entanglement and coherent control

43
Entanglement and Coherent Control

Upload: deanne

Post on 06-Jan-2016

45 views

Category:

Documents


3 download

DESCRIPTION

Entanglement and Coherent Control. Entanglement and Coherent Control. Coherent Control. objectives: Control of future events. Tools: Use quantum interference between material waves. Entanglement and Coherent Control. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Entanglement and Coherent Control

Entanglement and Coherent Control

Page 2: Entanglement and Coherent Control

Entanglement and Coherent Control

Coherent Control. objectives: Control of future events.

Tools: Use quantum interference between material waves.

Page 3: Entanglement and Coherent Control

Entanglement and Coherent Control

Coherent Control. objectives: Control of future events.

Tools: Use quantum interference between material waves. We access the same final state using more than one pathway. Lacking the “which way” information these pathways interfere.

Page 4: Entanglement and Coherent Control

Entanglement and Coherent Control

Coherent Control. objectives: Control of future events.

Tools: Use quantum interference between material waves. We access the same final state using more than one pathway. Lacking the “which way” information these pathways interfere.

Interference is not enough. In order to achieve control

we need to “tune” this interference, and this is done

with photons.

Page 5: Entanglement and Coherent Control

Bichromatic “coherent control” (Chem. Phys. Lett. 126, 541 (1986))

Page 6: Entanglement and Coherent Control

Bichromatic “coherent control” (Chem. Phys. Lett. 126, 541 (1986))

A-B-C

B + A-C A + B-C

E1

E2

E1

E2

E

Eg

2g

1g

pathway a pathway b

Page 7: Entanglement and Coherent Control

Interferencepattern

+

+

+

+

-

-

-

-

0

0

Screen

a

b

The two slit analogy: the importance of the relative phase

Page 8: Entanglement and Coherent Control

light wave a

Page 9: Entanglement and Coherent Control

light wave a

final matter state

Page 10: Entanglement and Coherent Control

light wave a

amplitude forabsorbing light wave a

Page 11: Entanglement and Coherent Control

light wave a

light wave b

phaseshift

amplitude forabsorbinglight wave a

Page 12: Entanglement and Coherent Control

light wave a

light wave b

phaseshift

amplitude for absorbinglight wave a

amplitude forabsorbing light wave b

Page 13: Entanglement and Coherent Control

light wave a

light wave b

phaseshift

amplitude forabsorbinglight wave a

amplitude forabsorbinglight wave b

interfere

Page 14: Entanglement and Coherent Control

A-B + C

A + B-Cthe “screen” ofrelative phases

The key to control is that the interference patterns of different outcomesbe shifted in phase.

- is favored

Page 15: Entanglement and Coherent Control

A-B + C

A + B-C

- is favored

Page 16: Entanglement and Coherent Control

A-B + C

A + B-C

- is favored

Page 17: Entanglement and Coherent Control

A-B + C

A + B-C

- is favored

Page 18: Entanglement and Coherent Control

0 / 2

2 2

2(( ) ,

2)

iH

dH

m dV U x tx

x

2( / )

0 |x|>0.1 nm( )

-0.5 eV |x|<0.1 n

( , ) sin sin 2 (

m

)

( ) t

U x t x t t f t

t

x

f

V

e

-200 -100 0 100 200

-0.5

-0.4

-0.3

-0.2

-0.1

0

x [A]

V(x

) [eV

]

=0.1; t= 3 10-2 [au]=150 nstep=100; N

T=2000;

(x,t=0)=0(x)

Generation of DC current in a molecular “wire” suspended between two leads

a short pulse

Page 19: Entanglement and Coherent Control

H2(j=0,k0 ± j=2,k2) + H2(j=0,k0 ± j=2,k2) elastic

Need for entanglement: the control of collisions

J. Gong, M. Shapiro, and P. Brumer, J. Chem. Phys. 118, 2626 (2003)

+ +

--

E=0.4cm_

1

E=0.04cm_

1

Page 20: Entanglement and Coherent Control

H2(j=0,k0 ± j=4,k4) + H2(j=0,k0 ± j=4,k4)

2H2( j=2,k2)

E=0.04cm_

1 E=0.004cm_

1

++

--

Page 21: Entanglement and Coherent Control

Can one observer make use of entanglement?

B

Page 22: Entanglement and Coherent Control
Page 23: Entanglement and Coherent Control

n1-

Page 24: Entanglement and Coherent Control
Page 25: Entanglement and Coherent Control

Creation of variable entanglement in polyatomic molecules

A B

k2n/2mA

k2n/2mB

Page 26: Entanglement and Coherent Control
Page 27: Entanglement and Coherent Control

How does B view the uncollapsed wavefunction?

Page 28: Entanglement and Coherent Control
Page 29: Entanglement and Coherent Control

Control of entanglement

:

Page 30: Entanglement and Coherent Control
Page 31: Entanglement and Coherent Control
Page 32: Entanglement and Coherent Control

Coherent Control as a Disentanglement Transformation

Page 33: Entanglement and Coherent Control

/

Page 34: Entanglement and Coherent Control

/

Page 35: Entanglement and Coherent Control
Page 36: Entanglement and Coherent Control
Page 37: Entanglement and Coherent Control

pathway a

A second objective: to control of the direction of electronic motion. The generation of current without voltage!

Page 38: Entanglement and Coherent Control

pathway a pathway b

Page 39: Entanglement and Coherent Control

- ++

1- photon absorption

+2- photon absorption

+

-++

-

Symmetric (s wave)

Symmetric

Anti-symmetric

or

p wave

s wave

d wave

A pictorial representation

Page 40: Entanglement and Coherent Control

+-

- +

+

+

(forward current)

pathway a

pathway b

Page 41: Entanglement and Coherent Control

+-

- +

+

+- +

+

-

- +

(forward current)

pathway a

(backward current)

pathway b

Page 42: Entanglement and Coherent Control

E. Dupont, P.B. Corkum, H.C. Liu, M. Buchanan, and Z.R. Wasilewski, Phys. Rev. Lett. 74, 3596 (1995)

Page 43: Entanglement and Coherent Control

Theory Ioannis Thanopulos (Univ. of British Columbia) Einat Frishman (Univ. of British Columbia) Petr Kral (Univ. Illinois at Chicago) Dvira Segal (Weizmann )

Paul Brumer (University of Toronto) Jiangbin Gong (University of Toronto) John Hepburn (University of British Columbia)

Experiment

Qun Zhang (Weizmann, now at Univ. of British Columbia) Alexander Shnitman (Weizmann) , Mark Keil (BGU)

Acknowledgments