rsen ic me tabo l i t es was i n

form o f DMA, which i s i n agreement w i t h exper imental s tud ies showing t h a t

inorgan ic a rsen ic i s excre ted main ly the f i r s t day a f t e r exposure, whereafter

Page 4: ENVIRONMENTAL AND OCCUPATIONAL EXPOSURE TO INORGANIC ARSENIC

34

DMA i s t he major u r i n a r y me tabo l i t e (Vahter and Marafante, 1983). A L L t h ree

me tabo l i t es showed a s i g n i f i c a n t c o r r e l a t i o n (r 0.94-0.991 w i t h t h e t o t a l

u r i n a r y metaboli tes, which proves t h a t exposure t o i no rgan ic a rsen ic w i l l r e s u l t

i n an increased e x c r e t i o n o f i no rgan ic a rsen ic i n t h e ur ine .

Table 2. Ur ina ry metabol ies o f i no rgan ic a rsen ic

Conc. % o f t o t . u r i n a r y iAs-met range ........................................

Popu la t i on N 1-19 As/g creat. inorgAs MMA DMA

General pop. non- f i sh ea ters 6 4-8 18 f 4.3 16 i 4.7 65 f. 4.6

Smelter workers ongoing exposure 9 15-300 19 f. 3.2 20 f. 4.2 61 f. 6.3

Smelter workers a f t e r weekend 6 12-140 9 f 2.7 13 i 3.6 78 i 4.3

REFERENCES

Apel, M. & M. Stoppler: Spec ia t ion o f a rsen ic i n u r i n e o f occupa t iona l l y non- exposed persons. 4 t h I n t . Conf. Heavy Metals i n the environment, Heidelberg, CEP Consul tants Ltd. 1983, 1, 517-520.

Brooke, P.J. & W.H. Evans: Determinat ion o f t o t a l i no rgan ic a rsen ic i n f i sh , s h e l l f i s h and f i s h products. Analyst . 1981, 106, 514-520.

Buchet, J.P., Lauwerys, R. & H. Roels: Comparison o f severa l methods f o r t he de te rm ina t in o f a rsen ic compounds i n water and i n u r ine . I n t Arch. Occup. Environ. Health, 1980, 46, 11-29.

Buchet, J.P., Lauwerys, R. & H. Roels: U r ina ry e x c r e t i o n o f i no rgan ic a rsen ic and i t s me tabo l i t es a f t e r repeated i n g e s t i o n o f sodium metaarsen i te by volunteers. In t . Arch. Occup. Environ. Health, 1981, 48, 111-118.

FoA, V., Columbi, A. & M. Maroni: The s p e c i a t i o n o f t he forms o f a rsen ic i n t h e b i o l o g i c a l mon i to r i ng o f exposure t o inorgan ic arsenic. S c i . To ta l . Environ. 1984, 34, 241-259.

Lunde, G: Occurrence and t rans fo rma t ion o f a rsen ic i n the marine environment. Environ. Hea l th Perspect. 1977, 19, 47-52.

Marafante, E., Vahter, M. & L. Dencker: Metabolism o f a rsenocho l ine i n mice, r a t s and rabb i t s . S c i . To ta l . Environ., 1984, 34, 223-240.

Norin, H. & M. Vahter: A r a p i d method f o r t he s e l e c t i v e a n a l y s i s o f t o t a l u r i n a r y metabo l i tes o f o f i no rgan ic arsenic. Scand. J. Work Environ. Health, 1981, 7, 38-44.

Norin, H., Christakopoulos, A., Sandstrom, M. & R. Ryhage: Mass fragmentographic es t ima t ion o f t r i m e t h y l a r s i n e ox ide i n aquat ic organisms. Chemosphere, 1985,

Tam, G.K.H., Charbonneau, S.M., Bryce, F. 8 G. Lacro ix : Separat ion o f a rsen ic me tabo l i t es i n dog plasma and u r i n e f o l l o w i n g i n t raveous i n j e c t i o n o f 74As. Anal. Biochem. 1978, 86, 505-511.

Vahter, M., Marafante, E. & L. Dencker: Metabolism o f arsenobetaine i n mice, r a t s and rabb i t s . S c i . T o t a l Environ. 1983, 197-211.

Valkonen, S . , Jarv isa lo , J. & A. A i t i o : U r ina ry a rsen ic i n a F inn i sh p o p u l a t i o n w i thou t occupat iona l exposure t o arsenic. In: Trace Element - A n a l y t i c a l Chemistry i n Medicine and Biology. 1983, Vol. 2. by Walter de Gruyter 8 Co., Ber L i n.

14 3 /4 , 313-323.