energy-efficient flow solutions by...

20
Flow Solutions Energy-Efficient Flow Solutions By Design Positive Displacement Sliding Vane Pump Technology Delivers Superior Energy-Saving Advantages in Process Applications Process | Energy | Military & Marine

Upload: buidien

Post on 27-Mar-2018

216 views

Category:

Documents


2 download

TRANSCRIPT

Flow SolutionsEnergy-Efficient FlowSolutions By Design

Positive Displacement Sliding Vane

Pump Technology Delivers Superior

Energy-Saving Advantages in

Process Applications

Process | Energy | Military & Marine

When Efficiency is Measured in Kilowatts . . . It’s Time to Put Some Energy Into Learning About Positive Displacement Sliding Vane Pumps

n Increaseoperationalreliabilityandprocessintegritybyemphasizingtheuseofenergy-efficienttechnologiesthatsupportenhancedmechanicalefficiency

n Reducevulnerabilitytoenergypricevolatility

Sincepumpsaccountfornearly27%oftotalelectricityuseintheindustrialsector,asmanufacturersworktoaligntheirenergy-efficiencyinitiativeswiththeirbusinessgoals,pumpsystemimprovementswillplayanincreasinglyimportantroleinthiseffort.Becausethereisno“one-pump-fits-all”solution,particularattentiontoproperpumpselectionwillbecomeincreasinglyimportantintheefforttoselecttherightpumpnotonlytodeliverproductivitygains,buttoalsocontrolenergyconsumption.

Withthisinmind,byvirtueofitsinherentenergyandmechanically-efficientdesign,positivedisplacementslidingvanepumptechnologyisuniquelysuitedtooffermanufacturersimmediate,high-valueadvantagesandsolutionsinfulfillingtheirenergy-savinginitiatives.

ThisbookletispartofBlackmer’s Smart Energy Flow Solutionsinitiative.Itisnotintendedtobeacomprehensivepumpselectionguide.Thepurposeofthisbookletistoeducatereadersonpositivedisplacementslidingvanepumps;howtheyworkandwhy.Byvirtueoftheirdesign,theyofferbest-in-classenergy-efficiency,productivityimprovement,andtotallifecyclecostadvantagesoverotherpumptechnologies.FormoreinformationonBlackmerSmartEnergyFlowSolutions,visitwww.BlackmerSmartEnergy.com

Introduction

Today,highenergypricesimposeanunprecedentedprofit-robbingthreattoeverymanufacturingoperation,largeorsmall,worldwide.Leftunmanaged,energyexpenditurescanquietly,andquickly,erodeacompany’sfinancialperformance,productivityandultimatelyitscompetitiveness.

Withthisthreatinmind,manufacturingoperationsaroundtheglobeareimplementingenergymanagementprocessesandproceduresthatseekto:

n Driveproductivityimprovementsthatincreasefinancialperformance

n Controlenergyexpensesbyreducingpowerconsumptionwithoutcompromisingoutputperformanceor,preferably,whilesimultaneouslyimprovingproductionlevels

2

Table of ContentsMission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Reduce Energy Costs & Improve System Performance . . 3

Measuring & Managing Energy Consumption . . . . . . . . . . 5

Calculating Potential Energy Savings . . . . . . . . . . . . . . . . . 7

Reducing Energy Waste Through Proper Pump Selection & Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Barriers to Proper Pump Selection & Pump System Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Using Life Cycle Costs for Proper Pump Selection . . . . . . 9

Proper Pump Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Proper Pump Selection for Energy Efficiency . . . . . . . . . . 15

Energy Costs Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Sliding Vane Pumps vs. Gear Pumps . . . . . . . . . . . . . . . . . . 16

Advanced Sliding Vane Pump Technology Provides Energy Savings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Motors & Variable Speed Drives . . . . . . . . . . . . . . . . . . . . . . 19 NOTE: Much of the following information is presented in U .S . Standard units of measure, due, primarily, to the source materials utilized . However, the data is globally applicable .

3

Blackmer Smart Energy™ Flow Solutions MissionEnablepumpuserstoagainacompetitivebusinessadvantagethroughthedeploymentofenergy-savingpositivedisplacementslidingvanepumptechnology.

Blackmerwillaccomplishthismissionbyprovidingend-users,engineeringconsultants,OEMsanddistributorswitheducation,toolsandknowledgeontheenergy-savingvalueandperformance-enhancingadvantagesofpositivedisplacementslidingvanepumps.

Overview

Intoday’scompetitivemarketplace,allcompanies,regardlessoftheirbusiness,areconcernedaboutthebottomline.Aroundtheworld,energycostscontinuetoriseasdemandincreasesforgreaterprofitabilitythroughcostcontrol.Inotherwords,thereductionofenergyconsumptionisakeycomponentincontrollingcosts.Higherenergycostsimpactthebottomlineofeverycompany,particularlyprocessingoperationswhere,accordingtotheHydraulicInstitute,pumpsrepresent27%oftheelectricityusedbyindustrialsystems.

Pumpingsystemsareamajorenergyconsumerandaremissioncriticaltoeveryplant’soperation.Awealthofenergy-savingadviceisavailablefromawidevarietyofsources,suchastheUnitedStatesDepartmentofEnergy’sIndustrialTechnologiesProgram(ITP)andtheHydraulicInstitute’sPumpSystemsMatterinitiative,amongothers.Centraltotheirenergy-savingadviceistheneedforcompaniestotakeasystemsapproachinordertosignificantlyimprovetheirenergy-efficiency.Thisapproachwillenableoperationstoimprovereliability,performanceandefficiencyoftheiroverallpumpingsystems,whichinturnwillresultinnotonlygreaterenergysavingsbutalsohigherproductivity,performanceandprofitability.

Thismeansutilizingthebestpumpingtechnology(centrifugalorpositivedisplacement),properlysizedwiththeappropriatepipingdesign,controlvalveconfigurationsandmotorstoensurethehighestefficiencyforparticularapplications.

Althoughtheoperatingprinciplesofpositivedisplacementandcentrifugalpumpsdifferwidely,inmanycasesbothtypescanbeusedtoservethesameapplications.Inareaswherecentrifugalscannotbeused,and,moreimportantly,inthe“overlap”applicationswherecentrifugalsandPDpumpsmaybothbeused,positivedisplacementpumpscanlikelyoffersubstantialopportunitiestoimproveprocesses,uptime,andenergysavings.

Thereisaspecific“best-use”forallpumptechnologies.Understandinghowpumpefficiency,systemefficiency

andoverallenergy-efficiencyaremeasuredandaffectedbythepumpsandoverallsystemconfigurationisvitaltodevelopingsuccessfulenergy-efficientpumpingsystems.Inaddition,knowingthefundamentaldifferences,advantagesanddisadvantagesbetweenthevariouspumptechnologies,relativetoperformanceandenergy-savingdesigncharacteristics,isalsonecessaryinordertoselectthepumpcapableofproducingoptimumresults.

Reduce Energy Costs And Improve System Performance

Anycompanythatusesindustrialpumpsystemscanrealizebothenergyandnon-energybenefitsbyapplyingenergy-savingimprovementstotheiroperations.Relativetopumpingsystems,energy-savingimprovementopportunitiesfallintotwocategories:1)existingsystems(whichfarexceednewsystems),and2)newsystems.Fornewsystems,beginbyselectingthebestpumptechnology,properlysizedfortheapplication.Forretrofitapplications,identifying,re-engineeringandcorrectingimproperlysizedorpoorlydesignedpumpingsystemscanresultinacompanyachievingmultiplegoalssimultaneously:

n Reducedenergyconsumption

n Reducedoperations,productionandmaintenancecosts

n Improvedproductivity

n Improvedproductquality

n Improvedcapacityutilization

n Improvedsystemreliability

n Improvedworkersafety

NorthwestEnergyEfficiencyAlliancestatesthat:“A dollar saved on energy, maintenance or production is equivalent to $17 in sales income (assuming a 6% gross margin).” 1

Energyisthesinglelargestcostofownershipofanindustrialpumpsystem,representingbetween50-90%oftotallifecyclecosts,dependingonthetechnology.

1 SOURCE:NorthwestEnergyEfficiencyAlliance/IndustrialEfficiencyAlliance–HowContinuousEnergyImprovementsReduceCostsandImproveSystemPerformance

0

1000

2000

3000

4000

5000

6000

1-5HP

6-20HP

21-50HP

51-100HP

101-200HP

201-500HP

501-1000HP

1000+HP

GW

hr /

Year

Withsomanyopportunitiesforcompaniestoimmediatelyimprovebottomlineperformancethroughenergy-efficientpumpsystemimprovement,itiseasytounderstandwhytoday25%ofthe200,000U.S.plants

with>10employees(50,000plants)haveadoptedbasicenergymanagementprinciples.2AccordingtostatisticspublishedbytheHydraulicInstitute,energy-savingpumpsystemopportunitiesaboundforallpumpsizeranges.

4

Source: Pump Systems Matter – U.S. Industrial Motor Systems Market Opportunities Assessment, U.S. Department of Energy

Energy Savings – Efficiency Opportunities by Pump Size

Efficiency Measures Range Of Savings - % Of System Energy

1) Reduce Overall System Requirements

5 – 20%

2) Match Pump Size To Load 10 – 30%

3) Reduce Or Control Pump Speed 5 – 50%

4) Component Purchase 1 – 3%

5) Operations & Maintenance 1 – 5%

AreportpublishedbytheU.S.DepartmentofEnergy3revealedenergy-savingopportunitiesbymakingchangestopumpsystems.Thesesuggestionsincluded:

1) Reducepumpspeed

2) Matchpumpsizetotheload

3) Reduceoverallsystemrequirements

2 SOURCE:PumpSystemsMatter3 AnAssessmentoftheU.S.IndustrialMotorSystem1998

Measuring & Managing Energy Consumption

Themostcommonunitofmeasurementonanelectricmeteristhekilowatt-hour.

n Akilowatt-hour(kWh)isaunitofenergyequivalenttoonekilowatt(1kW)ofpowerexpendedforonehouroftime.

AccordingtotheU.S.DepartmentofEnergy,theU.S.hasmorethan2.4millionpumpsthatwillconsume142 billion kWhannuallyinindustrialmanufacturingprocesses.At5to10centsperkWh,thisaddsuptoarathersubstantialamountofmoney.Itiseasytounderstandhowimprovingtheenergyefficiencyofevenonepumpcouldproducesubstantialfinancialsavingsforanyoperation.Forillustrativepurposes,thetablebelowsummarizestheelectricalcostsofacontinuouslyoperatedcentrifugalpumpdrivenbya100HPmotor.Itiseasytoseewhata10%reductioninenergyconsumptionwouldmean:

5

Pumping Energy Costs for Pump Driven by 100-HP Motor (assumes 90% motor efficiency)

Operating TimeEnergy Costs for Various Electricity Costs

2 cents per kWh 4 cents per kWh 6 cents per kWh 8 cents per kWh 10 cents per kWh

1 hour $1 .60 $3 .30 $4 .90 $6 .60 $8 .20

24 hours $39 $79 $119 $159 $198

1 month $1,208 $2,416 $3,625 $4,833 $6,042

1 year $14,500 $29,000 $43,600 $58,000 $72,600

Source: U.S. Department of Energy – Energy Efficiency and Renewable Energy; Pump Systems Matter Energy Tip Bulletin #4

Pumpsarewastingenergywhentheyfailtoconverttheelectricpowertheyconsumeintothefluidmotionthattheyweredesignedtoprovide.

Thereareseveralcriticalequationswithwhichyouwillwanttobefamiliarwhenconsideringselectionofanewpumporwhenanalyzingapumpsystemforenergy-efficiency.

1) Pump Efficiency–therateatwhichapumpimpartsenergy(outputenergy)tothepumpagedividedbytherateatwhichthepumprequiresenergy(inputenergy).Theefficiencyofapumpisrelatedtoitshydraulic,mechanicalandvolumetriclosses.

EXAMPLE:If1.25HPmustbeappliedtotheinputshaftwhenthepumpisdoingtheworkequivalentto1HP,thepumpefficiencywillbe80%(1dividedby1.25)

2) Wire-to-Water Efficiency–takesintoconsiderationtheefficiencyoftheelectricmotordriverandtheefficiencyofthepump.Overallefficiencyisaproductofbothapump’sandthepowerunit’sefficiency.

• Forelectricmotors,efficiencyrangesaregenerally85%to92%.

• Pumpsoperatingatefficienciesbetween60-70%canbeimproved.

• Pumpsoperatingatefficiencieslessthan50%needmajorrepairs,systemchangesorreplacement.

3) Specific Energy–theactualpowerrequiredtopumpagivenvolumeoffluid(kWh/Q)

4) Power –ameasureoftherateatwhichworkisdoneorenergyisconverted

Efficiency =Imparted Energy

Inputted EnergySpecific Energy =

Energy Used

Pumped Volume

Power = Energy Converted

Time Taken

6

5) Pump Output (Hydraulic or Water Horsepower – WHP)istheliquidhorsepowerdeliveredbythepump.

6) Pump Input (Brake Horsepower – BHP)istheactualhorsepowerdeliveredtothepumpshaft.

NOTE:The constant 3960 is obtained by dividing the number of foot-pounds for one horsepower (33,000) by the

weight of one gallon of water (8.33 pounds).

OR

7) Fluid Energy = Fluid Power x Operating Time

8) Horsepower–isdefinedasthepowerrequiredtoraiseaweightof33,000lbs.averticaldistanceof1footin1minute.Therateofworkperformedbyapump(inhorsepower)isproportionaltotheweightoftheliquiditdeliversperminute,multipliedbythetotalequivalentverticaldistanceinfeetthroughwhichismoved.

Themostcommonprimemoverforapumpisafixedspeed,alternatingcurrent(ac)electricmotor.Motorsaremeasuredinhorsepowerdelivered.Sincepumpsservesuchawiderangeofneeds,pumpsizesrangefromfractionsofahorsepowertoseveralthousandhorsepower,dependingontheapplication.Asthehorsepowerincreasessotoodoestheenergycosttooperatethepump.

Thecombinedefficiencyofthemotorandpumpdeterminesthewire-to-waterefficiencyofthesystem.Achievinghighwire-to-waterefficiencyisdesired,andchoosingpumpsandmotorswithhighwire-to-waterefficiencyisneededtoensurelong-termefficiency–butmanagingenergyefficiencyofapumpingsystemismorecomplicatedthanjustchoosinghighefficiencypumpsandmotors.Thereareavarietyofsourceswithinapumpingsystemthatcanwasteenergyincludingcontrolvalvesandthrottling,pipesizeandconfigurationandpumpwear,tonameafew.

Apump’sefficiencycandegradeasmuchas10-25%beforeitisreplaced.4Efficienciesof50-60%orlowerarecommon.However,becausetheseinefficienciesarenotreadilyapparent,opportunitiesforenergysavingsbyrepairorreplacementofcomponentsareoftenoverlooked.

Whenpumpsareimproperlysized(overorundersized),whenlong-termoperatingcostsarenotconsidered,orwhenalackofexpertiseresultsintheuseofpumpsbeingimproperlymatchedtoapplications,energyiswasted.And,asaresult,foreverykilowattofpower“input”tothepump,lessisbeingtransferredtothefluid.

Notonlyisthecompanypayingmoreforadditionalenergyinput,butwearonthepumpisalsoacceleratedreducingcomponentlife.Maintenancecostsareincreasedasareunexpectedandprematurefailures,resultinginadditionalproductivitylosses.

Pumpsareselectedbasedonthemaximumdemandofthesystem.However,themaximumdemandmayonlyactuallyberequiredasmallpercentageofthetotalruntime.Therefore,thegreatertheseparationbetweenpumpcapacityandreal-timedemand,thegreatertheinefficiencyandenergywasteofthesystem.

Hydraulic Horsepower (Water HP)

Flow Rate (GPM) x Pressure (PSI)

1714

=

Brake Horsepower

(BHP)

Flow Rate (GPM) x Head (FT) x Specific Gravity

3960 x Pump Efficiency

=

Brake Horsepower (BHP)

Water HP (WHP)

Pump Efficiency=

Horsepower (alternating current)

kW x Efficiency

746=

Hydraulic Horsepower (Water HP)

Flow Rate (GPM) x Head (FT) x Specific Gravity

3960

=

POSITIVE DISPLACEMENT

CENTRIFUGAL

4 U.S.DepartmentofEnergyPumpSystemsMatterTipSheet#4

7

Reducing Energy Waste Through Proper Pump Selection & Application

Thebestwaytodealwithpoorlyperformingpumpingsystemsistospecifythemcorrectlyinthefirstplace.Thebestsystemsmeetthereal-timerequirementsoftheprocesswhileusingtheleastamountofenergy.Industrialfacilitiescanreduceenergyconsumption,increasethelifeofcomponentsandreducemaintenancebudgetsby:

n Selectingthepumptechnologybestsuitedfortheapplication

n Properlysizingpumps,controlvalvesandpipingsystemstoreal-timerequirements(avoid excessive margin of error capacity and/or total pressure or head)

n Improveinlet/outletconditionstoreducerestrictions,turbulenceandfrictionallosses

n Ensurepropermotoralignment(poor alignment of motor and load increases motor power consumption)

n­­ Reducingpumpingsystemflowrates(lower flow equates to lower energy losses)

n Loweringoperatingpressures

n Operatingthesystemforashorterperiodoftimeduringeachday

n Maintainingpumpsandallsystemcomponentsinvirtuallynewconditiontoavoidefficiencyloss(wear is a significant cause of decreased pump efficiency; corrosion in pipes increases friction)

Savings = kW (in input electric energy) x Annual Operating Hours x (1 – Actual System Efficiency)

Optimal System Efficiency

EXAMPLE:

1) Operating Efficiency (300 HP pump = 55% Efficiency)

2) Optimal Operating Efficiency (300 HP = 78% Efficiency)

3) Pump draws 235 kW x 6,000 hours of service per year

Savings = 235 kW x 6,000 Hrs/Yr x (1 – 0.55)

0.78= 415,769 kWh per year @ 0.05 per kWh = $20,788 Savings

Calculating Potential Energy Savings

Calculating Potential Energy Savings

Whenpumpsoperateatoptimumlevelstheyuselessenergyandincreasereliability,savingbothenergyandmaintenancecosts.

n A power reduction of 135 horsepower (100 kW) in a process running 24/7 reduces energy cost $40,000 per year (based on an energy price of $0.05/kWh).

n The maintenance and productivity benefits of improving a pump system’s performance are generally one to two times the value of the energy savings.

8

Planningforasatisfactory,economicalandenergy-savingpumpinstallationinvolvestwobasicitems:

1) Selectingthepropertype,sizeandspeedofpumpingequipment

2) Makingacarefulstudyofthesuctionanddischargeconditions,includingdetailsofthepipinglayout

Theproperselectionofthepumpingequipmentmustalsoconsideralloftheapplicationconditions:

Barriers To Proper Pump Selection & Pump System Optimization

Manypumpsusersdonotknowhowtoproperlyselectandapplypumpstoasystem,sopumpsystemoperatingcostsareinadvertentlyincreasedasaresult.Usingpumpselectionsoftwareprogramscanhelptooptimizepumpselection.

Whilemanufacturers,suchasBlackmer,canhelpinfluencepumpspecificationandproperselectionforaparticularapplication,theyaregenerallynotinvolvedintheengineeringoftheoverallsystem.Inanefforttoreducecosts,end-usershavetrimmedengineeringstaffs,slowlylosingtheirin-housepumpexpertise.Greaterresponsibilityisbeingplacedonmanufacturerstoassistwiththeeffortstoincreaseequipmentreliabilityandoperationalefficiencies.Industryleadingmanufacturers,suchasBlackmer,areprovidingapplicationsandengineeringexpertise,pre-andpost-salessupport,suchaspumpspecificationandselectionprograms,technicaltrainingandcounseling,start-upassistance,maintenanceandtroubleshootingadviceandtechnologicalinnovationsforthepurposeofhelpingend-userstooptimizetheirpumpingsystems.

End-usersarebeginningtorelymoreheavilyonoutsidecontractorstoprovideengineering,procurementandconstruction(EPC)forprojects.Thispracticeremovesthepumpuserfromthedecision-makingprocessbeyondthebasicrequirementsdevelopedbythepumpuser.

EPCsaretypicallyfirst-costdrivenandhavelittleornoincentivetooptimizeapumpsystemforreducedlifecyclecosts(LCC).Infact,sincetheprimarymotivationistofirstreducecosts,risksandtimetoprojectcompletion,energy-efficiencyisoftennotaconsideration,whichultimatelyhasanegativeimpactonlong-termoperatingperformanceandprofitability.

Reducing first costs–improvesEPCcompetitivepositionsbutfrequentlyresultsinpumpsystemswhicharenotenergyefficient.

1) HOW MUCH FLOW?

ApproximateDELIVERYrequiredingallonsperminute

2) HOW MUCH PUSH?

DifferentialPRESSURErequiredinpoundspersquareinch(PSI)

3) WHAT LIQUID?

TypeofLIQUIDtobehandled

4) HOW HEAVY?

SpecificGRAVITYoftheliquid

5) HOW THICK?

MaximumVISCOSITYoftheliquidinSecondsSayboltUniversal(SSU)

6) HOW HOT?

PumpingTEMPERATUREoftheliquidindegreesofFahrenheit

7) HOW MUCH PULL?

SUCTIONconditionswhenpumpingininchesofmercuryforvacuum,orpsiforpressure

8) HOW LONG?

TypeofSERVICE,i.e.intermittentduty,semi-continuousduty,orcontinuousduty

blackOPS® – Blackmer Optimum Pump Solutionsallowsuserstoselectpumpdataandpumpcurvessotheycanselecttheproperpositivedisplacementorcentrifugalpumpsfortheirapplication.

9

Minimizing time to project completion–eliminatethetimenecessarytoanalyzealternativeequipmentoptions.Thetrade-offisfirst-costvs.LCC.

Reducing risks–isgenerallyaccomplishedbyaddingsafetymarginstoeachstepofthedesign/constructionprocess.Thisresultsinoversizedequipment,contributingtomismatchedpumpsandsystemcomponentsthat

operatewithincreasedmaintenanceandenergyconsumption.Excessivesafetyfactorsalsoreducesystemreliability.Industrysourcesclaimthata10-15%safetymarginisroutinelyappliedtopumpsandmotorstoaccommodateanticipatedcapacityincreases,andthatoverall70%ofpumpsarenotproperlysizedresultinginwastedenergy,reducedreliabilityandhigherthannecessarymaintenancecosts.

Oversized Pumps Undersized PumpsOften paired with oversized control valves and piping . Oversized control valves consume wasted energy with excessive pressure drops which shortens valve life

Create cavitation which causes vibration, premature wear that leads to energy-wasting slip, seal problems and possibly loose bolts, misalignment and pipe leakage

Want to deliver a higher GPM than the system requires in centrifugal systems, the head is raised to unneeded pressures:EXCESS HEAD x FLOW = ENERGY WASTE

Cause motor over-amps resulting in increased electric consumption

Create excessive pressure, velocity, noise, vibration, heat and energy waste

Create unstable hydraulics that cause excessive pump vibration, wear and failure

Cause re-circulation in centrifugal pumps

Rarely a problem in PD pumps because the slower the pump runs the better

Undersized Piping Leads to:Restricted flow Requires larger pumps that waste energy

Large pressure losses

Big pipes cost more than smaller diameter pipes Contractors can save initial costs by bidding smaller pipes that consume more energy

Bad suction at inlet Potential pump repairs, downtime and lost production

Too small on discharge side PD pump will push the fluid though but at higher pressures and energy costs

Using LCC (Life Cycle Costs) for Proper Pump Selection

Improperpumpselectioncancostmoneyindowntime,lostproduction,maintenancecostsandenergyconsumption.Whenpurchasingpumps,itisrecommendedthatpumpuserspaycloseattentiontototalcostofownershiporlifecyclecosts(LCC)analysistocompareoperations,maintenanceandenergyconsumptioncostsbetweenpumptechnologiesthatcouldbeusedforthesameapplication.AnanalysisofLCC,asamanagementtool,candramaticallyreducewasteandmaximizeefficiency.TheNETcostsavingsbasedonLCCwilloftenjustifyahigherinitialpriceforamoreenergy-efficientpump.Life-cyclecostinghelpsidentifythelowesttotalcostofownership:

n Initialequipmentcost

n Installation&Commissions

n Energycosts

n Maintenance&Repairs

n Downtimecosts

n Decommissioningcosts

LCC - Relative ComparisonCentrifugal vs. Positive Displacements (PD) Pumps

n­Initial Pump Costn­Energy Cost

n­Installation, maintenance, operating, environmental & downtime costs

Centrifugals PD Pumps0.0

0.2

0.4

0.6

0.8

1.0

Tota

l Life

Cyc

le C

ost (

LCC)

10

Kinetic(Dynamic)

PositiveDisplacement

RECIPROCATING

Rotary

Single RotorVane

Blade

DIAPHRAGM

FLUID OPERATED (Air/Hydraulic)

RadialFlow

Centrifugal

VoluteDIFFUSERREGENERATIVE TURBINEVERTICAL TURBINE

OTHER

MIXED FLOW

AXIAL FLOW

DOUBLE SUCTION

SINGLE-STAGE

MULTI-STAGE

OPEN IMPELLERSEMI-OPEN IMPELLER

MECHANICALLY OPERATED

BELLOWS

SEMI-OPEN IMPELLERCLOSED IMPELLER

MULTI-STAGE

SELF-PRIMING

NON-SELF-PRIMING

JET (EDUCTOR/EJECTOR

SPECIAL ACTION

SingleSuction Single

Stage

OpenImpeller

Pumps

AXIALRADIAL

SINGLE/MULTIPLESINGLE/MULTIPLE

SINGLE/MULTIPLE

TUBE & ROLLERLINER

ROLLER

EXTERNALINTERNAL

CRESCENTNO CRESCENT

TIMEDUNTIMED

TIMEDUNTIMED

SINGLE-ACTING

DOUBLE-ACTING

SIMPLEXDUPLEXTRIPLEXMULTIPLEX

PISTON

PLUNGER

PISTONFLEXIBLE IMPELLERPERISTALTICSINGLE SCREWPROGRESSIVE CAVITY

MULTIPLE ROTOR

OTHER

LIQUID RINGGEARLOBECIRCUMFERENTIAL PISTONMULTIPLE SCREW

SPECIAL ACTION

SPURHELICALHERRINGBONE

Source: Schematic courtesy of Chemical Processing Magazine

Pump Technology Matrix

Proper Pump Selection

Althoughtheoperatingprinciplesofpositivedisplacementandcentrifugalpumpsdifferwidely,bothtypesofpumpscanbeusedtoservemanyofthesameapplications.Intheseinstances,certainpositivedisplacementpumpsmayoffersubstantialopportunitiestoimproveprocessesandproductivityaswellasmaintenanceandenergycostsavings.PositivedisplacementpumpsgenerallyrequirelessNPSHAthancentrifugalpumps,andtheyoffermoreflexibilityrelativetodealingwithvaryingchangesinpressureandflowrequirementsofcontinuous-typeprocesses.

Also,positivedisplacementpumpsmaintainhigherefficienciesthroughouttheviscosityrange.Therefore,intheoverlapwherebothtypesofpumpscanoperate,apositivedisplacementpump’shighmechanicalefficiencycanofferimprovedenergyefficiency.

Thedeltainwire-to-waterefficienciesofpositivedisplacementpumpsascomparedtocentrifugalpumpsdecreasesasflowratesincrease.Thatis,thelargerthe

standardcentrifugalpumpthegreaterefficiencyithasatitsbestefficiencypoint(BEP).Therefore,thepotentialefficiencyadvantageaffordedbypositivedisplacementpumpsshouldbereviewedinhighflowapplications.

However,sincecentrifugalpumpsoperatedependentofthesystemcurvetheyrarelyoperateattheirBEP,eveniftheyaresized/selectedappropriately.Thisisduetotheroutinepracticeofbuildinginasafetymarginforanticipatedcapacityincreases.Changesinthesystemcurve,duetofactorssuchassuction/dischargeheightvariations,blockage,etc.willalsoshiftthecentrifugalpumps’operatingpoint.Positivedisplacementpumps,specificallyslidingvanepumps,donothavethislimitationastheiroutputis,toalargeextent,independentofthesystemcurve.Further,aswithpositivedisplacementgearandlobepumps,centrifugalpumps’internalclearancesincreaseovertimeresultinginadecreaseinefficiency.Positivedisplacementslidingvanepumpsutilizeself-adjustingvanesthateliminateclearanceincreaseproblemstomaintainnearoriginalhydraulicefficiencyovertime.Thisfeatureofferssubstantialenergysavingsbenefits.

11

CAPACITY (gal/min)

Positive

250

200

150

100

50

00 50 100 150

CentrifugalHEA

D F

EET

Selecting the proper pump begins by knowing:

1) Totalheadorpressureagainstwhichitmustoperate

2) Desiredflowrate

3) Suctionlift

4) Fluidcharacteristics(Temperature,corrosiveness,etc.)

Thepipingsystemandpumpinteracttodeterminetheoperatingpointofpumps:flowrateandpressure.

Differentialpressureiscriticaltoenergy-savingsandpumplife.Smallerpipesizeandlargepiperunsmayreduceinitialcost,buttheycancausehigherdifferentialpressureforpumps.Thisresultsinhigherenergyconsumptionandhigheroperatingcosts.

Oncesystemconditionsandliquidpropertiesareknown,thenextstepistodeterminewhetheracentrifugalofPDpumpisthebetterchoice.

Basic Comparison – Centrifugal Pumps Vs. Positive Displacement Pumps

Centrifugal Positive Displacement

Mechanics Imparts velocity to the liquid resulting in a pressure at the outlet (pressure is created and flow results) .

Captures confined amounts of liquid and transfers it from the suction to the discharge port (flow is created and pressure results) .

Performance Flow varies with changing pressure . Flow is constant with changing pressure .

Viscosity Efficiency decreases with increasing viscosity due to frictional losses inside the pump (typically not used on viscosities above 850 cSt) .

Efficiency increases with increasing viscosity .

Efficiency Efficiency peaks at best-efficiency-point . At higher or lower pressures, efficiency decreases .

Efficiency increases with increasing pressure .

Inlet Conditions Liquid must be in the pump to create a pressure differential . A dry pump will not prime on its own .

Negative pressure is created at the inlet port . A dry pump will prime on its own .

Source: Chemical Engineering – Facts At Your Fingertips; Department Editor: Kate Torzewski

Flow versus Pressure

VISCOSITY (cSt)

Positive

100

80

60

40

20

00 250 500 750 1000

CentrifugalEFFI

CIEN

CY %

Efficiency versus Viscosity

VISCOSITY (cSt)

Positive110

100

90

80

70

60

50

400 500100 200 300 400

CentrifugalFLO

WRA

TE %

Flow versus Viscosity

FEET OF HEAD

Positive

80

70

60

50

4055 10580

Centrifugal

EFFI

CIEN

CY %

Efficiency versus Pressure

12

Comparing Centrifugal Pumps To Positive Displacement Pumps

If The System Calls For: The Best Pump To Use Is:

Pressurized network of piping with a constant pressure requiring constant flow rate Centrifugal

Constant flow at various pressures Positive Displacement

Constant flow at various viscosities Positive Displacement

Constant flow at high viscosities (particularly above 850 cSt) Positive Displacement

Line stripping Positive Displacement

Dry running – short duration Positive Displacement

Priming Positive Displacement

Shear sensitive Positive Displacement

Entrained gases Positive Displacement

High flow / low head Centrifugal

Low flow / high head Positive Displacement

“Though engineers may be first inclined to install centrifugal pumps, many applications dictate the need for PD pumps. Because of their mechanical design and ability to create flow from pressure input, PD pumps provide a high efficiency under most conditions, thus reducing energy use and operation costs.”

Chemical Engineering – Facts at Your Fingertips (Department Editor: Kate Torzewski)

Summary

ConsiderPositiveDisplacementPumpsover

Centrifugalswhen:

1) Workingfluidishighlyviscous(over850cSt)

2) Flowratemustbepredictableoverawide

flowrange(flowmustbemeteredor

preciselycontrolled)

3)Flowratemustremainconstantundervarying

systempressures

4) Systemrequireshigh-pressure,low-flow

5)Linestrippingisrequired(somePDtechnologies)

6) Suctionliftorself-primingisrequired

7) Workingfluidisshear-sensitive

8) Energy-savings/efficiencyisaprimaryconcern

13

Centrifugal Pump Highlights

n Roto-dynamic principle: accelerates fluid and converts this kinetic energy into pressure

• CentrifugalpumpsaresubjecttotheAffinityLaws:

- Flowisdirectlyproportionaltochangesinspeed

- Pressureincreasesbythesquareofchangesinspeed

- Horsepowerincreasesbythecubeofchangesinspeed

• Higherflowratescreatehigherflowvelocitieswhichleadstofrictionlossandhigherenergyconsumption

• Pressureisexpensive.Pressurethroughapipeisproportionaltothesquareofthefluidvelocity;giventhesamesizepipe,aflowratethatis2xhigherendures4xmorefrictionloss.Thismeansthatitcostsmoretopumpahigherthannecessaryflowrate.

• Horsepowerisexpensive–BHPincreasesgreatlyasspeedincreases

n Make up 75% of the industrial processpump industry

n Complex to select the right pump resulting in the tendency to over-size the pump

• Increasesthecostofoperatingandmaintaining

• Createsoperatingproblemssuchasexcessiveflownoise,inefficientoperationandpipevibration

• Createsperformancedegradingandpumpdamagingcavitationandrecirculation

• Consumesmoreenergythannecessaryfortheduty

n Variable flow/pressure relationship

• Theamountoffluidacentrifugalpumpmovesdependsonthedifferentialpressure

• Aspumpdifferentialpressureincreasestheflowratedecreases

• Lowflowincentrifugalpumpsconsumemoreenergy

• Excesspressureisexpensive

n Good for applications requiring high flow/low head in which viscosity is not prohibitively high

n If part of a process changes often or continuously, some method of altering the pump characteristics is necessary. Common practices include:

• Throttlingvalves

- Obstructflow–increaseheadpressure(increasesenergyconsumption)

- Producing70%flowrequiresupto90%oftheenergyusedatfullspeed

• On/OffControl

- Usedincaseswherestep-lesscontrolisnotnecessary(keepingpressureinthetankbetweenpresetlimits)

- Pumpiseitherrunningorstopped

- Averageenergyconsumptionisthesameasaverageruntime(70%energyconsumptionfor70%averageflow)

• Variablespeeddrives(VSD)

- Changespumpspeedandflowgenerated(consumeslessenergythanthrottling)

- Thegreaterthestatichead,thelowerthepossibleenergysavingsbetweenaVSDandThrottling

n The larger the centrifugal pump, generally,the greater its efficiency at its BEP

14

Positive Displacement Pumps Highlights

■ Positive displacement pumps pressurize fluid

utilizing a collapsing volume action

• Haveafixeddisplacementvolume

• Flowratesaredirectlyproportionaltotheirspeed

• Thepressurestheygeneratearedeterminedby

thesystem’sresistancetoflow

■ Make up approximately 15% of industrial

process pump industry

■ Effective at generating high pressure in

low-flow applications

■ Simple to operate and maintain

■ Handle a wide viscosity range (Low and High

viscosity fluids)

• Advantageovercentrifugalpumpwhenpumpage

ishighlyviscous(bydirectlypressurizingfluids,

PDpumpsuselessenergy)

• Slidingvanetechnologyisexceptionalonthin

andlow-lubricityfluids(LPG,Refrigerants,

Solvents,FuelOils,Gasoline,Liquid

CarbonDioxide)

• Slidingvanetechnologyisexceptionalon

non-lubricatingliquids(thickandthin)

• Slidingvanetechnologyisbetterinshear-

sensitiveapplicationsthanmanyotherPD

designsandcentrifugalpumptechnologies

■ Typically more efficient than centrifugal

pumps... in some cases significantly

more efficient

■ Lower overall cost of ownership than centrifugal

pumps (based on LCC)

• Possiblyhigherinitial(purchase)cost

• Typicallylowerenergycosts–manytimes

significantlylower

■ Rotary PD designs minimize pulsation as

compared to reciprocating technologies

• Slidingvaneandgeartechnologiesexhibitlittle

tonopulsation

■ Dry Run, self-priming and superior suction

lift capabilities

• Canoperatewithentrainedgasesinthepumpage

• Pumpsorsuctionpipingcanbeplacedabovethe

fluidleveltosimplifylayout

■ Well suited for metered-flow applications

■ Sealless options available – (eliminate leaks

when handling high-value chemicals, hazardous

or corrosive liquids to yield substantial cost

savings and safety)

• Magneticallycoupled/drivepumps

• Eccentricdiscpumps

• Peristaltichosepumps

• Airdiaphragmpumps

■ Designed for high efficiency that results in

high reliability and energy savings

• Highvolumetricefficiency

- Self-adjustingvanesonslidingvanepumps

eliminatetheenergy-robbingslipcaused

bywear;maintainnearoriginalefficiency

throughoutthepump’soperatinglife

• Highmechanicalefficiency

15

Positivedisplacementpumpsarenotcreatedequal.TherearesignificantdifferencesbetweenPDpumptypes.Improperpumpselectioncancostmoneyindowntime,

lostproduction,maintenancecostsandenergyconsumption.Followingisanoverviewofseveraltypesofleadingpositivedisplacementpumps:

PD Pump Features Viscosity Range Flow Rates

Sliding Vane

n Exceptional for thin liquids due to direct contact of vanes to casing and minimalinternal clearances

n Excellent on thick liquids at slow speedsn Exceptional efficiency at low flow ratesn Excellent suction lift and line stripping capabilitiesn Self-adjusting vanes eliminate energy-robbing slip and capacity loss to provide

substantial energy savingsn High mechanical efficiency = energy savingsn Differential pressure to 200 psin Speed to 3,600 RPMn Hydrodynamic journal bearing models significantly reduce friction, excessive heat

build-up and energy lossn Motor speed models are specifically designed for continuous duty operation for low and

medium viscosity applicationsn Low energy consumption

Very thin (LPG, Refrigerants, Solvents, Fuel Oils, Gasoline, Liquid Carbon Dioxide, Ammonia, etc .) to High viscosities up to 50,000 cSt

1 to > 2,000 GPM

Internal Gear

n Differential pressure to 200 psi (higher pressures are attainable)n Speed to 3,600 RPMn Metal-to-metal gear results in wear and slip, resulting in efficiency degradation and

higher energy consumption over time

High viscosities up to 1,000,000 cSt

0 .5 - 1,500 GPM

External Gear

n Do not perform well under critical suction conditions, especially with volatile liquidsn Good for high pressure applications such as hydraulicsn Differential pressure to 3,000 psi +n Speed to 3,600 RPM n Metal-to-metal gear design subject to efficiency degradationn Must be rebuilt or replaced n No clearance adjustments for wear which results in slip, efficiency degradation and

higher energy consumption

High Viscosity up to 1,000,000 cSt

Drops per minute to 1,500 GPM

Lobe n Used frequently for food-type products due to sanitary nature and ease of cleaningn Vertical drain port reduces efficiency by 15-20%n Sanitary Models: Differential pressure to 200 psin Non-Sanitary Models: Differential pressure to 400 psi

Low Viscosity with diminished performance up to 1,000,000 cSt

5 - 3,000 GPM

Air Diaphragm (AODD)

n No bearings or rotating shaftn Can handle a wide range of shear-sensitive, abrasive and non-abrasive liquids as well

as solidsn High pressure operation can cause excessive wear around valve seats as the check

valve closesn Variable speed flow operationn Requires air compression system . Electricity is used to run compressors . n Energy accounts for 70% of compressed air life cycle cost – air is not free .

High energy costs .

Medium viscosity to 26,000 cSt

1 - 500 GPM

Proper Pump Selection For Energy Efficiency:Positive Displacement Pumps Are Not Created Equal

16

Sliding Vane Pumps Vs. Gear Pumps

Comparison of Sliding Vane Pumps Vs. Internal Gear Pumps

Sliding Vane Pumps Internal Gear Pumps

n Superior mechanical performancen Provides greater energy savingsn 24% More efficient than gear pumps

n Less mechanically efficientn Consume more energy than vane pumps

n Sliding vane pumps have a number of non-metallic vanes that slide into and out of slots in the pump rotor .

n When the pump driver turns the rotor, centrifugal force, rods and/or pressurized fluid causes the vanes to move outward in their slots and bear against the inner bore of the pump casing, forming pumping chambers

n This fluid is passed around the pump casing to the discharge portn Each revolution displaces a constant volume of fluidn Variances in pressure have minimal effectn The sliding vanes automatically adjust to maintain near perfect

clearances throughout operating lifen Energy-wasting turbulence and slippage are minimized and high

volumetric efficiency and low energy consumption are maintained

n Internal gear pumps utilize an outer gear called a rotor that is used to drive an inner gear called the idler

n The gears create a void as they come out of mesh - the volumes are reduced and liquid is forced out the discharge port

n Each revolution displaces a constant volume of fluidn Variances in pressure has minimal effectn The metallic gears wear over time resulting in wider clearances;

this increases energy-robbing slippage and significantly decreases volumetric efficiency

n In order to compensate for performance degradation, pump speed is increased which requires greater energy consumption

Energy Costs Comparison – Vane/Lobe/Gear

Oftheleadingpositivedisplacementtechnologies,slidingvanepumpsaregenerallythemostenergyefficient.Significantdesignadvancementshavegivenslidingvanetechnologyadecisiveadvantageoverlobeandgearpumps,specificallywithregardstooptimizedperformance,low-shearcapability,lowestlifecyclecostandbestenergyefficiency.Thisisdueinparttotheself-adjustingvanedesign-featurethateliminatesenergy-

robbingslipandpromoteshighvolumetricefficiencyevenaftersubstantialtimeinservice.Bothgearandlobepumpsaresubjecttowearthatincreasesinternalclearanceswithinthepumphousingthatresultinslipandefficiencydegradation.FollowingisaMechanicalEfficiencyComparisonbetweenthreeleadingpositivedisplacementtechnologies.Fromthelowesttothehighestviscosity,slidingvanetechnologyprovidesthehighestlevelofmechanicalefficiencywhichequatestothelowestoverallenergyconsumption.

Energy Costs – Mechanical Efficiency Comparison, PD Pumps: Vane / Lobe / Gear

50-100 GPM; 50-100 PSI; 4-1,620 cSt viscosity;

same model on all viscosities

17

Byeliminatingtheneedtoincreasethepumpspeedovertime,slidingvanepumpssaveadditionalenergywhencomparedtogearpumps.Slidingvanepumpsareinherentenergysaversbyvirtueoftheirdesign.Thistechnologynotonlyreducesenergycostsbuthelpstocreateanoverallmoreefficientpumpingsystem,providingsolutionsforseals,suction,productshear,andvolumetricefficiencyproblemstoofferinguniquebenefitssuchasleak-freeassurance,linestripping,metering,andnon-pulsatingflow–allwhilesavingenergy.

Sliding Vane Pump vs. Internal Gear PumpMechanical Efficiency Comparison at 1 cSt and 75 PSI

ME

Sliding Vane Pump vs. Internal Gear PumpMechanical Efficiency Comparison at 160 cSt and 100 PSI

ME

Sliding Vane Pump vs. Internal Gear PumpMechanical Efficiency Comparison at 5,250 cSt and 100 PSI

ME

Annual Energy Cost Savings: Sliding Vane vs. Internal Gear Pumps

Liquid Viscosity Pump GPM PSI BHP WHP

(Water)Efficiency KW

InputAnnual Power

Cost (2)Annual Savings with Sliding Vane PumpsPump Motor (1)

Pump Sized for Stated Flow

Thin 1 cSt

Sliding Vane310 75

20 .113 .6

68% 88% 17 .0 $3,828 $552

Internal Gear 23 .0 59% 88% 19 .5 $4,380

Viscous 5,250 cSt

Sliding Vane180 75

12 .27 .9

65% 88% 10 .3 $2,323 $1,485

Internal Gear 20 .0 39% 88% 17 .0 $3,809

Pump Sized for Wear Factor Allowance

Thin 1 cSt

Sliding Vane310 75

20 .113 .6

68% 88% 17 .0 $3,828 $1,333

Internal Gear 27 .1 50% 88% 23 .0 $5,161

Viscous 5,250 cSt

Sliding Vane180 75

12 .27 .9

65% 88% 10 .3 $2,323 $1,771

Internal Gear 21 .5 37% 88% 18 .2 $4,094

1) Typical 2) Assumes 8 hours/day, 6 days/week, 52 weeks/year Duty Cycle and $0.09 KWh. Power Cost may be directly ratioed for other electric rates or duty cycles

Cavitation Suppression Liner

Cavitationisaphysicalbarriertoefficiencythatcanseverelyimpactapump’sperformanceastheliquidchangestoavaporinsidethepumpchamber.Thiseffectdecreasesflowthroughthepumpandcancausesubstantialdamagetothepumpasthevaporbubblescollapsebacktotheliquidstate.Crackingandpoppingnoisesindicatecavitation,whichcanleadtoexpensiverepairsifleftuncorrected.

AccordingtotheDepartmentofEnergyIndustrialTechnologiesProgram’sSourcebookforIndustry,theeffectsofcavitationincludeincreasedmaintenancecosts,slip,capacitylossaswellaspoorsystemperformance.Centrifugalpumpsaresusceptibletothesefactorsaswellas“internalrecirculation,”aperformance-degrading-effectthatoccursatlowflowrates,whichcandamagetheimpellerandrotor.

Uniquetovanetechnology,aCavitationSuppressionLinerminimizesthepump’sweareffectsassociatedwithcavitation.Thispatentedsolutionhelpstoreducethepotentialforslipandcapacityloss,ensuringthehighestlevelofefficiencyandenergysavings.

Advanced Sliding Vane Pump Technology Provides Energy Savings

Forevengreaterflexibility,efficiencyandproductivity,advancedvanepumpdesignsincludemotorspeedtechnology,unique“designed-in”featuressuchasahydrodynamicjournalbearingandonemechanicalseal.Theseinnovativefeaturesservetofurtherimprovethefundamentalpumpingprocessandimproveenergyefficiency.Additionally,motorspeedvanepumpsdonotrequireagearreducer,sotheyofferupfrontequipment,installationandenergycostsavings.

Hydrodynamic Journal Bearing

TheHydrodynamicJournalBearingisaperformance-enhancingdesignfeaturethatsignificantlyimprovesoverallpumpefficiency,reliabilityandextendsbearinglife.Withthisdesign,thepumpshaftridesonafluidboundaryduringloadconditionstoeliminateshaft-to-bearingcontact,frictionandwear.

Sincethereisnometal-to-metalcontactorwearinthishydrodynamiccondition,bearinglifecanbeindefinite.Motorspeedvanepumpsareengineeredtoachievehydrodynamicmode(fullfilmoperation–thepointofferingthelowestbearingfrictionandtheleastwear)fasterthananyotherpumpinitsclasstopreservebearinglife.Thesepumpsalsomaintainoptimumbearingcharacteristicsevenunderawiderangeofoperatingconditions.

Reducedshaft-to-bearingcontactminimizesfriction,lowerspowerloss,andimprovesreliabilityandbearinglife,resultinginhighermechanicalefficiencyandsmartenergycostsavings.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.000 0.001 0.010 0.100 1.000 10.000

Bearing Characteristic Number (S)

Min

imum

Film

Thi

ckne

s Ra

tio

L/D = 1.5 L/D = 1

PV30Internal

Gear Pump

HydrodynamicNon-Hydrodynamic

1 cSt @ 60 psi

18

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.000 0.001 0.010 0.100 1.000 10.000

Bearing Characteristic Number (S)

Min

imum

Film

Thi

ckne

s Ra

tio

L/D = 1.5 L/D = 1

PV30Internal

Gear Pump

HydrodynamicNon-Hydrodynamic

1 cSt @ 125 psi

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.000 0.001 0.010 0.100 1.000 10.000

Bearing Characteristic Number (S)

Min

imum

Film

Thi

ckne

s Ra

tio

L/D = 1.5 L/D = 1

PV30

InternalGear Pump

560 ssu

40 ssu

HydrodynamicNon-Hydrodynamic

125 psi

ProVane® Motor Speed Sliding Vane PumpWith Hydrodynamic Journal Bearing Advantage

19

Relief Valve

Blackmer®reliefvalvesaredesignedtoprotectyourpumpinahighpressurebuild-upsituation.Idealforvariableflowandpressureconditions,thereliefvalveoffers:

n SuperiorabilityoverotherPDpumpstoholdpressureundervariableflow/pressureconditions

n Maintainsmotorhorsepowerrequirementtohelpcontrolenergyconsumption

n Highlyengineeredtoprovidebettercontroloversetpointsandoperatingconditions

n Lowersheatgeneration

0

10

20

30

40

50

60

20 40

Gear Pump

60 80 100 120 140 160

Vane Pump

Differential Pressure

Flow

Motors & Variable Speed Drives

Mostpumpsaredrivenbyelectricmotors.AccordingtotheHydraulicsInstitute,upto90%ofprimemoversinprocessapplicationsaredrivenbymotors.Fixedspeedalternatingcurrent(AC)motorsarethemostcommontypeofmotors.VariablefrequencycontrolsforACmotorsallowforspeedrangesbetween25%and110%ofsynchronousspeed.

Highefficiencymotorsmaynotberequiredforslidingvanepumps–andcanactuallydecreaseproductivityandcostmoreifmisapplied.Inhigh-run-timeapplications,improvedmotorefficienciescanreduceoperatingcosts.However,itisoftenmoreeffectivetotakeasystemsapproachthatusesproperpumps,measurementsandsizing,coupledwitheffectivemaintenancepracticestoavoidunnecessaryenergyconsumption.

High Efficiency Motors

Theefficiencyofamotoristheratioofmechanicalpoweroutputtoelectricalpowerinput.

Highefficiencymotorscanhelptominimizelosseswithinamotor.Operationswherethemotorisrunningatlessthan60%ofitsratedloadshouldbereviewedandreplaced.

Ingeneral,correctlysizingthemotortotheloadoffersthegreatestimprovementopportunity.Ahigh-efficiencymotor(partlyloaded)mayusemoreenergythanasmaller,lessefficientmotorinthesameapplication.

Variable Speed Drives

VSDsregulatethespeedofthemotor,reducingfluidflow.However,energycanbewastedwhenusingVSDs.Itisbesttoavoid:

1. Creationofexcesspressure

2. Moreflowthroughsystemthanisnecessary

3. Highfrictionallossescreatedfromhighaverageflows

4. Multiplepipesorductscarryingfluidthatisnotbeingused

Output Power

Input PowerEfficiency = x 100%

=Input Power - Losses

Input Powerx 100%

100

90

80

70

60

50

40

30

20

10

00 25 50 75

75kW7.5kW

0.75kW

100 125 150 175

Typical Motor Efficiency atdifferent loads

% Rated Load

Typical Motor Efficiency at Different LoadsEf

ficie

ncy

%

Application Engineer

Design Engineering

Manufacturing

Market & Product Specialist

Customer Care

Regional Sales Manager

Every Blackmer Product Comes With A Value-Added Extra: Applications Engineering/Technical Support/Customer CareWhenitcomestoflowsolutions,uptime,output,reliabilityandprofitabilityarecriticaltoeveryoperation’smission.Tothisend,Blackmerknowsthatreliable,provenflowtechnologiesarecriticallyimportant,butwealsoknowthatthisrepresentsonlyonepartoftheoverallequation.Theother,equallyimportantpartinvolveshavingtrained,knowledgeableandcustomer-focusedstaff,whichiswhywemakesubstantialinvestmentsinourpeople.Itisthroughtheircollaborativeeffortwithcustomersthatthegreatestachievementsarerealized.

Total Life Cycle SupportFrom the moment of initial contact and equipment selection through every point of the product and application life cycle, Blackmer specializes in helping customers get the maximum value from their flow technology assets by providing total life cycle support.

n Applications Engineers–expertsinpeace-of-mindassurance,makingsureyourequipmentisalwaysrightforthejob

n Market & Product Specialists–unparalleledtechnicalknowledge,on-siteproducttraining,troubleshooting,installationandproduct-selectionconsultation,andtotallifecycleattention

n Regional Sales Management–proventechnicianswithan“aboveandbeyond”commitmenttoeverycustomer’smission

n Customer Care Specialists–action-orientedspecialistscommittedtomakingsureeveryorderreceivesimmediateat-tention,isaccuratelyprocessedandfollowedup,andtohelp-ingkeepyourprocessflowingsmoothly

Whenyouputitalltogether,formissioncriticalflowsolutions,it’seasytoseewhyleadingcompaniesaroundtheworldhaveonecommondemand…Better Get Blackmer.

www.blackmer.com

Brochure ATK-0200-003 03/10 Copyright © 2010, Blackmer

World Headquarters1809 Century Avenue SW, Grand Rapids, MI 49503-1530 USA

T 616.241.1611 F 616.241.3752

Process | Energy | Military & Marine

SLIDING VANE PUMPS CENTRIFUGAL PUMPS RECIPROCATING GAS COMPRESSORS

PERISTALTIC (HOSE) PUMPS