energy concept to providing the german road transport ......institut für elektrochemische...

29
Mitglied der Helmholtz-Gemeinschaft Institut für Elektrochemische Verfahrenstechnik (IEK-3) Energy Concept to Providing the German Road Transport Sector with Hydrogen Thomas Grube, Martin Robinius, Detlef Stolten [email protected] 11. Master Class Course Conference “Renewable Energies” - Herbstakademie December 07, 2016 Conference venue: Beuth Hochschule für Technik, Berlin

Upload: others

Post on 24-Feb-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Energy Concept to Providing the German Road Transport ......Institut für Elektrochemische Verfahrenstechnik (IEK-3) 20 . Topology Design Options . Placement of the components within

Mitg

lied

der H

elm

holtz

-Gem

eins

chaf

t

Institut für Elektrochemische Verfahrenstechnik (IEK-3)

Energy Concept to Providing the German Road Transport Sector with Hydrogen

Thomas Grube, Martin Robinius, Detlef Stolten [email protected]

11. Master Class Course Conference “Renewable Energies” - Herbstakademie

December 07, 2016

Conference venue: Beuth Hochschule für Technik, Berlin

Page 2: Energy Concept to Providing the German Road Transport ......Institut für Elektrochemische Verfahrenstechnik (IEK-3) 20 . Topology Design Options . Placement of the components within

Institut für Elektrochemische Verfahrenstechnik (IEK-3) 2

Head of Institute: Prof. Dr.-Ing. Detlef Stolten Employees: > 120

Areas of Expertise: Process & Systems Engineering Fabrication Engineering

Departments: Solid Oxide Fuel Cells Low Temperature Electrolysis Physicochemical Fuel Cell Laboratory

Electrochemistry Modeling & Simulation

Process and Systems Analysis (VSA) Head of Department: Dr.-Ing. Martin Robinius

High-Temperature Polymer Electrolyte Fuel Cells Fuel Processing and Systems Low Temperature Electrolysis - Process Engineering

Catalysis & Reaction Engineering Process & Systems Analysis

Renewable Energies, and

Storage

Infrastructure Mobility

Residential Sector Industry

VSA’s areas of expertise:

Who we are

Page 3: Energy Concept to Providing the German Road Transport ......Institut für Elektrochemische Verfahrenstechnik (IEK-3) 20 . Topology Design Options . Placement of the components within

Institut für Elektrochemische Verfahrenstechnik (IEK-3) 3

Outline

Status Germany

IEK-3’s Energy Concept 2.0 for 2050

− Hydrogen production capacity; in detail: wind power modelling

− Hydrogen demand and supply; in detail: hydrogen pipeline modelling

− Economics of hydrogen provision

Conclusion

Page 4: Energy Concept to Providing the German Road Transport ......Institut für Elektrochemische Verfahrenstechnik (IEK-3) 20 . Topology Design Options . Placement of the components within

Institut für Elektrochemische Verfahrenstechnik (IEK-3) 4

Status for Germany

Page 5: Energy Concept to Providing the German Road Transport ......Institut für Elektrochemische Verfahrenstechnik (IEK-3) 20 . Topology Design Options . Placement of the components within

Institut für Elektrochemische Verfahrenstechnik (IEK-3) 5

43% 34% 21% 15% 3%

0

200

400

600

800

1.000

1.200

1990 1995 2000 2005 2010

GH

G e

mis

sion

s

CO

2.-e

quiv

alen

t [M

t] GHG Emissions Targets Require Transformation in All Sectors

GHG Emissions in Germany since 1990 [1] German Government ‘s goals compared to 1990 levels [2]

60%

45%

30% 5-15%

2020 2030 2040 2050

[1] BMWi, Zahlen und Fakten Energiedaten - Nationale und Internationale Entwicklung. 2016, Bundesministerium für Wirtschaft und Energie: Berlin. [2] BRD, Energiekonzept für eine umweltschonende, zuverlässige und bezahlbare Energieversorgung, Bundeskabinett. 2010: Berlin. [3] UN, Paris Agreement - COP21, United Nations Framework Convention on Climate Change 2015: Paris.

COP21 Paris [3]

0%

2050

Mobility

Industry and commerce

Residential

Others

Power Sector

Mobility Industry/ commerce

Resi- dential

Others Power Sector

GHG emission reduction per sector 1990 to 2013 [1] Transport sector with lowest GHG emissions reductions

Vorführender
Präsentationsnotizen
GHG-Emissionen in allen Sektoren + Besonderes Augenmerk auf Verkehr
Page 6: Energy Concept to Providing the German Road Transport ......Institut für Elektrochemische Verfahrenstechnik (IEK-3) 20 . Topology Design Options . Placement of the components within

Institut für Elektrochemische Verfahrenstechnik (IEK-3) 6

Second largest hydrogen pipeline in Germany (150 km) Cavern and distribution station nearby High potential of PV and wind power

[1] HYDROGEN POWER STORAGE & SOLUTIONS EAST GERMANY. URL: http://www.hypos-eastgermany.de/sites/default/files/anhang/aktuelle_hypos_musterpraesentation_2.pdf [05.10.2016] [2] Bundesnetzagentur: Quartalsbericht zu Netz- und Systemsicherheitsmaßnahmen. Bundesnetzagentur für Elektrizität, Gas, Telekommunikation, Post und Eisenbahnen, Bonn, 2016

Affected grid elements Duration [h] in the 1st quarter

12-37

28-62

63-125

>125 0

20

40

60

80

100

120

020406080

100120140160180

1 Q. 2 Q. 3 Q. 4 Q.

Estim

ated

com

pens

atio

n pa

ymen

ts [M

io €

]

Los

s of

ele

ctric

ity

prod

uctio

n [G

Wh]

Transmission grid Distribution gridTransmission grid Distribution grid

Power-related re-dispatch measures in the 1st quarter of

2015 in the 50 Hertz region

Feed-in management measures in Brandenburg 2015

Hydrogen Infrastructure Assets and Feed-in Management in the Electricity Grid

Vorführender
Präsentationsnotizen
Einspeisemanagement und Re-dispatch Maßnahmen sind heute Realität, wenn auch in geringem Umfang + Industrie könnte neben Verkehr einen zweiten H2-Nachfrager stellen und damit für eine frühere Wirtschaftlichkeit sorgen. Bezug auf Machbarkeitsstudie: 4000 t/a (Überschussstrom) – 14.000 t/a Engpassmanagement
Page 7: Energy Concept to Providing the German Road Transport ......Institut für Elektrochemische Verfahrenstechnik (IEK-3) 20 . Topology Design Options . Placement of the components within

Institut für Elektrochemische Verfahrenstechnik (IEK-3) 7

Hydrogen Production Capacity in 2050 IEK-3’s Energy Concept 2.0

Page 8: Energy Concept to Providing the German Road Transport ......Institut für Elektrochemische Verfahrenstechnik (IEK-3) 20 . Topology Design Options . Placement of the components within

Institut für Elektrochemische Verfahrenstechnik (IEK-3) 8

Energy Concept 2.0 Assessment based on municipality level | hourly resolution of grid load and RES feed-in

RES power [GW | TWh]: onshore: 170 | 350; offshore: 59 | 231; PV: 55 | 47; hydro: 6 | 21; bio: 7 | 44 Further assumptions: grid electricity: 528 TWh; imports: 28 TWh; exports: 45 TWh; pos. residual: natural gas Excess electricity and hydrogen production: „Copper plate“ & 40 GWh pumped hydro: 191 TWh → 4.0 million tH2 Grid capacity constraints considered: 293 TWh → 6.2 million tH2 H 2

Pro

duct

ion/

a

All values after Robinius, M. (2016): Strom- und Gasmarktdesign zur Versorgung des deutschen Straßenverkehrs mit Wasserstoff. Dissertation RWTH Aachen University, ISBN: 978-3-95806-110-1

Additionally: imports and exports

Electrical grid Conventional power plants

Residual load (RL) Year 2050 Load RES

for example PV = –

Neg. RL (surplus)

Pos. RL

Vorführender
Präsentationsnotizen
Zahlenschlacht Teil 1/3; sind dabei, Werkzeuge aufzubauen, die uns mit dem Netzausbau spielen lassen -> im Stromnetz bisher einschlägige Institute…
Page 9: Energy Concept to Providing the German Road Transport ......Institut für Elektrochemische Verfahrenstechnik (IEK-3) 20 . Topology Design Options . Placement of the components within

Institut für Elektrochemische Verfahrenstechnik (IEK-3) 9

In Detail: Wind Power Modelling

Page 10: Energy Concept to Providing the German Road Transport ......Institut für Elektrochemische Verfahrenstechnik (IEK-3) 20 . Topology Design Options . Placement of the components within

Institut für Elektrochemische Verfahrenstechnik (IEK-3) 10

Interpretation of results

DWD weather data

Energy yield assessment

WPP specifications

Area investigation for potential locations

Potential locations map of wind power plants

4 WPP types so far Enercon E-126 | 7.6 MW Enercon E-115 | 3.0 MW Vestas V-90 | 2.5 MW Nordex N-100 | 2.5 MW

WPP Location optimization

Selection of WPP using following criteria:

1. Minimum LCOE [€/MWh] 2. Maximum peak power hours [h/a] 3. Maximum area specific energy yield

[MWh/m2]

Locations map selected wind power plant

Technical characteristics Power characteristics Specific investment Shaft height Lifetime Etc.

Weibull-Distribution Average wind speed C parameter K parameter Roughness factor

Annual energy yield Installed capacity Local LCOE Equipment type

distribution Strong wind &

weak wind zones Full load hours

Optimized Location of Wind Power Plants in Germany

Vorführender
Präsentationsnotizen
Optimierung (Mitte) wird gespeist durch…
Page 11: Energy Concept to Providing the German Road Transport ......Institut für Elektrochemische Verfahrenstechnik (IEK-3) 20 . Topology Design Options . Placement of the components within

Institut für Elektrochemische Verfahrenstechnik (IEK-3) 11

Hydrogen Demand and Supply in 2050 IEK-3’s Energy Concept 2.0

Page 12: Energy Concept to Providing the German Road Transport ......Institut für Elektrochemische Verfahrenstechnik (IEK-3) 20 . Topology Design Options . Placement of the components within

Institut für Elektrochemische Verfahrenstechnik (IEK-3) 12

Energy Concept 2.0 Assessment based on counties level

FCV [kg/100 km]: 0.92 (2010) → 0.58 (2050) [1], linear decrease FCV fleet: curve fit; until 2033 according to [2]; 2050 market share: 75 % of German fleet Further assumptions: 14,000 km annual mileage 12 years lifetime; total vehicle stock: 44 million cars Peak annual H2 demand: 2.93 million tH2 (2052; 4.2-6.0 available in 2050) H 2

Dem

and/

a

All values after Robinius, M. (2016): Strom- und Gasmarktdesign zur Versorgung des deutschen Straßenverkehrs mit Wasserstoff and Tietze, V.: Techno-ökonomische Bewertung von pipelinebasierten Wasserstoffversorgungssystemen für den deutschen Straßenverkehr, to be published except: [1] GermanHy (2009), Scenario “Moderat” [2] H2-Mobility, time scale shifted 2 years into the future [3] Krieg, D. (2012), Konzept und Kosten eines Pipelinesystems zur Versorgung des deutschen Straßenverkehrs mit Wasserstoff.

0

0,5

1

1,5

2

2,5

3

05

10152025303540

Hydrogen demand [103 t/a]

FCV

[Mill

ion]

Hyd

roge

n D

eman

d [M

illio

n t] Peak year 2052

Number of cars Population density Useable income of private households …

High hydrogen demand

0 - 3 3 - 4 4 - 5 5 - 6 6 - 8 8 - 11 11 - 19 19 - 30 30 - 45 45 - 148

Vorführender
Präsentationsnotizen
Wie es hierzu kommt, wird nachfolgend erläutert
Page 13: Energy Concept to Providing the German Road Transport ......Institut für Elektrochemische Verfahrenstechnik (IEK-3) 20 . Topology Design Options . Placement of the components within

Institut für Elektrochemische Verfahrenstechnik (IEK-3) 13

Startup regions according to assumptions of the H2 Mobility Initiative: • Hamburg • Berlin • Düsseldorf • Frankfurt • Stuttgart • München

[1] V. Tietze: Techno-ökonomischer Entwurf eines Wasserstoffversorgungssystems für den deutschen Straßenverkehr. Forschungszentrum Jülich GmbH – Institut für Energie- und Klimaforschung – Elektrochemische Verfahrenstechnik, 2016

Region Specific Hydrogen Startup Years

Legend

Startup Year

Page 14: Energy Concept to Providing the German Road Transport ......Institut für Elektrochemische Verfahrenstechnik (IEK-3) 20 . Topology Design Options . Placement of the components within

Institut für Elektrochemische Verfahrenstechnik (IEK-3) 14

2015 2020 2025 2030 2035

2040 2045 2050 2055 2060

Regional Spread of FCVs

[1] V. Tietze: Techno-ökonomischer Entwurf eines Wasserstoffversorgungssystems für den deutschen Straßenverkehr. Forschungszentrum Jülich GmbH – Institut für Energie- und Klimaforschung – Elektrochemische Verfahrenstechnik, 2016

Legend

Number of FCEVs

Vorführender
Präsentationsnotizen
Werden später benutzt um den Infrastrukturbedarf in der Markteinführung zu bestimmen
Page 15: Energy Concept to Providing the German Road Transport ......Institut für Elektrochemische Verfahrenstechnik (IEK-3) 20 . Topology Design Options . Placement of the components within

Institut für Elektrochemische Verfahrenstechnik (IEK-3) 15

Energy Concept 2.0 Pipeline network design based on residual load and H2 demand analysis

H2 sources: 28 GW electrolysis power in 15 districts in Northern Germany, 15 billion € H2 sinks: 9,968 refueling stations with averaged sales of 803 kg/d, 20 billion € H2 storage: 48 TWh (incl. 60 day reserve), 8 billion € Pipeline invest [3]: 6.7 billion € (12,104 km transmission grid); 12 billion € (29,671 km distribution grid) Electricity cost: LCOE Onshore: 5.8 ct/kWh; WACC: 5.8 % H2 cost distribution (pre-tax) [ct/kWh]: Energy: 8.5; invest: 3.4; capital charge: 2.3; OPEX: 2.3 Total H2 cost (pre-tax): 17.5 ct/kWh (5.83 €/kg)

Resu

lts

All values after Robinius, M. (2016): Strom- und Gasmarktdesign zur Versorgung des deutschen Straßenverkehrs mit Wasserstoff. Dissertation RWTH Aachen University, ISBN: 978-3-95806-110-1; except: [3] Krieg, D. (2012), Konzept und Kosten eines Pipelinesystems zur Versorgung des deutschen Straßenverkehrs mit Wasserstoff. Forschungszentrum Jülich IEK-3 [4] Tietze, V.: Techno-ökonomische Bewertung von pipelinebasierten Wasserstoffversorgungssystemen für den deutschen Straßenverkehr, to be published

Neg. RL (Surplus)

High Hydrogen Demand

Electrolyzer Node Electrical line County with surplus

Transmission Hubs Distribution

Page 16: Energy Concept to Providing the German Road Transport ......Institut für Elektrochemische Verfahrenstechnik (IEK-3) 20 . Topology Design Options . Placement of the components within

Institut für Elektrochemische Verfahrenstechnik (IEK-3) 16

In Detail: Pipeline Design Options

Page 17: Energy Concept to Providing the German Road Transport ......Institut für Elektrochemische Verfahrenstechnik (IEK-3) 20 . Topology Design Options . Placement of the components within

Institut für Elektrochemische Verfahrenstechnik (IEK-3) 17

Approach H2 production model

Input: Residual load data of REMP (M. Robinius) H2 demand model

Input: exogenous national FCV target value

Infrastructure model

Dependency: demand production

Cost optimization models Network-topology-flow-model, FS-selection-connection-model, Diameter-pressure-model

Techno-economic component models Compressor, storages, pipelines, electrolysers, fuelling stations (FS), power lines

( )production , ,m t X Y ( )demand , ,m t X Y

GIS data Geological und geographical data

Component data Technical und economic data

Physical properties models Real gas (and ideal gas)

[1] V. Tietze: Techno-ökonomischer Entwurf eines Wasserstoffversorgungssystems für den deutschen Straßenverkehr. Forschungszentrum Jülich GmbH – Institut für Energie- und Klimaforschung – Elektrochemische Verfahrenstechnik, 2016

Vorführender
Präsentationsnotizen
Wellbore (WB) • Restrictions Diameter di ≤ 220 mm due to safety valve Velocity wWB ≤ 20 m/s • Withdrawal rate mWB=mSC depends on design • and restrictions of WB as well as on pressure • and temperature of SC Salt cavern (SC) • Restrictions to ensure cavern stability Pressure limits dependent on depth Pressure change dpSC/dt ≤ 10 bar/h Pressure reduction ΔpSC ≤ 10 bar per day • Amount of working gas determined by cavern size, pressure limits and temperature • Pressure and temperature change during
Page 18: Energy Concept to Providing the German Road Transport ......Institut für Elektrochemische Verfahrenstechnik (IEK-3) 20 . Topology Design Options . Placement of the components within

Institut für Elektrochemische Verfahrenstechnik (IEK-3) 18

Topology Design Options

Placement of the components within the system including the resulting mode of operation affects their design and life expectancy, thus leading to different investment and operating costs.

Electrical grid node Electrolyser Salt cavern Fuelling station without onsite storage vessel for balancing demand fluctuations

Power line Pipeline with fluctuating mass flow Pipeline with constant mass flow

Design I: Electrolyser placed at electrical grid node and demand balancing via salt cavern

Design II: Electrolyser placed at salt cavern and demand balancing via salt cavern

Design III: Electrolyser placed at electrical grid node and demand balancing via local onsite storage

Design IV: Electrolyser placed at salt cavern and demand balancing via local onsite storage

-

Fuelling station with onsite storage vessel for balancing demand fluctuations

[1] V. Tietze: Techno-ökonomischer Entwurf eines Wasserstoffversorgungssystems für den deutschen Straßenverkehr. Forschungszentrum Jülich GmbH – Institut für Energie- und Klimaforschung – Elektrochemische Verfahrenstechnik, 2016

Page 19: Energy Concept to Providing the German Road Transport ......Institut für Elektrochemische Verfahrenstechnik (IEK-3) 20 . Topology Design Options . Placement of the components within

Institut für Elektrochemische Verfahrenstechnik (IEK-3) 19

Pipeline Route and Storage Location Design II Design IV

Pipeline length: 3,135 km

[1] V. Tietze: Techno-ökonomischer Entwurf eines Wasserstoffversorgungssystems für den deutschen Straßenverkehr. Forschungszentrum Jülich GmbH – Institut für Energie- und Klimaforschung – Elektrochemische Verfahrenstechnik, 2016

Page 20: Energy Concept to Providing the German Road Transport ......Institut für Elektrochemische Verfahrenstechnik (IEK-3) 20 . Topology Design Options . Placement of the components within

Institut für Elektrochemische Verfahrenstechnik (IEK-3) 20

Topology Design Options

Placement of the components within the system including the resulting mode of operation affects their design and life expectancy, thus leading to different investment and operating costs.

Electrical grid node Electrolyser Salt cavern Fuelling station without onsite storage vessel for balancing demand fluctuations

Power line Pipeline with fluctuating mass flow Pipeline with constant mass flow

Design I: Electrolyser placed at electrical grid node and demand balancing via salt cavern

Design II: Electrolyser placed at salt cavern and demand balancing via salt cavern

Design III: Electrolyser placed at electrical grid node and demand balancing via local onsite storage

Design IV: Electrolyser placed at salt cavern and demand balancing via local onsite storage

-

Fuelling station with onsite storage vessel for balancing demand fluctuations

[1] V. Tietze: Techno-ökonomischer Entwurf eines Wasserstoffversorgungssystems für den deutschen Straßenverkehr. Forschungszentrum Jülich GmbH – Institut für Energie- und Klimaforschung – Elektrochemische Verfahrenstechnik, 2016

Page 21: Energy Concept to Providing the German Road Transport ......Institut für Elektrochemische Verfahrenstechnik (IEK-3) 20 . Topology Design Options . Placement of the components within

Institut für Elektrochemische Verfahrenstechnik (IEK-3) 21

Design II Design II Low hydrogen demand at fuelling stations Maximal hydrogen demand at fuelling stations

Operational Pressure Variations

FS,minm FS,maxm

[1] V. Tietze: Techno-ökonomischer Entwurf eines Wasserstoffversorgungssystems für den deutschen Straßenverkehr. Forschungszentrum Jülich GmbH – Institut für Energie- und Klimaforschung – Elektrochemische Verfahrenstechnik, 2016

Page 22: Energy Concept to Providing the German Road Transport ......Institut für Elektrochemische Verfahrenstechnik (IEK-3) 20 . Topology Design Options . Placement of the components within

Institut für Elektrochemische Verfahrenstechnik (IEK-3) 22

Economics

Page 23: Energy Concept to Providing the German Road Transport ......Institut für Elektrochemische Verfahrenstechnik (IEK-3) 20 . Topology Design Options . Placement of the components within

Institut für Elektrochemische Verfahrenstechnik (IEK-3) 23

8,9 8,4 10,5

3,41,3

3,03,3

0,7

1,51,9

0,4

0,9

0

4

8

12

16

20

24

Wind power(5,9 ct/kWh)Elektrolysis

H2 at pump(appreciable cost)

Gasoline(70 ct/l)

Natural gas(2,5 ct/kWh)

Wind power(5,9 ct/kWh)ElectrolysisGrid feed-in

Wind power(5,9 ct/kWh)ElectrolysisMethanation

Cost

of h

ydro

gen,

ct€/k

Wh

OPEXInterest costDepreciation costEnergy costH2 appreciable costGasoline/NG, pre tax

22(0,7 kg/100km)

17,5

16*(1,0 kg/100km)

8.0

2.5

10,8

15,9

CAPEX via depreciation of investment plus interest 10 a for electrolysers and other production devices 40 a for transmission grid 20 a for distribution grid and refueling stations Interest rate 8.0 % p.a.

Other Assumptions: 2.9 million tH2/a from renewable power via electrolysis Electrolysis: η = 70 %LHV, 28 GW; investment cost 500 €/kW Methanation: η = 80 %LHV

* Appreciable cost @ half the specific fuel consumption

Hydrogen for Transportation Hydrogen or Methane to be Fed into Gas Grid

Cost Comparison of Power to Gas Options – Pre-tax

Page 24: Energy Concept to Providing the German Road Transport ......Institut für Elektrochemische Verfahrenstechnik (IEK-3) 20 . Topology Design Options . Placement of the components within

Institut für Elektrochemische Verfahrenstechnik (IEK-3) 24

Conclusion

A massive extension of renewable energy sources (RES) is mandatory for achieving 2050 GHG emissions targets

Wind energy will be the backbone

Seasonal fluctuations make storage systems in the terawatt hours range necessary

Only chemical storage systems can comply with this requirement

All energy sectors – mobility, industry, power... – have to be coupled

Electrolyzers are one major technology for sector coupling

A comparison of the different use options of hydrogen showed that:

Feed-in of hydrogen or synthetic methane in the natural gas grid are by a factor of 4 to 6 more expensive than conventional natural gas

Hydrogen from RES as a fuel for fuel cell vehicles allows fuel costs in the same range as gasoline or diesel powered vehicles

Page 25: Energy Concept to Providing the German Road Transport ......Institut für Elektrochemische Verfahrenstechnik (IEK-3) 20 . Topology Design Options . Placement of the components within

Institut für Elektrochemische Verfahrenstechnik (IEK-3) 25

Thank you for your attention Department of Process and Systems Analysis (VSA)

Dr. Thomas Grube Transport

[email protected]

Dr. Martin Robinius Head of VSA

[email protected]

Prof. Dr. Detlef Stolten Head of IEK-3

[email protected]

Dr. Alexander Otto Energy in the Industry

[email protected]

Dr. Bernd Emonts Deputy Head of IEK-3

[email protected]

Dr. Peter Markewitz Stationary Energy Systems

[email protected]

Page 26: Energy Concept to Providing the German Road Transport ......Institut für Elektrochemische Verfahrenstechnik (IEK-3) 20 . Topology Design Options . Placement of the components within

Institut für Elektrochemische Verfahrenstechnik (IEK-3) 26

Introduction Phase The Value of “Mobile Fueling Stations”

[1] J. Wild, R. Freymann und M. Zenner: Wasserstoff - Schlüssel zu weltweit nachhaltiger Energiewirtschaft - Beispiele aus Nordrhein- Westfalen von der Produktion zur Anwendung. EnergieRegion.NRW, 12/2009.

[2] A. Huss und M. Corneille: Wasserstoff-Tankstellen - Ein Leitfaden für Anwender und Entscheider. Hessisches Ministerium für Umwelt, Energie, Landwirtschaft und Verbraucherschutz, 04/2013

[3] A. Elgowainy, K. Reddi, E. Sutherland, et al.: Tube-trailer consolidation strategy for reducing hydrogen refueling station costs. International Journal of Hydrogen Energy, 39. 2014. S. 20197-20206

[4] A. Niedwiecki, N. Sirosh und A. Abele: TRANSPORTABLE HYDROGEN REFUELING STATION. USA Patent, 2004 [5] I. A. Richardson, J. T. Fisher, P. E. Frome, et al.: Low-cost, transportable hydrogen fueling station for early market adoption of fuel cell

electric vehicles. International Journal of Hydrogen Energy, 40. 7/6/. 2015. S. 8122-8127 [6] J. Ogden und M. Nicholas: Analysis of a ‘cluster’ strategy for introducing hydrogen vehicles in Southern California. Energy Policy,39. 2011. [7] K. Sun, X. Pan, Z. Li, et al.: Risk analysis on mobile hydrogen refueling stations in Shanghai. Int. Journal of Hydrogen Energy, 39. 2014. [8] J. Hongo: First Mobile Hydrogen Fueling Station Opens in Tokyo. Wall Street Journal - Japan Real Time, 24.05.2015 [9] Hydrogen Tube Trailer. Verfügbar unter: http://pimg.tradeindia.com/02724430/b/1/Hydrogen-Gas-Storage-Tube-Trailer.jpg [14.09.2016]

Page 27: Energy Concept to Providing the German Road Transport ......Institut für Elektrochemische Verfahrenstechnik (IEK-3) 20 . Topology Design Options . Placement of the components within

Institut für Elektrochemische Verfahrenstechnik (IEK-3) 27

Placement Optimization for Hydrogen Fueling Stations

Input parameters Placement optimization Output parameters

[1] P. Lopion: Standortoptimierung und Konzeptionierung des Einsatzes mobiler Wasserstofftankstellen. Masterarbeit. Forschungszentrum Jülich GmbH – Institut für Energie- und Klimaforschung – Elektrochemische Verfahrenstechnik, 2016

Simulation of customer data

Optimal placement of hydrogen fueling

stations

Forecast of the hydrogen demand development

Site assessment

Hydrogen fueling station demand

Supplied customers

Profitability analysis

Probability distribution based on:

Allocation criteria on the district level: − Disposable monthly household

income/ Rent index − Number of inhabitants − Population density − Registered cars − Car density

Scientific analysis:

Possible application for the Industry:

Mobile App for FCEV Costumer − Information about fueling stations − Information about daily trips to work − ….

− Business density − Population density

Page 28: Energy Concept to Providing the German Road Transport ......Institut für Elektrochemische Verfahrenstechnik (IEK-3) 20 . Topology Design Options . Placement of the components within

Institut für Elektrochemische Verfahrenstechnik (IEK-3) 28

Wasserstofftankstellen Berlin

2017 2018 2019 2020 2016

Fueling station w/o H2-distribution Fueling station w/ H2-distribution FCEV-Owner (Place of residence) FCEV-Owner (Workplace)

[1] P. Lopion: Standortoptimierung und Konzeptionierung des Einsatzes mobiler Wasserstofftankstellen. Masterarbeit. Forschungszentrum Jülich GmbH – Institut für Energie- und Klimaforschung – Elektrochemische Verfahrenstechnik, 2016

Existing H2-fueling station

Recommended location for mobile H2-fueling station

Relocation of a mobile H2-fueling station

New mobile H2-fueling

station

Expansion of customer base

Opening of a additional mobile

H2-fueling station

Page 29: Energy Concept to Providing the German Road Transport ......Institut für Elektrochemische Verfahrenstechnik (IEK-3) 20 . Topology Design Options . Placement of the components within

Institut für Elektrochemische Verfahrenstechnik (IEK-3) 29

115

71

0

20

40

60

80

100

120

140

[Mio

. €]

Berlin

Cumulated infrastructure cost whenexclusively utilizing stationary fuelingstationsCumulated infrastructure cost whenallowing the utilization of mobile fuelingstations

The Value of “Mobile Hydrogen Fueling Stations” in Berlin

Potential cost savings over 15 years

[1] P. Lopion: Standortoptimierung und Konzeptionierung des Einsatzes mobiler Wasserstofftankstellen. Masterarbeit. Forschungszentrum Jülich GmbH – Institut für Energie- und Klimaforschung – Elektrochemische Verfahrenstechnik, 2016

∆ 44

Without mobile hydrogen fueling stations

With mobile hydrogen fueling stations

The Value of „Mobile Hydrogen Fueling Stations“ in Berlin is

€44 Mio.