enhanced transition-mode pfc controller · 2.1 absolute maximum ratings 2.2 thermal data table 1....

43
December 2010 Doc ID 16116 Rev 4 1/43 43 L6563S Enhanced transition-mode PFC controller Features Tracking boost function Fast “bidirectional” input voltage feedforward (1/V 2 correction) Interface for cascaded converter's PWM controller Remote ON/OFF control Accurate adjustable output overvoltage protection Protection against feedback loop disconnection (latched shutdown) Inductor saturation protection Low (100 μA) start-up current 6 mA max. operating bias current 1% (@ T J = 25 °C) internal reference voltage -600/+800 mA totem pole gate driver with active pull-down during UVLO SO14 package Applications PFC pre-regulators for: High-end AC-DC adapter/charger Desktop PC, server, Web server IEC61000-3-2 or JEITA-MITI compliant SMPS, in excess of 400 W SO14 Figure 1. Block diagram www.st.com

Upload: others

Post on 21-Jul-2020

10 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Enhanced transition-mode PFC controller · 2.1 Absolute maximum ratings 2.2 Thermal data Table 1. Absolute maximum ratings Symbol Pin Parameter Value Unit Vcc 14 IC supply voltage

December 2010 Doc ID 16116 Rev 4 1/43

43

L6563S

Enhanced transition-mode PFC controller

Features■ Tracking boost function

■ Fast “bidirectional” input voltage feedforward (1/V2 correction)

■ Interface for cascaded converter's PWM controller

■ Remote ON/OFF control

■ Accurate adjustable output overvoltage protection

■ Protection against feedback loop disconnection (latched shutdown)

■ Inductor saturation protection

■ Low (≤ 100 µA) start-up current

■ 6 mA max. operating bias current

■ 1% (@ TJ = 25 °C) internal reference voltage

■ -600/+800 mA totem pole gate driver with active pull-down during UVLO

■ SO14 package

ApplicationsPFC pre-regulators for:

■ High-end AC-DC adapter/charger

■ Desktop PC, server, Web server

■ IEC61000-3-2 or JEITA-MITI compliant SMPS, in excess of 400 W

SO14

Figure 1. Block diagram

www.st.com

Page 2: Enhanced transition-mode PFC controller · 2.1 Absolute maximum ratings 2.2 Thermal data Table 1. Absolute maximum ratings Symbol Pin Parameter Value Unit Vcc 14 IC supply voltage

Contents L6563S

2/43 Doc ID 16116 Rev 4

Contents

1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5 Typical electrical performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

6 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6.1 Overvoltage protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6.2 Feedback failure protection (FFP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6.3 Voltage feedforward . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6.4 THD optimizer circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.5 Tracking boost function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6.6 Inductor saturation detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.7 Power management/housekeeping functions . . . . . . . . . . . . . . . . . . . . . . 31

7 Application examples and ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

8 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

9 Ordering codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

10 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Page 3: Enhanced transition-mode PFC controller · 2.1 Absolute maximum ratings 2.2 Thermal data Table 1. Absolute maximum ratings Symbol Pin Parameter Value Unit Vcc 14 IC supply voltage

L6563S List of table

Doc ID 16116 Rev 4 3/43

List of table

Table 1. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7Table 2. Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7Table 3. Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8Table 4. Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11Table 5. Summary of L6563S idle states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34Table 6. SO14 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39Table 7. Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41Table 8. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Page 4: Enhanced transition-mode PFC controller · 2.1 Absolute maximum ratings 2.2 Thermal data Table 1. Absolute maximum ratings Symbol Pin Parameter Value Unit Vcc 14 IC supply voltage

List of figure L6563S

4/43 Doc ID 16116 Rev 4

List of figure

Figure 1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1Figure 2. Pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8Figure 3. Typical system block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10Figure 4. IC consumption vs VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15Figure 5. IC consumption vs TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15Figure 6. Vcc Zener voltage vs TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15Figure 7. Start-up and UVLO vs TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15Figure 8. Feedback reference vs TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16Figure 9. E/A output clamp levels vs TJ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16Figure 10. UVLO saturation vs TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16Figure 11. OVP levels vs TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16Figure 12. Inductor saturation threshold vs TJ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17Figure 13. Vcs clamp vs TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17Figure 14. ZCD sink/source capability vs TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17Figure 15. ZCD clamp level vs TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17Figure 16. TBO clamp vs TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18Figure 17. VVFF - VTBO dropout vs TJ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18Figure 18. IINV - ITBO current mismatch vs TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18Figure 19. IINV - ITBO mismatch vs ITBO current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18Figure 20. R discharge vs TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19Figure 21. Line drop detection threshold vs TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19Figure 22. VMULTpk - VVFF dropout vs TJ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19Figure 23. PFC_OK threshold vs TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19Figure 24. PFC_OK FFD threshold vs TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20Figure 25. PWM_LATCH high saturation vs TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20Figure 26. RUN threshold vs TJ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20Figure 27. PWM_STOP low saturation vs TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20Figure 28. Multiplier characteristics @ VFF = 1 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21Figure 29. Multiplier characteristics @ VFF = 3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21Figure 30. Multiplier gain vs TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21Figure 31. Gate drive clamp vs TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21Figure 32. Gate drive output saturation vs TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22Figure 33. Delay to output vs TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22Figure 34. Start-up timer period vs TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22Figure 35. Output voltage setting, OVP and FFP functions: internal block diagram . . . . . . . . . . . . . . 23Figure 36. Voltage feedforward: squarer-divider (1/V2) block diagram and transfer characteristic . . 25Figure 37. RFF·CFF as a function of 3rd harmonic distortion introduced in the input current . . . . . . . 26Figure 38. THD optimizer circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27Figure 39. THD optimization: standard TM PFC controller (left side) and L6563S (right side) . . . . . . 28Figure 40. Tracking boost block. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30Figure 41. Tracking output voltage vs Input voltage characteristic with TBO . . . . . . . . . . . . . . . . . . . 30Figure 42. Effect of boost inductor saturation on the MOSFET current and detection method . . . . . . 31Figure 43. Interface circuits that let dc-dc converter's controller IC drive L6563S in burst mode . . . . 32Figure 44. Interface circuits that let the L6563S switch on or off a PWM controller. . . . . . . . . . . . . . . 32Figure 45. Interface circuits for power up sequencing when dc-dc has the SS function . . . . . . . . . . . 33Figure 46. Interface circuits for actual power-up sequencing (master PFC) . . . . . . . . . . . . . . . . . . . . 33Figure 47. Brownout protection (master PFC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34Figure 48. Demonstration board EVL6563S-100W, wide-range mains: electrical schematic . . . . . . . 35

Page 5: Enhanced transition-mode PFC controller · 2.1 Absolute maximum ratings 2.2 Thermal data Table 1. Absolute maximum ratings Symbol Pin Parameter Value Unit Vcc 14 IC supply voltage

L6563S List of figure

Doc ID 16116 Rev 4 5/43

Figure 49. L6563S 100 W TM PFC demonstration board: compliance to EN61000-3-2 standard . . . 36Figure 50. L6563S 100 W TM PFC demonstration board: compliance to JEITA-MITI standard . . . . . 36Figure 51. L6563S 100 W TM PFC demonstration board: input current waveform @230-50 Hz - 100 W load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36Figure 52. L6563S 100W TM PFC demonstration board: input current waveform @100 V-50 Hz - 100 W load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36Figure 53. EVL6563S-250W TM PFC demonstration board: electrical schematic . . . . . . . . . . . . . . . 37Figure 54. EVL6563S-400W FOT PFC demonstration board: electrical schematic . . . . . . . . . . . . . . 37Figure 55. EVL6563S-ZRC200W 200W PFC pre-regulator with ripple-free input current: electrical sche-matic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38Figure 56. Package dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Page 6: Enhanced transition-mode PFC controller · 2.1 Absolute maximum ratings 2.2 Thermal data Table 1. Absolute maximum ratings Symbol Pin Parameter Value Unit Vcc 14 IC supply voltage

Description L6563S

6/43 Doc ID 16116 Rev 4

1 Description

The L6563S is a current-mode PFC controller operating in transition mode (TM). Coming with the same pin-out as its predecessor L6563, it offers improved performance and additional functions.

The highly linear multiplier, along with a special correction circuit that reduces crossover distortion of the mains current, allows wide-range-mains operation with an extremely low THD even over a large load range.

The output voltage is controlled by means of a voltage-mode error amplifier and an accurate(1% @ TJ = 25 °C) internal voltage reference. Loop’s stability is optimized by the voltage feedforward function (1/V2 correction), which in this IC uses a proprietary technique that considerably improves line transient response as well in case of mains both drops and surges (“bidirectional”).

Additionally, the IC provides the option for tracking boost operation, i.e. the output voltage is changed tracking the mains voltage.

The device includes disable functions suitable for remote ON/OFF control both in systems where the PFC pre-regulator works as a master and in those where it works as a slave. In addition to an overvoltage protection able to keep the output voltage under control during transient conditions, the IC is provided also with a protection against feedback loop failures or erroneous settings. Other on-board protection functions allow that brownout conditions and boost inductor saturation can be safely handled.

An interface with the PWM controller of the DC-DC converter supplied by the PFC pre-regulator is provided: the purpose is to stop the operation of the converter in case of anomalous conditions for the PFC stage (feedback loop failure, boost inductor’s core saturation, etc.) and to disable the PFC stage in case of light load for the DC-DC converter, so as to make it easier to comply with energy saving norms (Blue Angel, EnergyStar, Energy2000, etc.).

The totem-pole output stage, capable of 600 mA source and 800 mA sink current, is suitable for big MOSFET or IGBT drive. This, combined with the other features and the possibility to operate with ST’s proprietary Fixed-Off-Time control, makes the device an excellent solution for SMPS up to 400 W that need to be compliant with EN61000-3-2 and JEITA-MITI standards.

Page 7: Enhanced transition-mode PFC controller · 2.1 Absolute maximum ratings 2.2 Thermal data Table 1. Absolute maximum ratings Symbol Pin Parameter Value Unit Vcc 14 IC supply voltage

L6563S Maximum ratings

Doc ID 16116 Rev 4 7/43

2 Maximum ratings

2.1 Absolute maximum ratings

2.2 Thermal data

Table 1. Absolute maximum ratings

Symbol Pin Parameter Value Unit

Vcc 14 IC supply voltage (Icc = 20 mA) self-limited V

--- 1, 3, 7 Max. pin voltage (Ipin =1 mA) Self-limited V

--- 2, 4 to 6, 8, 10 Analog inputs and outputs -0.3 to 8 V

VPWM_STOP 9 Analog output -0.3 to Vcc V

IPWM_STOP 9 Max. sink current 3 mA

IZCD 11 Zero current detector max. current-10 (source)

10 (sink)mA

VFF pin 5 Maximum withstanding voltage range

test condition: CDF-AEC-Q100-002 “human body model”

Acceptance criteria: “normal performance”

+/- 1250 V

Other pins1 to 4

6 to 14+/- 2000 V

Table 2. Thermal data

Symbol Parameter Value Unit

RthJA Max. thermal resistance, junction-to-ambient 120 °C/W

Ptot Power dissipation @TA = 50 °C 0.75 W

TJ Junction temperature operating range -40 to 150 °C

Tstg Storage temperature -55 to 150 °C

Page 8: Enhanced transition-mode PFC controller · 2.1 Absolute maximum ratings 2.2 Thermal data Table 1. Absolute maximum ratings Symbol Pin Parameter Value Unit Vcc 14 IC supply voltage

Pin connection L6563S

8/43 Doc ID 16116 Rev 4

3 Pin connection

Figure 2. Pin connection

Table 3. Pin description

n° Name Function

1 INV

Inverting input of the error amplifier. The information on the output voltage of the PFC pre-regulator is fed into the pin through a resistor divider.

The pin normally features high impedance but, if the tracking boost function is used, an internal current generator programmed by TBO (pin 6) is activated. It sinks current from the pin to change the output voltage so that it tracks the mains voltage.

2 COMP

Output of the error amplifier. A compensation network is placed between this pin and INV (pin 1) to achieve stability of the voltage control loop and ensure high power factor and low THD.

To avoid uncontrolled rise of the output voltage at zero load, when the voltage on the pin falls below 2.4 V the gate driver output will be inhibited (burst-mode operation).

3 MULTMains input to the multiplier. This pin is connected to the rectified mains voltage via a resistor divider and provides the sinusoidal reference to the current loop. The voltage on this pin is used also to derive the information on the RMS mains voltage.

4 CS

Input to the PWM comparator. The current flowing in the MOSFET is sensed through a resistor, the resulting voltage is applied to this pin and compared with an internal reference to determine MOSFET’s turn-off. A second comparison level at 1.7 V detects abnormal currents (e.g. due to boost inductor saturation) and, on this occurrence, activates a safety procedure that temporarily stops the converter and limits the stress of the power components.

5 VFF

Second input to the multiplier for 1/V2 function. A capacitor and a parallel resistor must be connected from the pin to GND. They complete the internal peak-holding circuit that derives the information on the RMS mains voltage. The voltage at this pin, a dc level equal to the peak voltage on pin MULT (3), compensates the control loop gain dependence on the mains voltage. Never connect the pin directly to GND but with a resistor ranging from 100 kΩ (minimum) to 2 MΩ (maximum).

6 TBO

Tracking boost function. This pin provides a buffered VFF voltage. A resistor connected between this pin and GND defines a current that is sunk from pin INV (#1). In this way, the output voltage is changed proportionally to the mains voltage (tracking boost). If this function is not used leave this pin open.

Page 9: Enhanced transition-mode PFC controller · 2.1 Absolute maximum ratings 2.2 Thermal data Table 1. Absolute maximum ratings Symbol Pin Parameter Value Unit Vcc 14 IC supply voltage

L6563S Pin connection

Doc ID 16116 Rev 4 9/43

7 PFC_OK

PFC pre-regulator output voltage monitoring/disable function. This pin senses the output voltage of the PFC pre-regulator through a resistor divider and is used for protection purposes. If the voltage on the pin exceeds 2.5 V the IC stops switching and restarts as the voltage on the pin falls below 2.4 V. However, if at the same time the voltage of the INV pin falls below 1.66V, a feedback failure is assumed. In this case the device is latched off and the pin PWM_LATCH (#8) is asserted high. Normal operation can be resumed only by cycling Vcc bringing its value lower than 6V before to move up the Turn on threshold.If the voltage on this pin is brought below 0.23 V the IC is shut down. To restart the IC the voltage on the pin must go above 0.27 V. This can be used as a remote on/off control input.

8 PWM_LATCH

Output pin for fault signaling. During normal operation this pin features high impedance. If a feedback failure is detected (PFC_OK > 2.5 V and INV< 1.66V) the pin is asserted high. Normally, this pin is used to stop the operation of the dc-dc converter supplied by the PFC pre-regulator by invoking a latched disable of its PWM controller. If not used, the pin will be left floating.

9 PWM_STOP

Output pin for fault signaling. During normal operation this pin features high impedance. If the IC is disabled by a voltage below 0.8 V on pin RUN (#10) the voltage on the pin is pulled to ground. Normally, this pin is used to temporarily stop the operation of the dc-dc converter supplied by the PFC pre-regulator by disabling its PWM controller. A typical usage of this function is brownout protection in systems where the PFC pre-regulator is the master stage. If not used, the pin will be left floating.

10 RUN

Remote ON/OFF control. A voltage below 0.8V shuts down (not latched) the IC and brings its consumption to a considerably lower level. PWM_STOP is asserted low. The IC restarts as the voltage at the pin goes above 0.88 V. Connect this pin to pin VFF (#5) either directly or through a resistor divider to use this function as brownout (AC mains undervoltage) protection.

11 ZCDBoost inductor’s demagnetization sensing input for transition-mode operation. A negative-going edge triggers MOSFET’s turn-on.

12 GND Ground. Current return for both the signal part of the IC and the gate driver.

13 GDGate driver output. The totem pole output stage is able to drive power MOSFET’s and IGBT’s with a peak current of 600 mA source and 800 mA sink. The high-level voltage of this pin is clamped at about 12 V to avoid excessive gate voltages.

14 VccSupply voltage of both the signal part of the IC and the gate driver. Sometimes a small bypass capacitor (0.1 µF typ.) to GND might be useful to get a clean bias voltage for the signal part of the IC.

Table 3. Pin description (continued)

n° Name Function

Page 10: Enhanced transition-mode PFC controller · 2.1 Absolute maximum ratings 2.2 Thermal data Table 1. Absolute maximum ratings Symbol Pin Parameter Value Unit Vcc 14 IC supply voltage

Pin connection L6563S

10/43 Doc ID 16116 Rev 4

Figure 3. Typical system block diagram

Page 11: Enhanced transition-mode PFC controller · 2.1 Absolute maximum ratings 2.2 Thermal data Table 1. Absolute maximum ratings Symbol Pin Parameter Value Unit Vcc 14 IC supply voltage

L6563S Electrical characteristics

Doc ID 16116 Rev 4 11/43

4 Electrical characteristics

TJ = -25 to 125 °C, VCC = 12 V, CO = 1 nF between pin GD and GND, CFF = 1 µF and RFF = 1 MΩ between pin VFF and GND; unless otherwise specified.

Table 4. Electrical characteristics

Symbol Parameter Test condition Min. Typ. Max. Unit

Supply voltage

Vcc Operating range After turn-on 10.3 22.5 V

VccOn Turn-on threshold (1) 11 12 13 V

VccOff Turn-off threshold (1) 8.7 9.5 10.3 V

Vccrestart Vcc for resuming from latch OVP latched 5 6 7 V

Hys Hysteresis 2.3 2.7 V

VZ Zener voltage Icc = 20 mA 22.5 25 28 V

Supply current

Istart-up Start-up current Before turn-on, Vcc = 10 V 90 150 µA

Iq Quiescent current After turn-on, VMULT = 1 V 4 5 mA

ICC Operating supply current @ 70 kHz 5 6.0 mA

Iqdis Idle state quiescent current

VPFC_OK > VPFC_OK_S AND VINV < VPFC_OK – VFFD

180 280 µA

VPFC_OK < VPFC_OK_D OR VRUN < VDIS

1.5 2.2 mA

Iq Quiescent currentVPFC_OK > VPFC_OK_S OR VCOMP < 2.3 V

2.2 3 mA

Multiplier input

IMULT Input bias current VMULT = 0 to 3 V -0.2 -1 µA

VMULT Linear operation range 0 to 3 V

VCLAMP Internal clamp level IMULT = 1 mA 9 9.5 V

ΔVcsΔVMULT

Output max. slopeVMULT =0 to 0.4 V, VVFF = 0.8 V VCOMP = Upper clamp

2.2 2.34 V/V

KM Gain (2) VMULT = 1 V, VCOMP = 4 V 0.375 0.45 0.525 1/V

Error amplifier

VINV Voltage feedback input thresholdTJ = 25 °C 2.475 2.5 2.525

V10.3 V < Vcc < 22.5 V (3) 2.455 2.545

Line regulation Vcc = 10.3 V to 22.5 V 2 5 mV

IINV Input bias current TBO open, VINV = 0 to 4 V -0.2 -1 µA

VINVCLAMP Internal clamp level IINV = 1 mA 8 9 V

Page 12: Enhanced transition-mode PFC controller · 2.1 Absolute maximum ratings 2.2 Thermal data Table 1. Absolute maximum ratings Symbol Pin Parameter Value Unit Vcc 14 IC supply voltage

Electrical characteristics L6563S

12/43 Doc ID 16116 Rev 4

Gv Voltage gain Open loop 60 80 dB

GB Gain-bandwidth product 1 MHz

ICOMP

Source current VCOMP = 4 V, VINV = 2.4 V 2 4 mA

Sink current VCOMP = 4 V, VINV = 2.6 V 2.5 4.5 mA

VCOMP

Upper clamp voltage ISOURCE = 0.5 mA 5.7 6.2 6.7

VBurst-mode voltage (3) 2.3 2.4 2.5

Lower clamp voltage ISINK = 0.5 mA (3) 2.1 2.25 2.4

Current sense comparator

ICS Input bias current VCS = 0 1 µA

tLEB Leading edge blanking 100 150 250 ns

td(H-L) Delay to output 100 200 300 ns

VCSclamp Current sense reference clampVCOMP = Upper clamp,

VMULT =1 V VVFF = 1 V1.0 1.08 1.16 V

Vcsofst Current sense offsetVMULT = 0, VVFF = 3 V 40 70

mVVMULT = 3 V, VVFF = 3 V 20

Boost inductor saturation detector

VCS_th Threshold on current sense (3) 1.6 1.7 1.8 V

IINV E/A input pull-up current After VCS > VCS_th, before restarting 5 10 13 µA

PFC_OK functions

IPFC_OK Input bias current VPFC_OK = 0 to 2.6 V -0.1 -1 µA

VPFC_OK_C Clamp voltage IPFC_OK = 1 mA 9 9.5 V

VPFC_OK_S OVP threshold (1) voltage rising 2.435 2.5 2.565 V

VPFC_OK_R Restart threshold after OVP (1) voltage falling 2.34 2.4 2.46 V

VPFC_OK_D Disable threshold (1) voltage falling 0.12 0.35 V

VPFC_OK_D Disable threshold (1) voltage falling TJ = 25 °C 0.17 0.23 0.29 V

VPFC_OK_E Enable threshold (1) voltage rising 0.15 0.38 V

VPFC_OK_E Enable threshold (1) voltage rising Tj = 25 °C 0.21 0.27 0.32 V

VFFDFeedback failure detection threshold (VINV falling)

VPFC_OK > VPFC_OK_S 1.61 1.66 1.71 mV

Zero current detector

VZCDH Upper clamp voltage IZCD = 2.5 mA 5.0 5.7 V

VZCDL Lower clamp voltage IZCD = - 2.5 mA -0.3 0 0.3 V

VZCDAArming voltage

(positive-going edge)1.1 1.4 1.9 V

Table 4. Electrical characteristics (continued)

Symbol Parameter Test condition Min. Typ. Max. Unit

Page 13: Enhanced transition-mode PFC controller · 2.1 Absolute maximum ratings 2.2 Thermal data Table 1. Absolute maximum ratings Symbol Pin Parameter Value Unit Vcc 14 IC supply voltage

L6563S Electrical characteristics

Doc ID 16116 Rev 4 13/43

VZCDTTriggering voltage

(negative-going edge)0.5 0.7 0.9 V

IZCDb Input bias current VZCD = 1 to 4.5 V 1 µA

IZCDsrc Source current capability -2.5 -4 mA

IZCDsnk Sink current capability 2.5 5 mA

Tracking boost function

ΔV Dropout voltage VVFF-VTBO ITBO = 0.2 mA -20 20 mV

ITBO Linear operation 0 0.2 mA

IINV-ITBO current mismatch ITBO = 25 µA to 0.2mA -5.5 +1.0 %

IINV-ITBO current mismatchITBO = 25 µA to 0.2mA

TJ = 25 °C-4.0 +0 %

VTBOclamp Clamp voltage (3) VVFF = 4 V 2.9 3 3.1 V

ITBO_Pull Pull-up currentVTBO = 1 V

VFF = VMULT = 0 V2 μA

PWM_STOP

Ileak High level leakage current VPWM_STOP = Vcc 1 µA

VL Low level IPWM_STOP = 0.5 mA 1 V

RUN function

IRUN Input bias current VRUN = 0 to 3 V -1 µA

VDIS Disable threshold (3) voltage falling 0.745 0.8 0.855 V

VEN Enable threshold (3) voltage rising 0.845 0.88 0.915 V

Start-up timer

tSTART_DEL Start-up delay First cycle after wake-up 25 50 75 µs

tSTART Timer period75 150 300

µsRestart after VCS > VCS_th 150 300 600

Voltage feedforward

VVFF Linear operation range 0.8 3 V

ΔV Dropout VMULTpk-VVFF

Vcc < VccOn 800mV

Vcc > or = to VccOn 20

ΔVVFF Line drop detection threshold Below peak value 40 70 100 mV

ΔVVFF Line drop detection thresholdBelow peak value

TJ = 25 °C50 70 90 mV

RDISCH Internal discharge resistorTJ = 25 °C 7.5 10 12.5

kΩ5 20

Table 4. Electrical characteristics (continued)

Symbol Parameter Test condition Min. Typ. Max. Unit

Page 14: Enhanced transition-mode PFC controller · 2.1 Absolute maximum ratings 2.2 Thermal data Table 1. Absolute maximum ratings Symbol Pin Parameter Value Unit Vcc 14 IC supply voltage

Electrical characteristics L6563S

14/43 Doc ID 16116 Rev 4

VVFF Linear operation range 0.8 3 V

PWM_LATCH

Ileak Low level leakage current VPWM_LATCH = 0 -1 µA

VH High level IPWM_LATCH = -0.5 mA 4.5 V

VH High levelIPWM_LATCH = -0.25 mA

Vcc = VccOff2.5 V

VH High levelIPWM_LATCH = -0.25 mA

Vcc = VccOff TJ = 25 °C2.8 V

Gate driver

VOL Output low voltage Isink = 100 mA 0.6 1.2 V

VOH Output high voltage Isource = 5 mA 9.8 10.3 V

Isrcpk Peak source current -0.6 A

Isnkpk Peak sink current 0.8 A

tf Voltage fall time 30 60 ns

tr Voltage rise time 45 110 ns

VOclamp Output clamp voltage Isource = 5 mA; Vcc = 20 V 10 12 15 V

UVLO saturation Vcc= 0 to VCCon, Isink = 2 mA 1.1 V

1. Parameters tracking each other

2. The multiplier output is given by:

3. Parameters tracking each other

Table 4. Electrical characteristics (continued)

Symbol Parameter Test condition Min. Typ. Max. Unit

( )2

VFFV

5.2COMPVMULTVKV csV MCS_Ofst

−⋅⋅+=

Page 15: Enhanced transition-mode PFC controller · 2.1 Absolute maximum ratings 2.2 Thermal data Table 1. Absolute maximum ratings Symbol Pin Parameter Value Unit Vcc 14 IC supply voltage

L6563S Typical electrical performance

Doc ID 16116 Rev 4 15/43

5 Typical electrical performance

Figure 4. IC consumption vs VCC Figure 5. IC consumption vs TJ

 

0.001

0.01

0.1

1

10

100

0 5 10 15 20 25 30Vcc [V ]

Icc

[mA

]

VccOFFVccON

Co=1nFf =70kHzTj = 25°C

 

0.01

0.1

1

10

-50 -25 0 25 50 75 100 125 150 175Tj (C)

Ic c

urre

nt (m

A)

Operating

Quiescent

Disabled or during OVP

Latched off

Before Start up

VCC=12VCo = 1nFf =70kHz

Figure 6. Vcc Zener voltage vs TJ Figure 7. Start-up and UVLO vs TJ

 

22

23

24

25

26

27

28

-50 -25 0 25 50 75 100 125 150 175Tj (C)

V

 

6

7

8

9

10

11

12

13

-50 -25 0 25 50 75 100 125 150 175

Tj (C)

V

VCC-ON

VCC-OFF

Page 16: Enhanced transition-mode PFC controller · 2.1 Absolute maximum ratings 2.2 Thermal data Table 1. Absolute maximum ratings Symbol Pin Parameter Value Unit Vcc 14 IC supply voltage

Typical electrical performance L6563S

16/43 Doc ID 16116 Rev 4

Figure 8. Feedback reference vs TJ Figure 9. E/A output clamp levels vs TJ

 

2.4

2.45

2.5

2.55

2.6

-50 -25 0 25 50 75 100 125 150 175Tj (C)

pin

INV

(V)

VCC = 12V

 

0

1

2

3

4

5

6

7

-50 -25 0 25 50 75 100 125 150 175

Tj (C)

VCO

MP

(V)

Uper Clamp

Lower Clamp

VCC = 12V

Figure 10. UVLO saturation vs TJ Figure 11. OVP levels vs TJ

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-50 -25 0 25 50 75 100 125 150 175Tj (C)

V

VCC = 0V

 

2.36

2.38

2.4

2.42

2.44

2.46

2.48

2.5

-50 -25 0 25 50 75 100 125 150 175

Tj (C)

PFC

_OK

leve

ls (V

)

OVP T h

Resta rt Th

Page 17: Enhanced transition-mode PFC controller · 2.1 Absolute maximum ratings 2.2 Thermal data Table 1. Absolute maximum ratings Symbol Pin Parameter Value Unit Vcc 14 IC supply voltage

L6563S Typical electrical performance

Doc ID 16116 Rev 4 17/43

Figure 12. Inductor saturation threshold vs TJ Figure 13. Vcs clamp vs TJ

 

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

-50 -25 0 25 50 75 100 125 150 175

Tj (C)

CS

pin

(V)

 

1

1.1

1.2

1.3

1.4

-50 -25 0 25 50 75 100 125 150 175Tj (C)

VCSx

(V)

VCC = 12VVCOMP =Upper clamp

Figure 14. ZCD sink/source capability vs TJ Figure 15. ZCD clamp level vs TJ

 

-8

-6

-4

-2

0

2

4

6

8

-50 -25 0 25 50 75 100 125 150 175Tj (C)

IZC

Dsrc

(mA

)

VCC = 12V

Source current

Sink curren t

 

-1

0

1

2

3

4

5

6

7

-50 -25 0 25 50 75 100 125 150 175Tj (C)

VZC

D p

in (V

) VCC = 12VIzcd = ±2.5mV

Upper Clamp

Lower Clamp

Page 18: Enhanced transition-mode PFC controller · 2.1 Absolute maximum ratings 2.2 Thermal data Table 1. Absolute maximum ratings Symbol Pin Parameter Value Unit Vcc 14 IC supply voltage

Typical electrical performance L6563S

18/43 Doc ID 16116 Rev 4

Figure 16. TBO clamp vs TJ Figure 17. VVFF - VTBO dropout vs TJ

 

2.5

2.75

3

3.25

3.5

-50 -25 0 25 50 75 100 125 150 175Tj (C)

V

-5

-4

-3

-2

-1

0

1

2

3

4

5

-50 -25 0 25 50 75 100 125 150 175T j (C)

mV

Figure 18. IINV - ITBO current mismatch vs TJ Figure 19. IINV - ITBO mismatch vs ITBO current

 

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

-50 -25 0 25 50 75 100 125 150 175Tj (C)

100*

{I(IN

V)-I(

TBO)

}/I(T

BO)

[ %]

VCC = 12V

ITBO = 25uA

ITBO = 200uA

 

-3

-2.8

-2.6

-2.4

-2.2

-2

-1.8

-1.6

0 100 200 300 400 500 600I(TBO)

100*

{I(IN

V)-I

(TBO

)}/I(

TBO

) [

%]

VCC = 12VTj = 25°C

Page 19: Enhanced transition-mode PFC controller · 2.1 Absolute maximum ratings 2.2 Thermal data Table 1. Absolute maximum ratings Symbol Pin Parameter Value Unit Vcc 14 IC supply voltage

L6563S Typical electrical performance

Doc ID 16116 Rev 4 19/43

Figure 20. R discharge vs TJ Figure 21. Line drop detection threshold vs TJ

 

0

2

4

6

8

10

12

14

16

18

20

-50 -25 0 25 50 75 100 125 150 175Tj (C)

kOhm

 

0

10

20

30

40

50

60

70

80

90

-50 -25 0 25 50 75 100 125 150 175Tj (C)

mV

Figure 22. VMULTpk - VVFF dropout vs TJ Figure 23. PFC_OK threshold vs TJ

 

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-50 -25 0 25 50 75 100 125 150 175Tj (C)

⎯ (m

V)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

-50 -25 0 25 50 75 100 125 150 175Tj (C)

Th (V

) ON

OFF

Page 20: Enhanced transition-mode PFC controller · 2.1 Absolute maximum ratings 2.2 Thermal data Table 1. Absolute maximum ratings Symbol Pin Parameter Value Unit Vcc 14 IC supply voltage

Typical electrical performance L6563S

20/43 Doc ID 16116 Rev 4

Figure 24. PFC_OK FFD threshold vs TJ Figure 25. PWM_LATCH high saturation vs TJ

 

1.4

1.5

1.6

1.7

1.8

1.9

2

-50 -25 0 25 50 75 100 125 150 175Tj(C)

VFFD

Th

(V)

 

4

5

6

7

8

9

10

-50 -25 0 25 50 75 100 125 150 175T j (C)

V

VCC = 12V

Isource =500uA

Isource =250uA

Figure 26. RUN threshold vs TJ Figure 27. PWM_STOP low saturation vs TJ

 

0.4

0.6

0.8

1

-50 -25 0 25 50 75 100 125 150 175T j (C)

V VCC = 12V

ON

OFF

0

0.05

0.1

0.15

0.2

0.25

-50 -25 0 25 50 75 100 125 150 175Tj (C)

V

VCC = 12VIsink = 0.5mA

Page 21: Enhanced transition-mode PFC controller · 2.1 Absolute maximum ratings 2.2 Thermal data Table 1. Absolute maximum ratings Symbol Pin Parameter Value Unit Vcc 14 IC supply voltage

L6563S Typical electrical performance

Doc ID 16116 Rev 4 21/43

Figure 28. Multiplier characteristics @ VFF = 1 V

Figure 29. Multiplier characteristics @ VFF = 3 V

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1VM UL T (V )

VC

S (V

)

4.5 V

3.5 V

Upper voltage clamp

3.0

2.6 V

5 .0V

4. 0V

5 .5

VCOMP

 

0

100

200

300

400

500

600

700

0 0.5 1 1.5 2 2.5 3 3.5VMULT (V )

VC

S (m

V)

2.6V

3.0V

4.5V

4.0V

3.5V

5.0V

5.5V

Upper vo ltage

VCOM P

Figure 30. Multiplier gain vs TJ Figure 31. Gate drive clamp vs TJ

 

0.2

0.3

0.4

0.5

-50 -25 0 25 50 75 100 125 150 175

Tj (C)

Gai

n (1

/V)

VCC = 12VVCOMP = 4VVMULT = VFF = 1V

 

12.65

12.7

12.75

12.8

12.85

12.9

-50 -25 0 25 50 75 100 125 150 175Tj (C)

V

VCC = 20V

Page 22: Enhanced transition-mode PFC controller · 2.1 Absolute maximum ratings 2.2 Thermal data Table 1. Absolute maximum ratings Symbol Pin Parameter Value Unit Vcc 14 IC supply voltage

Typical electrical performance L6563S

22/43 Doc ID 16116 Rev 4

Figure 32. Gate drive output saturation vs TJ Figure 33. Delay to output vs TJ

 

0

2

4

6

8

10

12

-50 -25 0 25 50 75 100 125 150 175Tj (C)

V

Low level

High level

50

100

150

200

250

300

-50 -25 0 25 50 75 100 125 150 175Tj (C)

TD(H

-L) (

ns)

VCC = 12V

Figure 34. Start-up timer period vs TJ

 

0

50

100

150

200

250

300

350

400

450

-50 -25 0 25 50 75 100 125 150 175Tj (C)

Tim

e (u

s)

First Cicle

Timer

After OCP

Page 23: Enhanced transition-mode PFC controller · 2.1 Absolute maximum ratings 2.2 Thermal data Table 1. Absolute maximum ratings Symbol Pin Parameter Value Unit Vcc 14 IC supply voltage

L6563S Application information

Doc ID 16116 Rev 4 23/43

6 Application information

6.1 Overvoltage protectionNormally, the voltage control loop keeps the output voltage Vo of the PFC pre-regulator close to its nominal value, set by the ratio of the resistors R1 and R2 of the output divider. A pin of the device (PFC_OK) has been dedicated to monitor the output voltage with a separate resistor divider (R3 high, R4 low, see Figure 35). This divider is selected so that the voltage at the pin reaches 2.5 V if the output voltage exceeds a preset value, usually larger than the maximum Vo that can be expected.

Example: VO = 400 V, VOX = 434 V. Select: R3 = 8.8 MΩ; then: R4 = 8.8 MΩ ·2.5/(434-2.5) = 51 kΩ.

When this function is triggered, the gate drive activity is immediately stopped until the voltage on the pin PFC_OK drops below 2.4 V. Notice that R1, R2, R3 and R4 can be selected without any constraints. The unique criterion is that both dividers have to sink a current from the output bus which needs to be significantly higher than the bias current of both INV and PFC_OK pins.

Figure 35. Output voltage setting, OVP and FFP functions: internal block diagram

Page 24: Enhanced transition-mode PFC controller · 2.1 Absolute maximum ratings 2.2 Thermal data Table 1. Absolute maximum ratings Symbol Pin Parameter Value Unit Vcc 14 IC supply voltage

Application information L6563S

24/43 Doc ID 16116 Rev 4

6.2 Feedback failure protection (FFP)The OVP function above described handles “normal” over voltage conditions, i.e. those resulting from an abrupt load/line change or occurring at start-up. In case the overvoltage is generated by a feedback disconnection, for instance when the upper resistor of the output divider (R1) fails open, an additional comparator detects the voltage at pin INV. If the voltage is lower than 1.66 V and the OVP is active, the FFP is triggered, the gate drive activity is immediately stopped, the device is shut down, its quiescent consumption is reduced below 180 µA and the condition is latched as long as the supply voltage of the IC is above the UVLO threshold. At the same time the pin PWM_LATCH is asserted high. PWM_LATCH is an open source output able to deliver 2.8 V minimum with 0.25 mA load, intended for tripping a latched shutdown function of the PWM controller IC in the cascaded dc-dc converter, so that the entire unit is latched off. To restart the system it is necessary to recycle the input power, so that the Vcc voltage of both the L6563S goes below 6V and that one of the PWM controller goes below its UVLO threshold.

The pin PFC_OK doubles its function as a not-latched IC disable: a voltage below 0.23V will shut down the IC, reducing its consumption below 2 mA. In this case both PWM_STOP and PWM_LATCH keep their high impedance status. To restart the IC simply let the voltage at the pin go above 0.27 V.

Note that these functions offer a complete protection against not only feedback loop failures or erroneous settings, but also against a failure of the protection itself. Either resistor of the PFC_OK divider failing short or open or a PFC_OK pin floating will result in shutting down the IC and stopping the pre-regulator.

6.3 Voltage feedforwardThe power stage gain of PFC pre-regulators varies with the square of the RMS input voltage. So does the crossover frequency fc of the overall open-loop gain because the gain has a single pole characteristic. This leads to large trade-offs in the design.

For example, setting the gain of the error amplifier to get fc = 20 Hz @ 264 Vac means having fc 4 Hz @ 88 Vac, resulting in a sluggish control dynamics. Additionally, the slow control loop causes large transient current flow during rapid line or load changes that are limited by the dynamics of the multiplier output. This limit is considered when selecting the sense resistor to let the full load power pass under minimum line voltage conditions, with some margin. But a fixed current limit allows excessive power input at high line, whereas a fixed power limit requires the current limit to vary inversely with the line voltage.

Voltage Feedforward can compensate for the gain variation with the line voltage and allow minimizing all of the above-mentioned issues. It consists of deriving a voltage proportional to the input RMS voltage, feeding this voltage into a squarer/divider circuit (1/V2 corrector) and providing the resulting signal to the multiplier that generates the current reference for the inner current control loop (see Figure 36).

Page 25: Enhanced transition-mode PFC controller · 2.1 Absolute maximum ratings 2.2 Thermal data Table 1. Absolute maximum ratings Symbol Pin Parameter Value Unit Vcc 14 IC supply voltage

L6563S Application information

Doc ID 16116 Rev 4 25/43

Figure 36. Voltage feedforward: squarer-divider (1/V2) block diagram and transfer characteristic

In this way a change of the line voltage will cause an inversely proportional change of the half sine amplitude at the output of the multiplier (if the line voltage doubles the amplitude of the multiplier output will be halved and vice versa) so that the current reference is adapted to the new operating conditions with (ideally) no need for invoking the slow dynamics of the error amplifier. Additionally, the loop gain will be constant throughout the input voltage range, which improves significantly dynamic behavior at low line and simplifies loop design.

Actually, deriving a voltage proportional to the RMS line voltage implies a form of integration, which has its own time constant. If it is too small the voltage generated will be affected by a considerable amount of ripple at twice the mains frequency that will cause distortion of the current reference (resulting in high THD and poor PF); if it is too large there will be a considerable delay in setting the right amount of feedforward, resulting in excessive overshoot and undershoot of the pre-regulator's output voltage in response to large line voltage changes. Clearly a trade-off was required.

The L6563S realizes a NEW voltage feed forward that, with a technique that makes use of just two external parts, strongly minimizes this time constant trade-off issue whichever voltage change occurs on the mains, both surges and drops. A capacitor CFF and a resistor RFF, both connected from the pin VFF (#5) to ground, complete an internal peak-holding circuit that provides a DC voltage equal to the peak of the rectified sine wave applied on pin MULT (#3). In this way, in case of sudden line voltage rise, CFF will be rapidly charged through the low impedance of the internal diode; in case of line voltage drop, an internal “mains drop” detector enables a low impedance switch which suddenly discharges CFF avoiding long settling time before reaching the new voltage level. The discharge of CFF is stopped as its voltage equals the voltage on pin MULT or if the voltage on pin RUN (in case it is connected to VFF) falls below 0.88 V, to prevent the “Brownout protection” function from being improperly activated (see “Section 6.7 on page 31).

As a result of the VFF pin functionality, an acceptably low steady-state ripple and low current distortion can be achieved with a limited undershoot or overshoot on the pre-regulator's output.

Page 26: Enhanced transition-mode PFC controller · 2.1 Absolute maximum ratings 2.2 Thermal data Table 1. Absolute maximum ratings Symbol Pin Parameter Value Unit Vcc 14 IC supply voltage

Application information L6563S

26/43 Doc ID 16116 Rev 4

The twice-mains-frequency (2•fL) ripple appearing across CFF is triangular with a peak-to-peak amplitude that, with good approximation, is given by:

where fL is the line frequency. The amount of 3rd harmonic distortion introduced by this ripple, related to the amplitude of its 2•fL component, will be:

Figure 37 shows a diagram that helps choose the time constant RFF·CFF based on the amount of maximum desired 3rd harmonic distortion. Note that there is a minimum value for the time constant RFF • CFF below which improper activation of the VFF fast discharge may occur. In fact, the twice-mains-frequency ripple across CFF under steady state conditions must be lower than the minimum line drop detection threshold (VVFF_min = 40 mV). Therefore:

Always connect RFF and CFF to the pin, the IC will not work properly if the pin is either left floating or connected directly to ground.

Figure 37. RFF·CFF as a function of 3rd harmonic distortion introduced in the input current

FFFFL

MULTpkFF CRf41

V2V

+=Δ

FFFFL3 CRf2

100%D

π=

min_L

min_VFF

max_MULTpk

FFFF f4

1V

V2

CR

−Δ

>⋅

 

D %3

0.1 1 100.01

0.1

1

10

f = 50 HzL

f = 60 HzL

R · C [s]FFFF

Page 27: Enhanced transition-mode PFC controller · 2.1 Absolute maximum ratings 2.2 Thermal data Table 1. Absolute maximum ratings Symbol Pin Parameter Value Unit Vcc 14 IC supply voltage

L6563S Application information

Doc ID 16116 Rev 4 27/43

6.4 THD optimizer circuitThe L6563S is provided with a special circuit that reduces the conduction dead-angle occurring to the AC input current near the zero-crossings of the line voltage (crossover distortion). In this way the THD (total harmonic distortion) of the current is considerably reduced.

A major cause of this distortion is the inability of the system to transfer energy effectively when the instantaneous line voltage is very low. This effect is magnified by the high-frequency filter capacitor placed after the bridge rectifier, which retains some residual voltage that causes the diodes of the bridge rectifier to be reverse-biased and the input current flow to temporarily stop.

To overcome this issue the device forces the PFC pre-regulator to process more energy near the line voltage zero-crossings as compared to that commanded by the control loop. This will result in both minimizing the time interval where energy transfer is lacking and fully discharging the high-frequency filter capacitor after the bridge.

Figure 38 shows the internal block diagram of the THD optimizer circuit.

Figure 38. THD optimizer circuit

Page 28: Enhanced transition-mode PFC controller · 2.1 Absolute maximum ratings 2.2 Thermal data Table 1. Absolute maximum ratings Symbol Pin Parameter Value Unit Vcc 14 IC supply voltage

Application information L6563S

28/43 Doc ID 16116 Rev 4

Figure 39. THD optimization: standard TM PFC controller (left side) and L6563S (right side)

Essentially, the circuit artificially increases the ON-time of the power switch with a positive offset added to the output of the multiplier in the proximity of the line voltage zero-crossings. This offset is reduced as the instantaneous line voltage increases, so that it becomes negligible as the line voltage moves toward the top of the sinusoid. Furthermore the offset is modulated by the voltage on the VFF pin (see “Voltage Feedforward” section) so as to have little offset at low line, where energy transfer at zero crossings is typically quite good, and a larger offset at high line where the energy transfer gets worse.

The effect of the circuit is shown in Figure 39, where the key waveforms of a standard TM PFC controller are compared to those of this chip.

To take maximum benefit from the THD optimizer circuit, the high-frequency filter capacitor after the bridge rectifier should be minimized, compatibly with EMI filtering needs. A large capacitance, in fact, introduces a conduction dead-angle of the AC input current in itself - even with an ideal energy transfer by the PFC pre-regulator - thus reducing the effectiveness of the optimizer circuit.

6.5 Tracking boost function In some applications it may be advantageous to regulate the output voltage of the PFC pre-regulator so that it tracks the RMS input voltage rather than at a fixed value like in conventional boost pre-regulators. This is commonly referred to as “tracking boost” or “follower boost” approach.

With the L6563S this can be realized by connecting a resistor (RT) between the TBO pin and ground. The TBO pin presents a DC level equal to the peak of the MULT pin voltage and is then representative of the mains RMS voltage. The resistor defines a current, equal to

 

Imains

Vdrain

Imains

Vdrain

Input current Input current

MOSFET's drain voltage MOSFET's drain voltage

Rectified mains voltage Rectified mains voltage

Input current Input current

Page 29: Enhanced transition-mode PFC controller · 2.1 Absolute maximum ratings 2.2 Thermal data Table 1. Absolute maximum ratings Symbol Pin Parameter Value Unit Vcc 14 IC supply voltage

L6563S Application information

Doc ID 16116 Rev 4 29/43

V(TBO)/RT, that is internally 1:1 mirrored and sunk from pin INV (#1) input of the L6563S's error amplifier. In this way, when the mains voltage increases the voltage at TBO pin will increase as well and so will do the current flowing through the resistor connected between TBO and GND. Then a larger current will be sunk by INV pin and the output voltage of the PFC pre-regulator will be forced to get higher. Obviously, the output voltage will move in the opposite direction if the input voltage decreases.

To avoid undesired output voltage rise should the mains voltage exceed the maximum specified value, the voltage at the TBO pin is clamped at 3V. By properly selecting the multiplier bias it is possible to set the maximum input voltage above which input-to-output tracking ends and the output voltage becomes constant. If this function is not used, leave the pin open: the device will regulate a fixed output voltage.

Starting from the following data:

● Vin1 = minimum specified input RMS voltage;

● Vin2 = maximum specified input RMS voltage;

● Vo1 = regulated output voltage @ Vin = Vin1;

● Vo2 = regulated output voltage @ Vin = Vin2;

● Vox = absolute maximum limit for the regulated output voltage;

to set the output voltage at the desired values use the following design procedure:

1. Determine the input RMS voltage Vinclamp that produces Vo = Vox:

and choose a value Vinx such that Vin2 ≤ Vinx < Vinclamp. This will result in a limitation of the output voltage range below Vox (it will equal Vox if one chooses Vinx = Vinclamp)

2. Determine the divider ratio of the MULT pin (#3) bias:

and check that at minimum mains voltage Vin1 the peak voltage on pin 3 is greater than 0.65 V.

3. Determine R1, the upper resistor of the output divider, for instance 3 MΩ.

4. Calculate the lower resistor R2 of the output divider and the adjustment resistor RT:

5. Check that the maximum current sourced by the TBO pin (#6) does not exceed the maximum specified (0.2 mA):

Figure 40 shows the internal block diagram of the tracking boost function.

112

22

12

1clamp Vin

VoVo

VoVoxVin

VoVo

VoVoxVin ⋅

−−

−⋅−−

=

xVin2

3k

⋅=

( ) ( )

⎪⎪⎩

⎪⎪⎨

−−

⋅⋅⋅=

⋅−−⋅−−

⋅⋅=

12

12T

1221

12

VoVoVinVin

1Rk2R

Vin5.2VoVin5.2VoVinVin

1R5.22R

3

TmaxTBO 102.0

R3

I −⋅≤=

Page 30: Enhanced transition-mode PFC controller · 2.1 Absolute maximum ratings 2.2 Thermal data Table 1. Absolute maximum ratings Symbol Pin Parameter Value Unit Vcc 14 IC supply voltage

Application information L6563S

30/43 Doc ID 16116 Rev 4

Figure 40. Tracking boost block

Figure 41. Tracking output voltage vs Input voltage characteristic with TBO

6.6 Inductor saturation detectionBoost inductor's hard saturation may be a fatal event for a PFC pre-regulator: the current up-slope becomes so large (50-100 times steeper, see Figure 42) that during the current sense propagation delay the current may reach abnormally high values. The voltage drop caused by this abnormal current on the sense resistor reduces the gate-to-source voltage, so that the MOSFET may work in the active region and dissipate a huge amount of power, which leads to a catastrophic failure after few switching cycles.

However, in some applications such as ac-dc adapters, where the PFC pre-regulator is turned off at light load for energy saving reasons, even a well-designed boost inductor may

Page 31: Enhanced transition-mode PFC controller · 2.1 Absolute maximum ratings 2.2 Thermal data Table 1. Absolute maximum ratings Symbol Pin Parameter Value Unit Vcc 14 IC supply voltage

L6563S Application information

Doc ID 16116 Rev 4 31/43

occasionally slightly saturate when the PFC stage is restarted because of a larger load demand. This happens when the restart occurs at an unfavorable line voltage phase, i.e. when the output voltage is significantly below the rectified peak voltage. As a result, in the boost inductor the inrush current coming from the bridge rectifier adds up to the switched current and, furthermore, there is little or no voltage available for demagnetization.

To cope with a saturated inductor, the L6563S is provided with a second comparator on the current sense pin (CS, pin 4) that stops the IC if the voltage, normally limited within 1.1 V, exceeds 1.7 V. After that, the IC will be attempted to restart by the internal starter circuitry; the starter repetition time is twice the nominal value to guarantee lower stress for the inductor and boost diode. Hence, the system safety will be considerably increased.

Figure 42. Effect of boost inductor saturation on the MOSFET current and detection method

6.7 Power management/housekeeping functionsA special feature of this IC is that it facilitates the implementation of the “housekeeping” circuitry needed to co-ordinate the operation of the PFC stage to that of the cascaded DC-DC converter. The functions realized by the housekeeping circuitry ensure that transient conditions like power-up or power down sequencing or failures of either power stage be properly handled.

This device provides some pins to do that. One communication line between the IC and the PWM controller of the cascaded dc-dc converter is the pin PWM_LATCH (Figure 44b), which is normally open (high impedance) when the PFC works properly, and goes high if it loses control of the output voltage (because of a feedback loop disconnection) with the aim of latching off the PWM controller of the cascaded dc-dc converter as well (see “Feedback failure protection” section for more details).

A second communication line can be established via the disable function included in the PFC_OK pin (see “Feedback failure protection” section for more details). Typically this line is used to allow the PWM controller of the cascaded dc-dc converter to drive in burst mode operation the L6563S in case of light load and to minimize the no-load input consumption. Interface circuits like those are shown in Figure 43.

Page 32: Enhanced transition-mode PFC controller · 2.1 Absolute maximum ratings 2.2 Thermal data Table 1. Absolute maximum ratings Symbol Pin Parameter Value Unit Vcc 14 IC supply voltage

Application information L6563S

32/43 Doc ID 16116 Rev 4

Figure 43. Interface circuits that let dc-dc converter's controller IC drive L6563S in burst mode

The third communication line is the pin PWM_STOP (#9), which works in conjunction with the pin RUN (#10). The purpose of the PWM_STOP pin is to inhibit the PWM activity of both the PFC stage and the cascaded dc-dc converter. The pin is an open collector, normally open, that goes low if the device is disabled by a voltage lower than 0.8 V on the RUN pin. The pin goes again open if the voltage on pin RUN exceeds 0.88V. It is important to point out that this function works correctly in systems where the PFC stage is the master and the cascaded dc-dc converter is the slave or, in other words, where the PFC stage starts first, powers both controllers and enables/disables the operation of the dc-dc stage. The pin RUN can be used to start and stop the main converter. In the simplest case, to enable/disable the PWM controller the pin PWM_STOP can be connected to the output of the error amplifier (Figure 44a).

Figure 44. Interface circuits that let the L6563S switch on or off a PWM controller

If the chip is provided with a soft-start pin, it is possible to delay the start-up of the dc-dc stage with respect to that of the PFC stage, which is often desired, as described in Figure 45. An underlying assumption in order for that to work properly is that the UVLO thresholds of the PWM controller are certainly higher than those of the L6563S.

Page 33: Enhanced transition-mode PFC controller · 2.1 Absolute maximum ratings 2.2 Thermal data Table 1. Absolute maximum ratings Symbol Pin Parameter Value Unit Vcc 14 IC supply voltage

L6563S Application information

Doc ID 16116 Rev 4 33/43

Figure 45. Interface circuits for power up sequencing when dc-dc has the SS function

If this is not the case or it is not possible to achieve a start-up delay long enough (because this prevents the dc-dc stage from starting up correctly) or, simply, the PWM controller is devoid of soft start, the arrangement of Figure 46 lets the dc-dc converter start-up when the voltage generated by the PFC stage reaches a preset value. The technique relies on the UVLO thresholds of the PWM controller.

Figure 46. Interface circuits for actual power-up sequencing (master PFC)

Another possible use of the RUN and PWM_STOP pins (again, in systems where the PFC stage is the master) is the brownout protection, thanks to the hysteresis provided.

The brownout protection is basically a not-latched device shutdown function that is activated when a condition of mains undervoltage is detected. This condition may cause overheating of the primary power section due to an excess of RMS current. Brownout can also cause the PFC pre-regulator to work open loop and this could be dangerous to the PFC stage itself and the downstream converter, should the input voltage return abruptly to its rated value. Another problem is the spurious restarts that may occur during converter power down and that cause the output voltage of the converter not to decay to zero monotonically. For these reasons it is usually preferable to shutdown the unit in case of brownout.

IC shutdown upon brownout can be easily realized as shown in Figure 47. The scheme on the left is of general use, that one on the right can be used if the bias levels of the multiplier and the RFF·CFF time constant are compatible with the specified brownout level and with the specified holdup time respectively. In this latest case, an additional resistor voltage divider and one capacitor are not needed.

Page 34: Enhanced transition-mode PFC controller · 2.1 Absolute maximum ratings 2.2 Thermal data Table 1. Absolute maximum ratings Symbol Pin Parameter Value Unit Vcc 14 IC supply voltage

Application information L6563S

34/43 Doc ID 16116 Rev 4

In table 1 it is possible to find a summary of all of the above mentioned working conditions that cause the device to stop operating.

Figure 47. Brownout protection (master PFC)

Table 5. Summary of L6563S idle states

ConditionCaused or revealed

beyIC

behaviorRestart

conditionTypical IC

consumption

PWM_LATCH

Status

PWM_STOP

Status

UVLO Vcc < VccOff Disabled Vcc > VccOn 90 µA Off High

Feedback disconnected

PFC_OK > VPFC_OK_SAND

INV < 1.66VLatched

Vcc < Vccrestartthen

Vcc > VccOn

180 µA High High

Standby PFC_OK < VPFC_OK_D

Stop switching

PFC_OK > VPFC_OK_E

1.5 mA Off High

AC brownout RUN < VDIS RUN > VEN 1.5 mA Off Low

OVP PFC_OK > VPFC_OK_SPFC_OK < VPFC_OK_R

2.2 mA Off High

Low consumption

COMP < 2.4VBurst mode

COMP > 2.4V 2.2 mA Off High

Saturated boost

inductorVcs > VCS_th

Doubled Tstart

Auto restart 2.2 mA Off High

Page 35: Enhanced transition-mode PFC controller · 2.1 Absolute maximum ratings 2.2 Thermal data Table 1. Absolute maximum ratings Symbol Pin Parameter Value Unit Vcc 14 IC supply voltage

L6563S Application examples and ideas

Doc ID 16116 Rev 4 35/43

7 Application examples and ideas

Figure 48. Demonstration board EVL6563S-100W, wide-range mains: electrical schematic

Page 36: Enhanced transition-mode PFC controller · 2.1 Absolute maximum ratings 2.2 Thermal data Table 1. Absolute maximum ratings Symbol Pin Parameter Value Unit Vcc 14 IC supply voltage

Application examples and ideas L6563S

36/43 Doc ID 16116 Rev 4

Figure 49. L6563S 100 W TM PFC demonstration board: compliance to EN61000-3-2 standard

Figure 50. L6563S 100 W TM PFC demonstration board: compliance to JEITA-MITI standard

 

0.0001

0.001

0.01

0.1

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Harmonic Order [n]

Har

mon

ic C

urre

nt [A

]

Meas ured value EN61000-3-2 class-D limits

0.0001

0.001

0.01

0.1

1

10

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Harmonic Order [n]

Harm

onic

Cur

rent

[A]

Measured value JEITA-MITI Class-D limits

Figure 51. L6563S 100 W TM PFC demonstration board: input current waveform @230-50 Hz - 100 W load

Figure 52. L6563S 100W TM PFC demonstration board: input current waveform @100 V-50 Hz - 100 W load

Page 37: Enhanced transition-mode PFC controller · 2.1 Absolute maximum ratings 2.2 Thermal data Table 1. Absolute maximum ratings Symbol Pin Parameter Value Unit Vcc 14 IC supply voltage

L6563S Application examples and ideas

Doc ID 16116 Rev 4 37/43

Figure 53. EVL6563S-250W TM PFC demonstration board: electrical schematic

Figure 54. EVL6563S-400W FOT PFC demonstration board: electrical schematic

90-264Vac

VCCGND

ON/OFF

PWM_STOPPWM_LATCH

+400Vout

+400Vdc

RTN

+400Vdc

RTN

NC

R82M2R82M2

D4LL4148

D4LL4148

C14220pFC14220pF

C10680NC10680NRX1

0R0RX10R0

C610NC610N

C41.5uF-520V

C41.5uF-520V

6XPJ 6XPJ

R5150KR5150K

R262M2R262M2

D5BZX55-C18

D5BZX55-C18

R166R8R166R8

F1FUSE 4AF1FUSE 4A

C21uF-X2C21uF-X2

R962KR962K

1XPJ 1XPJ

RX347RRX347R

D21N5406D21N5406

R71M0R71M0

R193R9R193R9

C132N2C132N2

C8

470N

C8

470N

01XPJ 01XPJ

R247RR247R

R32100RR32100R

D3STTH5L06

D3STTH5L06

R173R9R173R9

C112N2C112N2

5XPJ 5XPJ

R122M2R122M2

2XPJ 2XPJ

R281M0R281M0

R213M3R213M3

7XPJ 7XPJ

C121uFC121uF

R42M2R42M2

C768NC768N

R230R22R230R22

3XPJ 3XPJ

R2910RR2910R

D7LL4148D7LL4148

1

2

J1J1

R1NTC 1R0-S237

R1NTC 1R0-S237

12345

J2J2

3 1

5 78

L2180uHL2180uH

R253M3R253M3

R1551KR1551K

R186R8R186R8

R20220RR20220R

C152N2C152N2

C968uF-35VC968uF-35V

8XPJ 8XPJ

C1470N-X2

C1470N-X2

2

1

3

Q2

STF

12N

M50

NQ2

STF

12N

M50

N

R301K0R301K0

JP2WIRE JUMPERJP2WIRE JUMPER

HS1HEAT-SINKHS1HEAT-SINK

R13100KR13100K

R2756KR2756K

D6LL4148D6LL4148

R311K0R311K0

2

1

3

Q1STF12NM50NQ1STF12NM50N

Z1

PCB REV. 1

Z1

PCB REV. 1

R31M0R31M0

1 2

4 3

L1

LH30-792Y3R0-01

L1

LH30-792Y3R0-01

R14100KR14100K

4XPJ 4XPJ

R3351KR3351K

INV1

COMP2

MULT3

CS4

VFF5

TBO6

PFC-OK7 PWM-LATCH 8

PWM-STOP 9

RUN 10

ZCD 11

GND 12

GD 13

VCC 14

U1L6563SU1L6563S

RX4

0R0

RX4

0R0

+

_

~

~

D1D10XB60H

+

_

~

~

D1D10XB60H

C5100uF - 450V

C5100uF - 450V

R240R22R240R22

1

2

3

4

5

J3CON5J3CON5

R61M0R61M0

R11150KR11150K

R1027KR1027K

+400Vdc

+400Vdc

1-25-6

+400Vdc

RTN

118 +400Vdc

RTN

NC

90 - 265Vac +400Vout

D7LL4148D7LL4148

C7330uF-450V

C7330uF-450V

C11

470nF/50V

C11

470nF/50V

12345

J2J2

R13

15k

R13

15k

R1456kR1456k

R6

2M2

R6

2M2

R200R39-1WR200R39-1W

R34

10k

R34

10k

C1710nFC1710nF

C9RESC9RES

L3DM-51uH-6AL3DM-51uH-6A

R19

1K0

R19

1K0

R363R9R363R9

R102

0R0

R102

0R0

C4

470nF-630V

C4

470nF-630V

C1018NC1018N

C12

68uF/50V

C12

68uF/50V

D3

STTH8R06

D3

STTH8R06

R4150KR4150K

C3

680nF-X2

C3

680nF-X2

D5BZX85-C15D5BZX85-C15

R186R8R186R8

L4PQ40-500uHL4PQ40-500uH

R547RR547R

R27

1M0

R27

1M0

C15100pFC15100pF

R30RESR30RES

R32

620k

R32

620k

L2RESL2RES

R1615KR1615K

F1

8A/250V

F1

8A/250V

R311k5R311k5

C1014N7C1014N7

C6

470nF-630V

C6

470nF-630V

1 2

JP102JUMPERJP102JUMPER

R230R39-1WR230R39-1W

INV1

COMP2

MULT3

CS4

VFF5

TBO6

PFC-OK7 PWM-LATCH 8

PWM-STOP 9

RUN 10

ZCD 11

GND 12

GD 13

VCC 14

U1L6563SU1L6563S

Q3BC857CQ3BC857C

Q1STP12NM50FPQ1STP12NM50FP

C13100nFC13100nF

C16220pFC16220pF1

23

J3

RES

J3

RES

R9

680k

R9

680k

D8LL4148D8LL4148

C20

330pF

C20

330pF

1

2

J1J1

R3150KR3150K

R210R39-1WR21

0R39-1W

R1010R0R1010R0

C8RESC8RES

R1

1M5

R1

1M5

R11

680k

R11

680k

C1

470nF-X2

C1

470nF-X2

C19

2nF2

C19

2nF2

D4LL4148D4LL4148

R220R39-1WR22

0R39-1W

R7

2M2

R7

2M2

C5

470nF-630V

C5

470nF-630V

R8

2M2

R8

2M2

Q2STP12NM50FPQ2STP12NM50FP

C21

10nF

C21

10nF

R2436KR2436K

C18

1uF

C18

1uF

L1

CM-1.5mH-5A

L1

CM-1.5mH-5A

D1

1N5406

D1

1N5406

R10

680k

R10

680k

R33

620k

R33

620k

R29RESR29RES

R153K3R153K3

R28RESR28RES

R12

82K

R12

82K

C2

470nF-X2

C2

470nF-X2

1 2

JP101JUMPERJP101JUMPER

R2

NTC 2R5-S237

R2

NTC 2R5-S237

D6LL4148D6LL4148

R176R8R176R8

+

-

~

~

D2D15XB60

+

-

~

~

D2D15XB60

C141uFC141uF

R26

56k

R26

56k

R353R9R353R9

Page 38: Enhanced transition-mode PFC controller · 2.1 Absolute maximum ratings 2.2 Thermal data Table 1. Absolute maximum ratings Symbol Pin Parameter Value Unit Vcc 14 IC supply voltage

Application examples and ideas L6563S

38/43 Doc ID 16116 Rev 4

Figure 55. EVL6563S-ZRC200W 200W PFC pre-regulator with ripple-free input current: electrical schematic

90-2

64Va

c

812 3

1 1410

F1 HT

6.3A

250

VF1 H

T 6.

3A 2

50V

R23

1M0

R23

1M0

C10

470n

C10

470n

R21

1M8

R21

1M8

C12

22n

C12

22n

R7

120k

R7

120k

+

_

~

~

BD

1D

15XB

60

+

_

~

~

BD

1D

15XB

60

R14

10k

R14

10k

CY

12n

2C

Y1

2n2

Q1

STF1

2NM

50N

Q1

STF1

2NM

50N

R8

33R

R8

33R

HS

2H

S2

R9

56k

R9

56k

D4

LL41

48D

4LL

4148

C4

10n

C4

10n

R18

15k

R18

15k

ZD1

20V

ZD1

20V R

10R

27R

10R

27

D2

STTH

5L06

D2

STTH

5L06

RT1

2R5

10A

RT1

2R5

10A

R17

390k

R17

390k

R6

120k

R6

120k

1 2 3

CN

1M

KDS

1,5/

3-5.

08C

N1

MKD

S 1,

5/3-

5.08

R19

2M2

R19

2M2

C2

1uF5

-630

VC

21u

F5-6

30V

C6

100n

C6

100n

R16

1M0

R16

1M0

R15

1M0

R15

1M0

RX

11M

8R

X1

1M8

L2 260u

H Z

RC

-IND

L2 260u

H Z

RC

-IND

C7

3n3

C7

3n3

R22

36k

R22

36k

R4

1M0

R4

1M0

1 2CN

2

MKD

S 1,

5/2-

5.08

CN

2

MKD

S 1,

5/2-

5.08

C13

2n2

C13

2n2

D1

1N54

06D

11N

5406

C9

47n

C9

47n

D3

LL41

48D

3LL

4148

C1

220n

F-63

0VC

122

0nF-

630V

C11

330p

FC

1133

0pF

R12

220R

R12

220R

R3

1M0

R3

1M0

R2

0R22

R2

0R22

R10

56k

R10

56k

L1 15m

HL1 15

mH

C3

150u

F-45

0VC

315

0uF-

450V

R11

100k

R11

100k

R20

2M2

R20

2M2

CX2330nF

CX2330nF

CX

1

330n

F

CX

1

330n

F

C8

1uFC8

1uFC

Y2

2n2

CY

22n

2

R13

10R

R13

10R

HS

1H

S1

R5

16k

R5

16k

INV

1

CO

MP

2

MU

LT3

CS

4

VFF

5

TBO

6

PFC

-OK

7PW

M-L

ATC

H8

PWM

-STO

P9

RU

N10

ZCD

11

GN

D12

GD

13

VCC

14

U1

L656

3SU

1L6

563S

C5

47uF

-25V

C5

47uF

-25V

R24

120k

R24

120k

RX

21M

8R

X2

1M8

Page 39: Enhanced transition-mode PFC controller · 2.1 Absolute maximum ratings 2.2 Thermal data Table 1. Absolute maximum ratings Symbol Pin Parameter Value Unit Vcc 14 IC supply voltage

L6563S Package mechanical data

Doc ID 16116 Rev 4 39/43

8 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

Table 6. SO14 mechanical data

Dim.mm.

Min Typ Max

A 1.350 1.750

A1 0.100 0.250

A2 1.100 1.650

B 0.330 0.510

C 0.190 0.250

D 8.550 8.750

E 3.800 4.000

e 1.270

H 5.800 6.200

h 0.250 0.500

L 0.400 1.270

k 0d 8d

ddd 0.100

Page 40: Enhanced transition-mode PFC controller · 2.1 Absolute maximum ratings 2.2 Thermal data Table 1. Absolute maximum ratings Symbol Pin Parameter Value Unit Vcc 14 IC supply voltage

Package mechanical data L6563S

40/43 Doc ID 16116 Rev 4

Figure 56. Package dimensions

Page 41: Enhanced transition-mode PFC controller · 2.1 Absolute maximum ratings 2.2 Thermal data Table 1. Absolute maximum ratings Symbol Pin Parameter Value Unit Vcc 14 IC supply voltage

L6563S Ordering codes

Doc ID 16116 Rev 4 41/43

9 Ordering codes

Table 7. Ordering information

Order codes Package Packing

L6563SSO14

Tube

L6563STR Tape and reel

Page 42: Enhanced transition-mode PFC controller · 2.1 Absolute maximum ratings 2.2 Thermal data Table 1. Absolute maximum ratings Symbol Pin Parameter Value Unit Vcc 14 IC supply voltage

Revision history L6563S

42/43 Doc ID 16116 Rev 4

10 Revision history

Table 8. Document revision history

Date Revision Changes

12-Aug-2009 1 Initial release.

03-Sep-2009 2 Updated mechanical data.

29-Jan-2010 3 Updated Table 4 on page 11.

21-Dec-2010 4Updated Figure 1 on page 1, Figure 24 on page 20, Table 3 on page 8, Table 4 on page 11, Table 5 on page 34 and Section 6.2 on page 24.

Page 43: Enhanced transition-mode PFC controller · 2.1 Absolute maximum ratings 2.2 Thermal data Table 1. Absolute maximum ratings Symbol Pin Parameter Value Unit Vcc 14 IC supply voltage

L6563S

Doc ID 16116 Rev 4 43/43

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve theright to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at anytime, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes noliability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of thisdocument refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party productsor services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of suchthird party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIEDWARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIEDWARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWSOF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOTRECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAININGAPPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVEGRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately voidany warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, anyliability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2010 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com