energy storage technology - utkweb.eecs.utk.edu/~kaisun/backup/ece421-521_fall2013... · energy...

29
Energy Storage Technology ECE 421/521 – November 4, 2013 Group 2: Logan Cook, Chris Crowder, Nan Duan, Steven Dutton, Stephen Estep, Edward Jones, Siqi Wang

Upload: nguyencong

Post on 21-Feb-2018

214 views

Category:

Documents


1 download

TRANSCRIPT

Energy Storage Technology ECE 421/521 – November 4, 2013

Group 2: Logan Cook, Chris Crowder, Nan Duan, Steven Dutton,

Stephen Estep, Edward Jones, Siqi Wang

Introduction Energy storage is necessary for portable devices and

transportation. Grid storage is an increasingly necessary solution to problems

with reliability and variable resources. CALISO 33% integration tipping point Most common types of electric energy storage:

Batteries (lead acid, lithium, redox flow) Hydrogen Pumped hydro Compressed air Flywheels SMES Supercapacitors

2 [1] www.deeyaenergy.com [2] www.renewableenergyworld.com [3] www.maxwell.com

Batteries History & basic theory The term “battery” was first used by

Benjamin Franklin in the 1740’s to describe a set glass jar capacitors that would gather an electric charge via a static generator and store the charge until discharge. [1]

The first battery, the electric pile or voltaic pile, was created by Alessandro Volta in the 1790’s and consisted of a brine soaked cloth sandwiched between two metal discs. [2]

3 [1] http://www.benfranklin300.org/frankliniana/result.php?id=72&sec=0 [2] http://americanhistory.si.edu/powering/past/prehist.htm

Batteries Advantages & disadvantages Advantages: Can be combined or scaled to provide the needed

voltage and current for a specific application. Battery systems can provide longer runtimes than other

technologies, such as flywheels or ultracapacitors. [1] Multitude of design options available to suit a given

purpose. Disadvantages: Can be costly, bulky, and toxic to the environment. Limited charge/discharge cycles. Can have long recharge time.

4 [1] http://www.apcmedia.com/salestools/DBOY-77FNCT/DBOY-77FNCT_R2_EN.pdf

Batteries Research challenges & focus Develop electric vehicle batteries with energy densities

levels equal to or better than that of fossil fuels. Develop more environmentally friendly batteries

utilizing organic compounds. Develop batteries that

can withstand a larger number of charge/ discharge cycles and have shorter recharge times.

6 [1] http://www.anl.gov/articles/researchers-tackle-new-challenge-pursuit-next-generation-lithium-batteries

Hydrogen History & basic theory 1834, William R. Grove invents

gaseous voltaic battery.

Used H2 and O2 as reactants and platinum for contacts.

The main process for production is electrolysis of water.

Other sources are natural gas reformation and biomass extraction.

Once synthesized, is used as a storage mechanism for wind and solar power.1

Stored in liquid form or compressed form.1

Stored in fuel cells for electrical use.1

Has gained more attention due to emissions free combustion.

7 [1] Metz, Stefan (2011). Hydrogen as Energy Storage. The Linde Group. Retrieved from http://www.the-linde-group.com/en/clean_technology/clean_technology_portfolio/hydrogen_as_fuel/hydrogen_as_energy_storage/index.html

Hydrogen Advantages & disadvantages Advantages 1. Provides backup power during peak

usage or when renewable sources are not adequate.1

2. High energy density

3. Only by product of combustion is H2O.

4. Long storage periods.

5. Stores up to 10 MW.2

6. Cheaper than Compressed Air Energy Storage and pumped hydro.2

7. Emergency response time of less than one minute.2

Disadavantages 1. Low round trip efficiency of 40%

(produced then re-electrified).1

2. Half as efficient as Compressed Air and pumped hydro.

8

[1] Study. (2012). European Renewable Energy Network. Retrieved from http://www.europarl.europa.eu/meetdocs/2009_2014/documents/itre/dv/renewable_energy_network_/renewable_energy_network_en.pdf

[2] Anscombe, Nadya (4 June 2012). Energy Storage: Could Hydrogen Be the Answer. Solar Novus Today. Retrieved from http://www.solarnovus.com/index.php?option=com_content&view=article&id=5028:energy-storage-could-hydrogen-be-the-answer&catid=38:application-tech-features&Itemid=246

www1.eere.energy.gov

Hydrogen State of the art designs and products Biggest areas of development is in

automobiles, using hydrogen fuel cells for fuel.

Siemens developing more advanced electrolyzers for hydrogen production based on proton exchange membrane technology.1

A United Kingdom company, ITM Power, has developed electrolyzers with minimal moving parts.1

Virginia Tech researchers are extracting large amounts of hydrogen from xylose.2

Hydrogenics, partnering with Enbridge, developing ways to use existing natural gas pipelines for transport.

9

[1] Study. (2012). European Renewable Energy Network. Retrieved from http://www.europarl.europa.eu/meetdocs/2009_2014/documents/itre/dv/renewable_energy_network_/renewable_energy_network_en.pdf

[2] Barlow, Z. (4 April 2013). Breakthrough in Hydrogen Fuel Production Could Revolutionize Alternative Energy Market. Virginia Tech News. Retrieved from http://www.vtnews.vt.edu/articles/2013/04/040413-cals-hydrogen.html?utm_campaign=Argyle%2BSocial-2013-04&utm_content=shaybar&utm_medium=Argyle%2BSocial&utm_source=twitter&utm_term=2013-04-04-08-30-00

www.cafcp.org

Hydrogen Research challenges & focus Focus of hydrogen storage is large

scale production of hydrogen and transportation costs.

Research on the difficulty of large scale integration into existing utilities.

Siemens and ITM Power are designing more efficient electrolyzers for integration in the Mega-Watt range.1

Researching areas suitable for long term storage for integration into existing utilities.2

10

[1] Anscombe, Nadya (4 June 2012). Energy Storage: Could Hydrogen Be the Answer. Solar Novus Today. Retrieved from http://www.solarnovus.com/index.php?option=com_content&view=article&id=5028:energy-storage-could-hydrogen-be-the-answer&catid=38:application-tech-features&Itemid=246

[2] Study. (2012). European Renewable Energy Network. Retrieved from http://www.europarl.europa.eu/meetdocs/2009_2014/documents/itre/dv/renewable_energy_network_/renewable_energy_network_en.pdf

Pumped hydro & compressed air Advantages & disadvantages Pumped Hydro Advantages:

Largest Capacity storage available Most cost efficient way

Disadvantages: Highly dependent on the geography of the area.

Compresses Air Advantages:

Possible to reuses old mine shafts High efficiency

Disadvantages Obvious safety risks Higher safety codes which limit usability.

12 [1] http://www.pge.com/en/about/environment/pge/cleanenergy/caes/index.page [2] http://www.ferc.gov/industries/hydropower/gen-info/licensing/pump-storage.asp

Flywheels & SMES History & basic theory Flywheels

15 [1] http://www.dg.history.vt.edu/ch2/storage.html [2] http://www.intechopen.com/books/wind-energy-management/superconducting-devices-in-wind-farm

Superconducting Magnetic Energy Storage (SMES)

Flywheels & SMES Advantages & disadvantages

16 [1] http://www.theoildrum.com/node/8428 [2]http://www.princeton.edu/~achaney/tmve/wiki100k/docs/Superconducting_magnetic_energy_storage.html

Flywheels E = (1/4) mr2w2 Advantages • Efficiency (low losses) • Quick energy transfer • Maintenance Disadvantages • Weight • Failure Problems • Cost

Superconducting Magnetic Energy Storage (SMES) Advantages E = (1/2) LI2

• Short time delay • Energy Recovery Rate • Environmentally beneficial Disadvantages • Temperature sensitivity • Limited applications • Initial cost

Flywheels & SMES State of the art designs and products

17 [1]http://www.physics.oregonstate.edu/~demareed/313Wiki/doku.php?id=superconductor_electricity_transmission [2]http://www.technologyreview.com/news/416518/a-more-durable-wind-turbine/

Flywheels & SMES Research challenges & focus SMES market projected to hit $57.2 Million by 2018 Driven by rising demand for advanced energy storage

technologies

Vendors are focusing efforts on the development of SMES systems with higher energy storage capacity

Efforts are being made to lower the cost of the SMES technology.

18 [1] http://www.renew-grid.com/e107_plugins/content/content.php?content.10389

Electrical double layer capacitors History & basic theory Commonly known as supercapacitors, ultracapacitors,

electrochemical capacitors

19

Electrical double layer capacitors Advantages & disadvantages Advantages over other storage types Power density 100x that of conventional batteries Cycle life in hundreds of thousands, instead of one thousand Cycle depth can be varying without degradation High round-trip efficiency

Disadvantages Low cell voltage (< 3 V) Lower energy density (about half that of advanced batteries) Require more advanced power electronics

20 [1] A. Schneuwly, “Charging ahead: Can ultracapacitors provide the power that storage devices can’t?”, IEE Power Engineer, vol. 19, issue 1, pp. 34-37, Feb. 2006. [2] S. Atcitty, “Electrochemical capacitor characterization for electric utility application,” Ph.D. dissertation, Virginia Polytechnic Institute and State University, Blacksburg, VA, 2006.

Electrical double layer capacitors State of the art designs and products Electric vehicles- regenerative braking, accelerating, hill-climbing Grid storage for active and reactive power support Wind farm energy storage and power smoothing

21 [1] www.howstuffworks.com [2] C. Abbey and G. Joos, “Supercapacitor energy storage for wind energy applications,” IEEE Transaction on Industry Applications, vol. 43, no. 3, pp. 769-776, May/Jun. 2007.

Electrical double layer capacitors Research challenges & focus Increased energy density Carbon nanotube electrodes Electrolytes with higher breakdown voltage

Lower-cost power electronics Hybrid supercapacitor/battery storage systems

22

Activated carbon electrode - 10µm particle diameter Carbon nanotubes – 1 nm particle diameter [1] A. Schneuwly, “Charging ahead: Can ultracapacitors provide the power that storage devices can’t?”, IEE Power Engineer, vol. 19, issue 1, pp. 34-37, Feb. 2006. [2] S. Atcitty, “Electrochemical capacitor characterization for electric utility application,” Ph.D. dissertation, Virginia Polytechnic Institute and State University, Blacksburg, VA, 2006.

The control of STATCOM with supercapacitor energy storage for improved power quality

Static Synchronous Compensator (STATCOM) Improve power quality(power factor and voltage regulation) Limited capability for delivering real power

Supercapacitor Energy Storage System (SCESS) Store significant amount of energy and release it quickly

23 [1] P. Srithorn, M. Sumner, L. Yao, and R. Parashar, “The control of a STATCOM with supercapacitor energy storage for improved power quality,” presented at CIRED Seminar, Frankfurt, Germany, Jun. 23-24, 2008, Paper 0008, SmartGrids for Distribution Session 1.

The control of STATCOM with supercapacitor energy storage for improved power quality

3 operation modes Supplying reactive power to the grid Recharging of the supercapacitor (Buck Mode) Supplying real power to the grid (Boost Mode)

24 [1] P. Srithorn, M. Sumner, L. Yao, and R. Parashar, “The control of a STATCOM with supercapacitor energy storage for improved power quality,” presented at CIRED Seminar, Frankfurt, Germany, Jun. 23-24, 2008, Paper 0008, SmartGrids for Distribution Session 1.

Boost: IGBT2 ON OFF

Energy C grid Csc L

L C

Vdclink

q in C

(Buck mode has reverse energy exchange process, namely, from grid to Csc)

The control of STATCOM with supercapacitor energy storage for improved power quality Control of STATCOM + SCESS

25 [1] P. Srithorn, M. Sumner, L. Yao, and R. Parashar, “The control of a STATCOM with supercapacitor energy storage for improved power quality,” presented at CIRED Seminar, Frankfurt, Germany, Jun. 23-24, 2008, Paper 0008, SmartGrids for Distribution Session 1.

Mode1:Supply reactive power Model 2:Buck Mode Model 3:Boost Mode

Energy Storage System In Smart Grid Key Storage Technology Example Electricity storage can be deployed throughout an electric power system-functioning as generation, transmission, distribution, or end-use assets-an advantage when it comes to providing local solutions to a variety of issues.

26

Energy storage system in Smart Grid Battery Energy Storage System Battery energy storage systems are comprised of batteries, power electronics for conversion between alternating and direct current, and the control system. The batteries convert electrical energy into chemical energy for storage.

27 [1] Such, M.C. ; Hill, C. (2012). Battery Energy Storage and Wind Energy Integrated into the Smart Grid. Innovative Smart Grid Technologies (ISGT), 1-4.

Energy Storage System In Smart Grid Batteries Installation Example In Minnesota

1MW sodium-sulfur battery energy systems to support generation from a nearby 11MW wind farm.

Battery components Single battery cell

28 [1] H. L. Chan and D. Sutanto, “A new battery model for use with battery energy storage systems and electric vehicles power sys-

tems,’’ in IEEE Power Engineering Society Winter Meeting, 2000, vol. 1, pp. 470-475, January 2000. [2] Chet Sandberg . Integrating Battery Energy Storage with a BMS for Reliability, Efficiency, and Safety in Vehicles . Transportation Electrification Conference and Expo (ITEC), 2012, pp. 1- 3

Conclusion Characteristics of an energy storage technology Energy density- kWh capacity per volume Power density- kW capacity per volume Cost, round-trip efficiency, etc

Different technologies for every application

29 [1] C. Abbey and G. Joos, “Supercapacitor energy storage for wind energy applications,” IEEE Transaction on Industry Applications, vol. 43, no. 3, pp. 769-776, May/Jun. 2007.