engeeniring math1 note

24
제2장 2계 및 고계 선형미분방정식 - 36 - 2.9 미정계수에 의한 해 미정계수법(method of undetermined coefficients) 상계수와 특별한 우변 , 즉 지수함수, 다항식, 사인, 코사인, 또는 이들 함수의 곱과 합을 갖는 방정식에 적용 () x r (1) () x r by y a y = + + 미정계수법을 위한 법칙 (A) 기본법칙(basic rule) 만약 식 (1 )에서 가 표 2.1의 첫번째 열에 있는 함수들 중의 하 나라면, 두번째 열에 있는 대응하는 함수 를 선택하고, 와 그 도함수들을 식 (1)에 대입함으로써 미정계수를 결정한다. () x r p y p y (B) 변형법칙(modification rule) 만약 로 선택된 항이 식 (1)에 대응하는 제차방정식의 해가 된다 면, 선택된 p y p y x (또는 만약 이 해가 제차방정식의 특성방정식의 이중근에 해당한다면 )를 곱한다. 2 x (C) 합법칙(sum rule) 만약 가 표 2.1의 첫번째 열의 여러 개의 줄에 있는 함수들의 합이라면, 두번째 열의 대응하는 줄에 있는 함수들의 합으로 선택한다. () x r p y 표 2.1 미정계수법 () x r 의 항 에 대한 선택 p y x x Ce ke γ γ kx ( ) 0 1 1 1 , 1 , 0 K x K x K x K n n n n n n + + + + = x M x K x k x k ω ω ω ω sin cos sin cos + ( ) x M x K e x ke x ke x x x ω ω ω ω α α α sin cos sin cos +

Post on 13-Sep-2015

234 views

Category:

Documents


10 download

DESCRIPTION

engeeniring Math1 Note

TRANSCRIPT

  • 2 2 - 36 -

    2.9 (method of undetermined coefficients) , , , , ,

    ( )xr

    (1) ( )xrbyyay =++ (A) (basic rule) (1) 2.1 , , (1) .

    ( )xrpy py

    (B) (modification rule) (1) ,

    py

    py x ( ) . 2x

    (C) (sum rule) 2.1 , .

    ( )xrpy

    2.1

    ( )xr py xx Ceke

    kx ( ) 0111,1,0 KxKxKxKn nnnnn ++++= "" xMxK

    xkxk

    sincos

    sincos

    +

    ( )xMxKexkexke x

    x

    x

    sincossincos

    +

  • 2 2 - 37 -

    1 (A) 284 xyy =+ i2404 22 ===+ xBxAyh 2sin2cos +=

    0122 KxKxKyp ++= 122 KxKyp +=

    22Kyp =

    ( ) 201222 8424 xKxKxKKyy pp =+++=+ 4 042048 0212 =+== KKKK 102 012 === KKK

    122sin2cos 2 ++=+= xxBxAyyy ph

    2 (B) xeyyy =+ 23 ( )( ) 2,1021232 ===+ xxh ececy 221 +=

    xp Cxey = xxp CxeCey += xxx

    p CxeCeCey ++=

    ( ) xxxxxxppp eCxeCxeCeCxeCeyyy =+++=+ 23223 1=C

    xxxph xeececyyy +=+= 221

    3 (B) ( ) ( ) 10,10,2 ===++ yyeyyy x ( ) 10112 22 ==+=++

    ( ) xh exccy += 21

    xp eCxy = 2 xxp eCxCxey = 22

    xxxxp eCxCxeCxeCey += 2222

    ( ) xxxxxxxppp eeCxeCxCxeeCxCxeCeyyy =+++=++ 222 22422

  • 2 2

    - 38 -

    2112 == CC

    ( ) xxph exexccyyy ++=+= 221 21 ( ) 10 1 == cy

    ( ) xxxx exxeexccecy ++= 2212 21

    ( ) 010 212 === cccy xxx exexey

    =+= 121

    21 22

    4 (C) ( ) ( ) 1.600,2.00,4sin554cos4025.152 5.0 ==+=++ yyxxeyyy x ( ) ii 212104152 22 ==+=++=++ ( )xBxAey xh 2sin2cos += xMxKCey xp 4sin4cos5.0 ++= xMxKCey xp 4cos44sin45.0 5.0 +=

    xMxKCey xp 4sin164cos1625.0 5.0 =

    ( ) ( )

    xxexKMxKMCexMxKCexKxMCe

    xMxKCeyyy

    x

    x

    x

    x

    xppp

    4sin554cos4025.14sin8114cos11825.64sin54cos554sin84cos8

    4sin164cos1625.052

    5.0

    5.0

    5.0

    5.0

    5.0

    +=

    ++=

    +++

    ++

    =++

    2.025.125.6 == CC 40118 = KM 0=K 55811 = KM 5=M

    ( ) xexBxAeyyy xxph 4sin52.02sin2cos 5.0 +++=+=

    ( ) 02.02.00 ==+= AAyxexBey xx 4sin52.02sin 5.0 ++=

    xBexBey xx 02cos22sin ++= xe x 4cos201. 5.0 +( ) 201.60201.020 ==++= BBy

    xexey xx 4sin52.02sin20 5.0 ++=

  • 2 2

    - 39 -

    2.11 : , - (1) m 0=++ kyycy ( )trkyycym =++ , : (input), (driving force) ( )tr : (output), (response) ( )ty (2) tFkyycym cos0=++ ( )0,00 >> F (3) ( ) tbtatyp sincos += ( ) tbtatyp cossin +=

    ( ) tbtatyp sincos 22 = (2)

    ( ){ } ( ){ } tFtbmkcatcbamktkbtkatactbc

    tbmtamkycymy ppp

    cossincossincossincos

    sincos

    022

    22

    =+++=

    ++

    +

    =++

    (4) ( ) ( ) 020

    2

    =+

    =+

    bmkcaFcbamk

    Cramer rule

    ( )( ) 2222

    20

    2

    2

    20

    0cmk

    mkF

    mkccmk

    mkcF

    a

    +

    =

    =

  • 2 2

    - 40 -

    ( ) 222202

    2

    02

    0

    cmkcF

    mkccmk

    cFmk

    b

    +=

    =

    2.5 ( )00 >=mk

    (5) ( )( ) 222220222

    00

    cm

    mFa

    +

    = , ( ) 22222020

    cm

    cFb

    +=

    (2) (6) ( ) ( ) ( )tytyty ph += 1. . 0=c

    mk=2 02

    (3) (5)

    (7) ( ) ( ) tk

    Ft

    mkm

    Ftm

    Ftyp

    cos

    1

    cos

    1

    cos2

    0

    02

    0

    022

    0

    0

    =

    =

    =

    2.5 (4*) (p.88) (8) ( ) ( ) ( ) tm FtCty coscos 220 00 +=

    (natural frequency)

    20

    2

  • 2 2

    - 41 -

    (7) py

    (9) kFa 00 = 2

    0

    1

    1

    =

    (resonance) 0 =

    (resonance factor) 57 , (2)

    tmFy

    mky 00 cos=+

    (10) tmFyy 00

    20 cos =+

    tBtAyh 00 sincos +=

    ( )tbtatyp 00 sincos +=

    ( )tbtattbtayp 000000 cossinsincos +++=

    ( )tbtattbtatbtayp

    02

    002

    0

    00000000

    sincos

    cossincossin

    +

    ++=

    ( )( )

    tmFtbta

    tbtat

    tbtattbtayy pp

    00

    0000

    02

    002

    0

    02

    002

    000002

    0

    coscos2sin2

    sincos

    sincoscos2sin2

    =+=

    ++

    ++=+

    0

    0

    2,0

    mFba ==

    (11) ttmFyp 0

    0

    0 sin2

    = 58

  • 2 2

    - 42 -

    0

    ) ( ) ( ) 00,00 == yy ( ) ( ) tm FtBtAty cossincos 220 000 ++= ( ) ( ) ( )220 0220 0 00 ==+= m

    FAm

    FAy

    ( ) ( ) tm FtBtAty sincossin 220 00000 += ( ) 000 0 === BBy

    (12) ( ) ( )( ) ( 00220 0 coscos = ttmFty )

    BABABABABABA

    sinsincoscos)cos(sinsincoscos)cos(

    =+

    +=

    BABABA sinsin2)cos()cos( =+

    22abBbaAbBA

    aBA

    =

    +==+

    =

    2sin

    2sin2coscos abbaba +=

    ( ) ( )

    +

    = ttm

    Fty2

    sin2

    sin2 00220

    0

    59

  • 2 2

    - 43 -

    2.

    0>c

    ( ) ( ) ( )tth ececty + += 21 024

    02

    2

    >

    =>=mmkc

    mc

    t ( ) ( )h etccty += 21 ( ) ( )tBtAety th ** sincos += ( )042

    42

    22* >=

    =

    mc

    mk

    mcmk

    ph yyy += (transient solution)

    py (steady-state solution)

    ( )

    py

    (3) (13) ( ) ( ) = tCtyp cos*

    ( ) ( )( ) ( )( )( ){ } ( ) ( ) 2222202 02222202

    20

    222222

    02

    2220

    2220

    220

    2

    222220

    2

    0

    2

    222220

    2

    220022*

    cm

    F

    cm

    F

    cm

    cFmF

    cm

    cF

    cm

    mFbaC

    +=

    +=

    +

    +=

    ++

    +

    =+=

    ( )220tan

    ==

    mc

    ab

    ( ) 0* =

    ddC , ,

    0)(2 22202

    =+ cm

    2

    2

    2

    2

    2

    22

    02

    22

    22

    2 mcmk

    mcmk

    mc

    =

    == (14) (16)

    1,1 == km , () 60

  • 5 - 44 -

    5 Laplace (3) 1 : () 2 : 3 : sine cosine

    5.1 Laplace, , ,

    ( )f t : t 0 ( ) ( )F s e f t dtst= 0 ( )F s : Laplace(Laplace transform) ( )f t ( )f (1) ( ) =sF ( ) ( ) = 0 dttfef st Laplace(Laplace transformation) ( )f t ( )F s (inverse transform) , ( )f t ( )F s ( )1 F =( )f t ( )1 F

  • 5 - 47 -

    Laplace 5.1

    5.1 , .

    5.1 Laplace ( )f t ( )f ( )f t ( )f ( )f t ( )f

    ( )( )

    ( )( )( ) 22

    221

    221

    2232

    222

    22

    sin1216

    cos111positive

    5

    sinh10!,2,1,0

    4

    cosh9!23

    sin812

    cos7111

    +

    +

    +=

    +

    +

    +

    +

    ast

    ase

    asast

    sa

    at

    asaat

    sn

    nt

    assat

    st

    st

    st

    sst

    s

    at

    a

    a

    n

    n

    5.9 .

    (1), (2), (3) (4) . (4) . 1 0 . n = 0 1! = . n

    ( ) ( )t e t dt s e t s n e t dt n s e t dtn st n st n st n st+ +

    +

    = =

    + =

    + 1 10 10

    0 0

    1 1 1 1 n ( ) ( )t n s ns

    ns

    nn n

    +

    + +=

    +=

    +11 2

    1 1! !

    (4) (5) ( ) n + =1 n! (, n ) .

  • 5 - 57 -

    5.3 Unit Step, Delta Functions

    : sL ( s) -

    3 : Y(s) Y(s) y(t)

    - (Heaviside ) u ( t-a) - ( 110, 111)

    u ( t-a)= { 0 t

  • 5 - 58 -

    f ( t-a)u( t-a)=L-1{e-asF(s)} (3*)

    e-asF(s)= e-as

    0e - s f ()d=

    0e - s (+ a)f ()d

    +a= t = t-a, d=dt, =0 t=a

    e-asF(s)=

    ae- stf ( t-a)dt=

    0e- stf ( t-a)u( t-a)dt

    ( )

    L{u ( t-a)}=

    0e- stu ( t-a)dt

    =a

    0e- st0dt+

    ae- st1dt=- 1s e

    - st |

    a= e

    -as

    s (s> 0)

    a = 0 ,

    L{u ( t)}= 1s

    ( u(t-a) = 1u(t-a), y(t)=1 )

    1. 1 ,

    f ( t)= { 2 (0< t< )0 (< t< 2)sin t ( t> 2) , F(s)=?f ( t) =2u ( t)-2u ( t-)+u ( t-2)sin t

    =2u ( t)-2u ( t-)+u ( t-2)sin ( t-2)

    F(s)= 2s -2e - s

    s +e -2s

    s 2+1

  • 5 - 59 -

    2. 1 ,

    F(s)= 2s 2

    - 2e-2s

    s 2- 4e

    -2s

    s +se -s

    s 2+1

    L-1( 1s 2

    )= t, L-1( e-2s

    s 2)=( t-2)u ( t-2)

    L-1( e-2s

    s )=u ( t-2), L-1(e-s s

    s 2+1)= cos ( t-)u ( t-)

    f ( t) =2t-2( t-2) u ( t-2)-4 u ( t-2)+ cos ( t-) u ( t-)=2t-2t u ( t-2)- cos t u ( t-)

    f ( t)= { 2t (0< t< t)0 (2< t< )- cos t ( t> ) , Dirac

    - ( ) * * * hard landing*

    - f(t) a ta+k (impulse) * a ta+k f(t) * : k ( zero)

    (5) f k ( t-a)= { 1/k ata+k0 otherwise ( 117), I k

    (6) I k=

    0f k(t-a)dt=

    a+ k

    a

    1k dt=1

  • 5 - 60 -

    - f k(t-a)

    f k ( t-a)=1k [u( t-a)-u( t-a-k)]

    - f k(t-a)

    L{f k ( t-a)}=1ks [e

    -as-e -(a+k) s]= e-as 1-e- ks

    ks

    - Dirac Delta

    ( t-a)= limk0

    f k(t-a)= { t=a0 ta ,

    0( t-a)dt=1

    - Dirac Delta

    L{( t-a)}= limk0

    e-as 1-e- ks

    ks = e-as ( )

    L{( t)}=1

    4 - y''+3y'+2y= r( t), y(0)=0, y'(0)=0, r( t)=( t-1),

    s 2Y+3sY+2Y= e- s, Y=F(s)e- s

    F(s)= 1(s+2)(s+1) =1

    s+1 -1

    s+2

    f ( t)=L-1(F(s))= e- t-e-2t

    y( t)=L-1(F(s) e- s )= f ( t-1)u ( t-1)

    y ( t)={ 0 (0t< 1)e-( t-1)-e-2( t-1) ( t> 1)

  • 5 - 61 -

    5.4 Differentation and Integration( )

    F(s)

    F(s)=L(f)=

    0e- stf ( t) dt

    F(s) s

    F'(s)= dFds =-

    0e- stt f ( t) dt

    L{ t f ( t) }=-F '(s) or L-1{F '(s)}= t f ( t)

    1

    L{ f ( t)t }=

    sF( s)ds, L-1{

    sF( s)ds }= f ( t)t

    ()

    sF( s)ds=

    s [

    0e - s

    tf ( t)dt ] ds

    =

    0 [

    sf ( t) e - s

    td s ] dt=

    0f ( t) [

    se - s

    td s ] dt

    se - s

    td s=- 1t [e- s t]s = 1t e

    - s t

    sF( s)ds=

    0e - st f ( t)t dt

  • 5 - 62 -

    Ex 2. F(s)= ln (1+ 2

    s 2 ), f ( t)=?,

    G(s) =F'( s)= 11+2/s 2

    (-2) 2

    s 3=- 2

    2

    s(s 2+2)=- 2s +

    2ss 2+2

    g( t)=L-1{G(s)}=-2+2cost

    g( t)=L-1{G(s)}=L-1{F '(s)}=- tf ( t)

    f ( t)= 2t (1- cost)

    (7) L(t y ')=- dds [sY(s)-y(0)]=-Y(s) - sdY(s)ds

    (8) L(t y '')=- dds [ s2Y(s)- sy(0)-y'(0)]=-2sY(s) - s 2 dY(s)ds +y(0)

    5.5 (Convolution)

    L-1{F(s)}= f( t), L-1{G(s)}=g( t) , H(s)=F(s) G(s) f( t) g( t) , h( t)= (f*g)( t) , f g (convolution) .

    - ( convolution )h( t)= (f*g)( t) = f( t)*g( t)

    = t

    0f(t-)g()d =

    t

    0f()g( t-)d

  • 5 - 63 -

    1. H(s)= 1(s 2+1)2

    h( t)=?,

    H( s)= 1(s 2+1)2

    = 1s 2+1

    1s 2+1

    =F( s)G(s),

    f ( t)=g( t)= sin t

    h( t)= f ( t)*g( t)=t

    0sin ()sin ( t-)d

    sin ()sin ( t-)= 12 [- cos t+ cos (2- t)],

    h( t)= 12

    t

    0[- cos t+ cos (2- t)]d=- 12 tcos t+

    12 sin t

    2. H(s)= 1s 3

    h( t)=?

    H(s)= 1s 1s 2

    =F(s)G(s)

    f( t)=1, g( t)= t ,

    h( t)= f ( t)*g( t)=t

    01( t-)d= [ t- 12 2] t0 = t

    2

    2

    3. H(s)= 1s 2(s-a )

    h( t)=?,

    H(s)== 1s 2

    1s-a =F(s)G(s)

    , f ( t)= t, g( t)= eat

    h( t)= f ( t)*g( t)=t

    0e a( t-)d= eat

    t

    0e -ad= 1

    a 2(eat-at-1)

    - ( t)

    t

    0( t-) f()d = f( t) *f= f* = f

    , 1*f f ( t) ( (0)=),

  • 5 - 64 -

    (2) y''+ay'+by= r( t)

    , (s 2+as+b)Y( s)= (s+a)y(0)+y'(0)+R( s) (3) Y(s)= [ (s+a)y(0)+y'(0)]Q(s)+R(s)Q (s), Q( s)= 1

    s 2+as+b

    y(0) = y'(0) = 0 , Y(s)=R( s)Q(s)

    y( t) ,

    (4) y( t) = r(t)*q( t) = t

    0r() q( t-) d =

    t

    0q() r ( t-) d

    4. 5.3 4

    y''+3y'+2y= r( t), y(0)=0, y'(0)=0

    r( t)=

    0, 0< t< 11, 1< t< 20, 2< t

    ,

    Q( s) = 1s 2+3s+2

    = 1(s+1)(s+2) = 1

    s+1 -1

    s+2

    q( t)=e- t-e-2t

    t < 1 , r( t) = 0 y( t) = r(t)*q( t) = 0*q( t) = 0

    1 < t < 2 , r( t) = 1

    y( t) = r(t)*q( t) = t

    0r() q( t-) d =

    1

    0r() q ( t-) d +

    t

    1r() q ( t-) d

  • 5 - 65 -

    = 0 + t

    11 q ( t-) d

    = t

    1(e-( t-)-e-2( t-)) d

    = [e-( t-)- 12 e-2( t-)]= t

    =1

    = ( (1- 12 ) - (e-( t-1) - 12 e-2( t-1))= 12 - e

    -( t-1) + 12 e-2( t-1)

    2 < t ,

    y( t) = r(t)*q( t) = t

    0r() q( t-) d

    = 1

    0r() q ( t-) d +

    2

    1r() q ( t-) d+

    t

    2r() q ( t-) d

    = 0 + 2

    11 q ( t-) d + 0

    = 2

    1(e-( t-)-e-2( t-)) d

    = [e-( t-)- 12 e-2( t-)]= 2

    =1

    = ( (e-( t-2) - 12 e-2( t-2)) - (e-( t-1) - 12 e-2( t-1)))= e-( t-2) - e-( t-1) - 12 [e

    -2( t-2)) - e-2( t-1))]

    5.

    y( t) = t+t

    0y() sin ( t-)d

    1 : y( t)= t+y * sin t 2 :

    Y(s) = 1s 2

    +Y(s) 1s 2+1

    Y(s)= s2+1s 4

    = 1s 2

    + 1s 4

    3 :

    y(t) = t+ 16 t3

  • 5 - 66 -

    5.6 (Partial Fraction),

    -

    Y(s)= F(s)G(s)

    G(s)

    Case I. : G(s)= s-a ( )

    Ex 1. y''+y'-6y=1, y(0)=0, y'(0)=1

    s 2Y-sy(0)-y'(0)+sY-y(0)-6Y= 1s

    (s 2+s-6)Y=1+ 1s

    Y( s)= s+1s( s-2)( s+3) =A 1s +

    A 2s-2 +

    A 3s+3

    A 1, A 2, A 3=?

    s+1=A 1( s-2)(s+3)+A 2s(s+3)+A 3s(s-2)

    s=0 1=A 1(-2)(3), A 1=-1/6

    s=2 3=A 225, A 2=3/10

    s=-3 -2=A 3(-3) (-5), A3=-2/15

    y(t) =- 16 +310 e

    2t- 215 e-3t

    Case II. : G(s) = (s-a)m ( )

    e.g.) G( s)= ( s-a) 3 A 1(s-a) + A 2

    (s-a) 2 +

    A 3(s-a) 3

  • 5 - 67 -

    Ex 2. y''-3y'+2y=4t, y(0)=1, y'(0)=-1

    s 2Y-sy(0)-y'(0)-3sY+3y(0)+2Y= 4s 2

    (s 2-3 s+2)Y= 4s 2

    +s-4= 4-s3-4s 2

    s 2

    Y= 4+ s3-4s 2

    s 2(s-1) ( s-2)=

    A 1s 2

    +A 2s +

    A 3s-1 +

    A 4s-2

    A 1, A 2, A 3, A 4=?

    4+ s 3-4s 2=A 1(s-1) ( s-2)+A 2s( s-1) ( s-2)+A 3s 2(s-2)+A 4s 2(s-1)

    s=1 1=+A 3(1) (-1), A 3=-1

    s=2 -4=+A 441, A 4=-1

    s=0 4=A 1(-1) (-2), A 1=2

    3s 2-8s=A 1(2s-3)+A 2(s-1) ( s-2)+ s(k( s))

    s=0 0=A 1(-3)+A 2(-1) (-2)=-6+2A 2, A 2=3

    y(t) =2t+3-e 2t-e t

    Case III. : G(s)= ( s-a)(a- a) () ( a=+ i, a=- i )

    e.g.) As+B(s-a) (s- a)

    or As+B(s-)2+2

  • 5 - 68 -

    Ex 3. y''+2y'+2y= r( t), y(0)=1, y'(0)=-5 , r( t)=10 sin 2t [1-u( t-)] = 10 sin 2t -10 u( t-)sin 2( t-)

    ,

    [s 2Y(s)-sy(0)-y'(0)]+2[Y( s)-y(0)]+2Y (s)=10 2s 2+4

    (1-e-s )

    (s 2+2s+2)Y(s) = sy(0)+y'(0)+2y(0)+10 2s 2+4

    (1-e-s )

    = s-5+2+10 2s 2+4

    (1-e-s)

    = s-3+ 20s 2+4

    - 20e-s

    s 2+4

    Y( s) = s-3s 2+2s+2

    + 20( s 2+4)( s 2+2s+2)

    - 20e-s

    (s 2+4)( s 2+2s+2)

    L-1{ s-3s 2+2s+2 }=L-1{ (s+1)-4(s+1)2+1 } =L-1{ ss+1 } s s+1- 4L-1{ 1s+1 } s s+1

    =e- t cost - 4e- tsint

    L-1{ 20(s 2+4)(s 2+2s+2) }= As+Bs 2+4 + Cs+Ds 2+2s+2

    (As+B)(s 2+2s+2) = (Cs+D)( s 2+4)

    s 3, s 2, s 1, s 0 A=-2, B=-2, C=2, D=6

    L-1{ 20(s 2+4)(s 2+2s+2) } =L-1{ -2s-2s 2+4 + 2s+6s 2+2s+2 }

    =-2L-1{ ss 2+4 }-L-1{ 2s 2+4 }+L-1{ 2(s+1)+4(s+1)2+1 }

    =-2 cos2t- sin2t+L-1{2 ss 2+1 +4 1s 2+1 } s s+1=-2 cos2t-sin2t+e- t(2cos t+4sin t)

  • 5 - 69 -

    -L-1{ 20e-s

    (s 2+4)(s 2+2s+2) } = -[-2 cos2( t-)- sin2( t-) +e-( t-) (2cos ( t-)+4sin ( t-)) ] u( t-)

    = -[-2 cos2t- sin2t+e-( t-)(-2 cos t-4 sin t)]

    = [2cos2t + sin2t + e-( t-)(2 cos t+4 sin t)] u( t-)

    y( t) = + + = [e- t cost - 4e- tsint]+[-2 cos2t- sin2t+e- t (2cos t+4sin t)]

    +[2cos2t + sin2t + e-( t-)(2 cos t+4 sin t)] u( t-)

    = -2 cos2t - sin2t + 3e- tcost

    + [2cos2t + sin2t + e-( t-)(2 cos t+4 sin t)] u( t-)

    ,

    y( t)= { -2 cos2t - sin2t + 3e- tcost , 0< t<

    e- t [ (3+2e )cos t+4e sint] , < t

    Case IV. : G(s) = [ (s-a)(a- a)] 2 ()

    e.g.) As+B[ (s-a) (s- a)] 2

    + As+B(s-a) (s- a)

    Ex 3. y''+w 0y = Ksinw 0t, y(0)=0, y'(0)=0

    s 2Y(s) + w20Y(s) =Kw 0

    s 2+w20

    Y( s) = Kw 0(s 2+w20)

    2 = Kw 0

    w 0s 2+w20

    w 0

    s 2+w20 = Kw 0

    F( s)G( s)

  • 5 - 70 -

    f( t)= sinw 0t , g( t)= sinw 0t,

    y( t)= Kw 0f( t) * g( t) = Kw 0

    t

    0sinw 0 sinw 0(t-) d

    = Kw 0t

    0

    12 [ cos {w 0-w 0 (t-)}- cos {w 0+w 0 (t-)}]d

    = K2w 0 [t

    0cos (2w 0 -w 0t) d-

    t

    0cosw 0t d]

    = K2w 0 [ 12w 0 ( sinw 0t+ sinw 0t ) - t cosw 0t ]= K

    2w20( sinw 0t - w 0t cosw 0t)