energetske promene pri fizičkim i hemijskim procesima · termohemija poglavlje 2.2 termohemija je...

38
Termohemija Energetske promene pri fizičkim i hemijskim procesima

Upload: others

Post on 10-Sep-2019

18 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Energetske promene pri fizičkim i hemijskim procesima · Termohemija Poglavlje 2.2 Termohemija je deo termodinamike i bavi se proučavanjem toplotom raymenjenom pri hemijskim i fizičkim

Termohemija

Energetske promenepri fizičkim i

hemijskim procesima

Page 2: Energetske promene pri fizičkim i hemijskim procesima · Termohemija Poglavlje 2.2 Termohemija je deo termodinamike i bavi se proučavanjem toplotom raymenjenom pri hemijskim i fizičkim

TermohemijaPoglavlje 2.2

Termohemija je deo termodinamike i bavi se proučavanjem toplotomraymenjenom pri hemijskim i fizičkim promenama, a bazira se na I zakonu termodinamike.Do toplotnih promena dolazi pošto različite supstancije u različitimstanjima imaju različite količine unutrašnje energije odnosno toplotnesadržaje, pa će ukupni sadržaj energije sistema u krajnjem stanju(fizičke ili hemijske promene) biti najčešće različit od ukupnogsadržaja energije u početnom stanju, tako da termodinamički procesimogu biti•praćeni oslobađanjem (egzotermni) ili•apsorpcijom (endotermni) energije u obliku toplote.

Page 3: Energetske promene pri fizičkim i hemijskim procesima · Termohemija Poglavlje 2.2 Termohemija je deo termodinamike i bavi se proučavanjem toplotom raymenjenom pri hemijskim i fizičkim

Endotermne i Egzotermne ReakcijeKoristiti dijagram energetskih nivoa da bi vizuelno prikazao endotermene i egzotermnereakcije.

Objasniti znak u sledećim promenama:

H2O (č) → H2O (t) ΔH = 6.01 kJ at 298 K

H2O (t) → H2O (č) ΔH = – 6.01 kJ at 298 K

H2O (t) → H2O (g) ΔH = 44.0 kJ at 273 K

H2O (g) → H2O (t) ΔH = – 44.0 kJ at 273 K

2 NO (g) → N2 (g) + O2 (g) ΔH = 181 kJ

N2 (g) + O2 (g) → 2 NO (g) ΔH = – 181 kJ

Objasniti zašto se znak menja kada je proces obrnut

Page 4: Energetske promene pri fizičkim i hemijskim procesima · Termohemija Poglavlje 2.2 Termohemija je deo termodinamike i bavi se proučavanjem toplotom raymenjenom pri hemijskim i fizičkim

Veza promene entalpije i promene unutrašnje energije

Za idealno gasno stanje veza između entalpije i unutrašnje energije je:

nRTUpVUH +=+=a za konačnu promenu stanja sistema:

gde je promena broja molova gasovitih komponenata u reakciji.

Tri mola gasa su zamenjena sa dva mola tečnosti pa je:

Razlika je negativna jer toplota odlazi iz sistema, a sistem se kontrahujejer se gradi tečna voda.

RTnUVPUH gasΔ+Δ=Δ+Δ=Δ

Page 5: Energetske promene pri fizičkim i hemijskim procesima · Termohemija Poglavlje 2.2 Termohemija je deo termodinamike i bavi se proučavanjem toplotom raymenjenom pri hemijskim i fizičkim

Primer veze ΔU, ΔHZa reakciju, 2CO (g) + O2 (g) → 2 CO2 (g), na 298 K qp = -566,0 kJ, izračunati qv and w.

Rešenje:Rad je zbog promene zapremine,

w = -PΔV = -(nf – ni) R T= -( 2 – 3) · 8,3145 J mol –1 K–1 · 298 K= + 2500 J = + 2 ,5 kJ mol –1

qP= ΔH = – 566,0 kJ mol –1

qv = ΔU = – 566,0 – (– 2,5) kJ = – 563,5 kJ

Primedba: 3 mola gasa je redukovano do 2 mola, sistem mora primati rad da bi se komprimovao do istog P,

w je pozitivno.

ΔH ΔU

w

2CO (g) + O2 (g)

2CO2 (g)

Page 6: Energetske promene pri fizičkim i hemijskim procesima · Termohemija Poglavlje 2.2 Termohemija je deo termodinamike i bavi se proučavanjem toplotom raymenjenom pri hemijskim i fizičkim

Termohemijske jednačine, promena standardne entalpije

Termohemijske jednačine obuhvataju hemijsku jednačinu saoznakom stanja svake od supstancija koja u promeni učestvuje(pošto toplotni sadržaj zavisi od stanja), temperaturu pri kojoj se promena dešava kao i odgovarajuću energetsku promenu.

molkJHtOHgCOgOtHC sag /5471)(9)(8)(225)( 222188 −=Δ+→+ θ

Da bi se odgovarajuće toplotne promene mogle porediti, definiše se promena standardne entalpije, ΔHθ koja predstvljapromenu entalpije za proces u kome su supstancije u početnom ikrajnjem stanju u standardnim stanjima.

Standardno stanje supstancije pri određenoj temperaturi je njen čist oblik pri pritisku od 1 bara.

Primedba-standardna entalpija se može dati za bilo koju temperaturu ali se uobičajeno daje na 298,15 K (250C)

Page 7: Energetske promene pri fizičkim i hemijskim procesima · Termohemija Poglavlje 2.2 Termohemija je deo termodinamike i bavi se proučavanjem toplotom raymenjenom pri hemijskim i fizičkim

Entalpije fizičkih promenaStandardna entalpija prelaza, ΔprH0, je promena standardne entalpijepri promenu fizičkog stanja (faze) supstancije.

(A) Entalpija je funkcija stanja, nezavisna od načina prelaska iz početnogu krajnje stanje: ista vredmost za ΔH0 bez obzira kako se promena dešava

sublimacija H2O(č)→H2O(g) ΔsubH0

ključanje H2O(t)→H2O(g) ΔispH0

topljenje H2O(č) →H2O(t) ΔtopH0

(B) Entalpija je funkcija stanja pa ΔH0 samo menja znak kada se promene dešava u jednom ili drugom smeru, ΔH0(A →B)=-ΔH0(B →A)

Primer: Kondenzacija H2O(g)→H2O(t) ΔispH0(373)=-40,66kJ/molIsparavanje H2O(t)→H2O(g) ΔispH0(373)=40,66kJ/mol

Page 8: Energetske promene pri fizičkim i hemijskim procesima · Termohemija Poglavlje 2.2 Termohemija je deo termodinamike i bavi se proučavanjem toplotom raymenjenom pri hemijskim i fizičkim

Energetske promenepri fizičkim procesimaEnergetskeEnergetske promenepromenepripri fizifiziččkimkim procesimaprocesima

∆U = U(konačno) - U(početno)= U(gas) - U(čvrsto)

COCO22 ččvrstvrst

COCO22 gasgas

Page 9: Energetske promene pri fizičkim i hemijskim procesima · Termohemija Poglavlje 2.2 Termohemija je deo termodinamike i bavi se proučavanjem toplotom raymenjenom pri hemijskim i fizičkim

Grafičko prikazivanje entalpija prelaza

(A) ΔH0 isto bez obzira na put (B) Direktna-povratan proces,ΔH0 samo menja znak

Page 10: Energetske promene pri fizičkim i hemijskim procesima · Termohemija Poglavlje 2.2 Termohemija je deo termodinamike i bavi se proučavanjem toplotom raymenjenom pri hemijskim i fizičkim

Entalpije različitih prelaza

Različiti tipovi prelaza koji su praćeni odgovarajućimpromenama entalpija prikazani prema IUPAC-u

ΔfHElementi→jedinjenjeFormiranjeΔcHJedinjenje(s,l,g)+O2(g)→ O2(g)+H2O(l,g)SagorevanjeΔrHReaktanti→produktiReakcijaΔegHX(g) + e−(g)→X−(g)Vezivanje elektronaΔionHX(g)→X+(g) + e−(g)JonizacijaΔatHVrste(s,l,g)→atomi(g)AtomizacijaΔhydHX±(g)→X(aq)HidratacijaΔsolHRastvorak→rastvorRastvaranjeΔmixHČisto→smešaMešanje fluidaΔsubHs→gSublimacijaΔvapHl→gIsparavanjeΔfusHs→lTopljenjeΔtrsHFaza α→Faza βFazni prelaz

Oznaka*ProcesPrelaz

Page 11: Energetske promene pri fizičkim i hemijskim procesima · Termohemija Poglavlje 2.2 Termohemija je deo termodinamike i bavi se proučavanjem toplotom raymenjenom pri hemijskim i fizičkim

Entalpije topljenja i isparavanjaU tablici su kao ilustracija date entalpije topljenja i isparavanja saodgovarajućim temperaturama faznih prelaza

Page 12: Energetske promene pri fizičkim i hemijskim procesima · Termohemija Poglavlje 2.2 Termohemija je deo termodinamike i bavi se proučavanjem toplotom raymenjenom pri hemijskim i fizičkim

Entalpije drugih fizičkih promenaEntalpija jonizacije, ΔH0

i predstavlja promenu entalpije koja pratijonizaciju jednog mola gasovite supstancije:

A(g) → A+(g) + e(g) ΔH0i

ΔH0i = ΔU0

i + RT

Energija jonizacije, Ui je promena unutrašnje energije jonizacije pri T=0Pošto je RT(298)≈ 2,5 kJ mol−1, to se može uzeti da je: ΔH0

i≈ ΔU0i≈Ui.

Promena standardne entalpije koja prati vezivanje elektrona za atom, jonili molekul u gasnoj fazi je entalpija vezivanja elektrona:

A(g) + e-(g)→A-(g) ΔH0ea

ΔH0ea = ΔU0

ea – RT = − Uea − RT elektronskiafinitet

Page 13: Energetske promene pri fizičkim i hemijskim procesima · Termohemija Poglavlje 2.2 Termohemija je deo termodinamike i bavi se proučavanjem toplotom raymenjenom pri hemijskim i fizičkim

Toplote rastvaranjaStandardna molarna entalpija rastvaranja, ΔH0

ras,m, neke supstancijepredstavlja promenu standardne entalpije pri rastvaranja jednog molate supstancije u određenoj količini rastvarača. Ovo je integralna toplotarastvaranja koja zavisi od koncentracije nagrađenog rastvora.

Diferencijalna toplota rastvaranja predstavlja standardnu toploturastvaranja koja prati rastvaranje 1 mola supstancije u beskonačnovelikoj količini rastvora određene koncentracije, čiji dalji dodatak ne dovodi do promene koncentracije i toplote rastvaranja

Page 14: Energetske promene pri fizičkim i hemijskim procesima · Termohemija Poglavlje 2.2 Termohemija je deo termodinamike i bavi se proučavanjem toplotom raymenjenom pri hemijskim i fizičkim

Entalpije hemijskih promena

Standardna entalpija reakcije, ΔrH0(T) je promena entalpije kadareaktanti u standardnom stanju daju produkte u standardnom stanju

Čisti ne izmešani reaktantiu standardnim stanjima

Čisti odvojeni produktiu standardnim stanjima

Primer:

CH4(g)+2O2(g)→CO2(g)+2H2O(t) ΔsagH0=-890kJ/mol

Primedba: Toplotna promena mešanja i odvajanja je zanemarljivo mala upoređenju sa standardnom entalpijom rekcije

Page 15: Energetske promene pri fizičkim i hemijskim procesima · Termohemija Poglavlje 2.2 Termohemija je deo termodinamike i bavi se proučavanjem toplotom raymenjenom pri hemijskim i fizičkim

Entalpija sagorevanja

Dato je,C12H22O11 (s) + 12 O2 (g) → 12 CO2 (g) + 11 H2O (l), ΔH = –5650 kJ

Koliko se toplote oslobodi kada 10.0 g of saharoze (Mr= 342.3), poštoste je konzumirali, svarili i potpuno sagoreli (oksidovali)?

Rešenje: Dati uslovi se odbnose na humano korišćenje saharoze (S),

10.0 g S = – 16506 kJ1 mol S342.3 g S

– 5650 kJ1 mol S – znači oslobođena energija

Zadatak:Odrediti ΔU i w

Po jednačini

Standardna molarna entalpija sagorevanja, ΔH0sag,m, je promena standardne

entalpije pri sagorevanju jednog mola organske supstancije do CO2 i H2O, akosupstancija sadrži C, H ili O i još do N2 ili azotne ili sumporne okside ako sadržiN ili S.

Page 16: Energetske promene pri fizičkim i hemijskim procesima · Termohemija Poglavlje 2.2 Termohemija je deo termodinamike i bavi se proučavanjem toplotom raymenjenom pri hemijskim i fizičkim

Standardne molarne entalpije

Ako se razmotri reakcija: 2 A + B → 3 C + DStandardna entalpija reakcije se računa kao:

0

tan

00m

produkti tireakmr HHH ∑ ∑−=Δ νν

gde su ν stehiometrijski koeficijenti, pa je:[ ] [ ])()(2)()(3 00000 BHAHDHCHH mmmmr +−+=Δ

gde je Hm0(J) standardna molarna entalpija vrste J. Za reakciju opšteg tipa:

∑ =++=++ ++ 0...... 112211 iimmmm AskracenoAAAA υυυυυ

gde su: υi stehiometrijski koeficijenti, pozitivni za produkte a negativniza reaktante, Ai hemijski simboli, promena standardne entalpije reakcije je:

ΔH0T = ∑υi H0

T,i odnosno ΔU0T = ∑υi U0

T,i.

Page 17: Energetske promene pri fizičkim i hemijskim procesima · Termohemija Poglavlje 2.2 Termohemija je deo termodinamike i bavi se proučavanjem toplotom raymenjenom pri hemijskim i fizičkim

Standardna entalpija nastajanja (formiranja)Standardna molarna entalpija formiranja (ili nastajanja), ΔH0

f,m, je promena standardne entalpije pri formiranju jednog mola jedinjenjaiz elemenata u njihovim referentnim stanjima. Referentno stanje elementa definiše se kao njegovo najstabilnijestanje pri pritisku od 1 bara i na posmatranoj temperaturi.

Primeri:Azot N2(g)Živa Hg(t)Ugljenik C(grafit)Sumpor S(rombični)Kalaj Sn(beli)

Po konvenciji su entalpije elemenata u njihovomreferentnom stanu jednake nuli.

Standardna entalpija nastajanjatečnog benzena na 298K:

6C(č,grafit)+3H2(g)→C6H6(t)

ΔHf,m0=49 kJ/mol

Page 18: Energetske promene pri fizičkim i hemijskim procesima · Termohemija Poglavlje 2.2 Termohemija je deo termodinamike i bavi se proučavanjem toplotom raymenjenom pri hemijskim i fizičkim

∆∆HHffoo, , standardnastandardna molarnamolarna

entalpijaentalpija formiranjaformiranjaHH22(g) + 1/2 O(g) + 1/2 O22(g) (g) ----> H> H22O(g)O(g)∆∆HHff

oo (H(H22O, g)= O, g)= --241.8 kJ/mol241.8 kJ/mol

Po Po definicijidefiniciji, , ∆∆HHff

oo = 0 = 0 zaza elementeelemente u u njihovimnjihovim referentnimreferentnimstanjimastanjima..

Page 19: Energetske promene pri fizičkim i hemijskim procesima · Termohemija Poglavlje 2.2 Termohemija je deo termodinamike i bavi se proučavanjem toplotom raymenjenom pri hemijskim i fizičkim

0Ugljenik (C, grafit,č)2,4Ugljenik (C, dijamant,č)15,9Fosfor (P, crveni,č)0Fosfor (P, beli,č)121,7Hlor (Cl,g)0Hlor (Cl2,g)30,9Brom (Br2,g)0Brom (Br2,t)-2222saharoza (C12H22O11,č)-1274ά-D-glukoza (C6H12O6,č)49,0Benzen (C6H6,t)-238,7Metanol (CH3OH,t)226,7Etin (CHCH,g)-126,2n-Butan (C4H10,g)-84,7Etan (C2H6,g)-74,8Metan (CH4,g)

Standardne entalpije formiranja ΔHfo na 298K u kJ/mol

Page 20: Energetske promene pri fizičkim i hemijskim procesima · Termohemija Poglavlje 2.2 Termohemija je deo termodinamike i bavi se proučavanjem toplotom raymenjenom pri hemijskim i fizičkim

Postoje tablice termohemijskih i uopšte termodinamičkihpodataka za različite naučne i tehničke primene.

NIST(National biro of standards)-ov sajt imatermohemijske podatke za preko 6000 organskihi neorganskih jedinjenja. Takođe ima podatke zapreko 9000 reakcija i podataka za jone u preko

16 000 jedinjenja.

Pored toga postoje razni termohemijskiservisi(sajtovi).

Termohemijski podaci

Page 21: Energetske promene pri fizičkim i hemijskim procesima · Termohemija Poglavlje 2.2 Termohemija je deo termodinamike i bavi se proučavanjem toplotom raymenjenom pri hemijskim i fizičkim

Entalpija reakcije preko entalpija formiranja

Može se smatrati kao da se reakcija odigrava razlaganjem reaktanatado elemenata i onda formiranja produkata iz ovih elemenata.

Vrednost ΔHr0 čitave reakcije je suma

entalpija rasformiranja reaktanatado elemenata i formiranja produkata izelemenata. Prva entalpija je entalpijaformiranja reaktanata sa suprtonimznakom tako da je entalpija reakcijerazlika suma entalpija formiranja produ-kata i reaktanata:

∑∑∑ −==tireak

Tfprodukti

Tfi

iTfiT HHHHtan

0,

0,

0,,

0 ΔυΔυΔυΔ

Page 22: Energetske promene pri fizičkim i hemijskim procesima · Termohemija Poglavlje 2.2 Termohemija je deo termodinamike i bavi se proučavanjem toplotom raymenjenom pri hemijskim i fizičkim

Korišćenje standardnih entalpijaformiranja

KoriKoriššććenjeenje standardnihstandardnih entalpijaentalpijaformiranjaformiranja

UopUopšštete, , kadakada susu SVESVE entalpijeentalpije

formiranjaformiranja poznatepoznate,, momožže see se

odrediti entalpija reakcije!odrediti entalpija reakcije!

IzraIzraččunatiunati ∆∆H H reakcijereakcije??

∆Horxn=Σ ∆Hf

o(produkti) -Σ ∆Hfo (reaktanti)∆∆HHoo

rxnrxn==ΣΣ ∆∆HHffoo(produkti(produkti) ) --ΣΣ ∆∆HHff

oo ((reaktantireaktanti))

Zapamtite uvek je ∆ = krajnje – početno

Page 23: Energetske promene pri fizičkim i hemijskim procesima · Termohemija Poglavlje 2.2 Termohemija je deo termodinamike i bavi se proučavanjem toplotom raymenjenom pri hemijskim i fizičkim

Primer:

O3(g) → O2(g) + O(g) ΔH0298=106,5 kJ mol−1

Medjutim:Toplota neke reakcije se može izračunati iz toplota formiranja svihsupstancija koje u reakciji učestvuju, a takođe je moguće da se izpoznate toplote reakcije i toplota formiranja svih supstancija semjedne, izračuna toplota formiranja te supstancije kao u reakciji:

Kako je toplota formiranja ozona poznata, ΔHf.m0(O3)=-142,7 kJ/mol, to je

standardna toplota nastajanja atomskog kiseonika:

ΔH0f(O) = 106,5 kJ mol−1 + 142,7 kJ mol−1= =249,2 kJ mol−1

?

Page 24: Energetske promene pri fizičkim i hemijskim procesima · Termohemija Poglavlje 2.2 Termohemija je deo termodinamike i bavi se proučavanjem toplotom raymenjenom pri hemijskim i fizičkim

Termohemijski zakoni

• Lavoazije i Laplas su došli do zaključka, mereći toplote različitih hemijskih reakcija, da je toplota apsorbovana pri razlaganjujednog jedinjenja jednaka toploti koja se oslobodi kada se to jedinjenje nagradi izelemenata. Posledica toga je da sutermohemijske reakcije povratne.

Page 25: Energetske promene pri fizičkim i hemijskim procesima · Termohemija Poglavlje 2.2 Termohemija je deo termodinamike i bavi se proučavanjem toplotom raymenjenom pri hemijskim i fizičkim

Antoine Laurent Lavoisier

Bio između ostalog hemičar i ekonomista anajpoznatiji u objašnjenju uloge kiseonikau sagorevanju. Školovao se prvo za advokataa zatim za geologa. 1765 objašnjava kakoda se poboljša osvetljavanje Pariza. 1768. biva izabran u Kraljevsku akademiju nauke. Kasnije se bavi različitim zanimanjima a u vreme Francuske revolucije dospeva i u zatvor.Dao je prvo flogistonsku teoriju a zatim i pravo objašnjenje sago-revanja. Smatra se ocem moderne hemije. Potvrdio zakon o održanju mase, objasnio proces disanja, ali i tvorac pogrešne kaloričke teorije.

(1743-1794 )

Page 26: Energetske promene pri fizičkim i hemijskim procesima · Termohemija Poglavlje 2.2 Termohemija je deo termodinamike i bavi se proučavanjem toplotom raymenjenom pri hemijskim i fizičkim

Pierre-Simon Laplace(1749 – 1827)

Obrazovao se u benediktanskoj školi a zatim počeo studije teologije. Međutimubrzo je otkriven njegov veliki talenat zamatematiku i toj nauci je dao najvećidoprinosPrimenjuje matematičke metode u fizici,posebno matematici a radio je i u oblastikapilarnog dejstva, dvojnog prelamanja,brzine zvuka i teorije toplote.

Page 27: Energetske promene pri fizičkim i hemijskim procesima · Termohemija Poglavlje 2.2 Termohemija je deo termodinamike i bavi se proučavanjem toplotom raymenjenom pri hemijskim i fizičkim

•Zakon konstantnosti toplotnog zbira dao je Hes(Hess). On je zaključio da je ukupna toplotahemijske reakcije pri konstantnom pritisku ista, bez obzira u koliko stupnjeva se reakcija izvodi. Posledica ovog zakona je da se termohemijskejednačine mogu sabirati i oduzimati.

Termohemijski zakoni

Page 28: Energetske promene pri fizičkim i hemijskim procesima · Termohemija Poglavlje 2.2 Termohemija je deo termodinamike i bavi se proučavanjem toplotom raymenjenom pri hemijskim i fizičkim

GermainGermain Henri Hess (1802Henri Hess (1802--1850)1850)Rođen u Ženevi. Mladost proveo u Rusiji.Studirao na Univerzitetu Dorpat (Tartu, Estonija) i u Štokholmu kod Bercelijusa. Vraća se u Rusiju i učestvuje u geološkojekspediciji na Ural a zatim počinje medicinskupraksu u Irkutsku. Od 1830. u Petrogradupostaje profesor na Tehnološkom institutu.Njegov najznačajniji rad objavljen je 1840 a odnosi se na konstantnost toplotnog zbira.1842 formuliše i svoj drugi zakon termoneutralnosti prema komepri reakcijama izmene neutralnih soli u vodenim rastvorima nematoplotnih efekata.

Page 29: Energetske promene pri fizičkim i hemijskim procesima · Termohemija Poglavlje 2.2 Termohemija je deo termodinamike i bavi se proučavanjem toplotom raymenjenom pri hemijskim i fizičkim

Ilustracija Hess-ovog zakon

A + B → AB ΔH1

AB + B = AB2 ΔH2__dodati___________________A + 2 B = AB2 ΔH1 + ΔH2

= ΔH1 2 ΔH1 2

ΔH 2

ΔH1

A + 2B

AB2

AB + B

Page 30: Energetske promene pri fizičkim i hemijskim procesima · Termohemija Poglavlje 2.2 Termohemija je deo termodinamike i bavi se proučavanjem toplotom raymenjenom pri hemijskim i fizičkim

Hess-ov zakon toplotnog zbira

Promena entalpije čitavog procesa je suma promena entalpija individualnih koraka

Primer:Problem: izračunati toplotu reakcije oksidacije sumpora do sumpor-

trioksida prema reakcijama:

1) S (s) + O2 (g) SO2 (g) H1 = -296.0 kJ

2) 2 SO2 (g) + O2 (g) 2 SO3 (g) H2 = -198.2 kJ

3) S (s) + 3/2 O2 (g) SO3 (g) H3 = ?

molkJHkJHHHH /1,2472,494222 33213 −=Δ−=ΔΔ+Δ=Δ

Page 31: Energetske promene pri fizičkim i hemijskim procesima · Termohemija Poglavlje 2.2 Termohemija je deo termodinamike i bavi se proučavanjem toplotom raymenjenom pri hemijskim i fizičkim

NastajanjeNastajanje teteččnene HH22O O izizHH22 + O+ O22 ukljuuključčujeuje dvadva

egzoegzotermnatermna korakakoraka..

ENTALPIJA REAKCIJEENTALPIJA REAKCIJEENTALPIJA REAKCIJE

H2 + O2 gas

tečna H2OH2O para

Page 32: Energetske promene pri fizičkim i hemijskim procesima · Termohemija Poglavlje 2.2 Termohemija je deo termodinamike i bavi se proučavanjem toplotom raymenjenom pri hemijskim i fizičkim

NastajanjeNastajanje teteččnene HH22O O ukljuuključčujeuje

dvadva egzoegzotermnatermna korakakoraka..HH22(g) + 1/2 O(g) + 1/2 O22(g) (g) ------> H> H22O(g) O(g) -- 242 kJ242 kJHH22O(g) O(g) ------> H> H22O(t) O(t) -- 44 kJ44 kJ________________________________________________________________HH22(g) + 1/2 O(g) + 1/2 O22(g) (g) ----> H> H22O(t) O(t) -- 286 kJ286 kJ

Primer HESOVOG ZAKONAPrimer HESOVOG ZAKONA

ENTALPIJA REAKCIJEENTALPIJA REAKCIJEENTALPIJA REAKCIJE

Page 33: Energetske promene pri fizičkim i hemijskim procesima · Termohemija Poglavlje 2.2 Termohemija je deo termodinamike i bavi se proučavanjem toplotom raymenjenom pri hemijskim i fizičkim

HesovHesov zakonzakon& & DijagramDijagram EnergetskihEnergetskih NivoaNivoa

Formiranje H2O se može desiti u jednom ili dvakoraka. Ukupna entalpija ∆Htotalje ista bez obzirana pređeni put.

Page 34: Energetske promene pri fizičkim i hemijskim procesima · Termohemija Poglavlje 2.2 Termohemija je deo termodinamike i bavi se proučavanjem toplotom raymenjenom pri hemijskim i fizičkim

Primena Hess-ovog zakonaC(graphite) + O2 → CO2 ΔH1° = -393 kJ/mol

CO (g) + 0.5 O2 (g) → CO2 (g) ΔH2° = – 283 kJ/mol

C(č)+O2(g)-CO(g)-0,5O2 (g) → CO2 -CO2

ΔH1° - ΔH2° = ΔH3°

1 mol C i O2

1 mol CO2

1 mol CO + 0.5 mol O2 – 393 kJ– 283 kJ

Teško se meri: – 110 kJ

Page 35: Energetske promene pri fizičkim i hemijskim procesima · Termohemija Poglavlje 2.2 Termohemija je deo termodinamike i bavi se proučavanjem toplotom raymenjenom pri hemijskim i fizičkim

Zavisnost toplote reakcije od temperature- Kirhofova jednačina

Obično se toplote hemijskihreakcija izražavaju pri uslovimaatmosferskog pritiska i sobnetemperature. Kad je potrebnatoplota reakcije na nekoj drugojtemperaturi moguće je koristititablice standardnih entalpijaformiranja za reaktante i produkte, ili Kirhofovu jednačinu koja daje zavisnost toplote reakcije od temperature.

Page 36: Energetske promene pri fizičkim i hemijskim procesima · Termohemija Poglavlje 2.2 Termohemija je deo termodinamike i bavi se proučavanjem toplotom raymenjenom pri hemijskim i fizičkim

Gustav Robert Kirchhoff(1824-1887)

Školovao se u Kenigsbergu. 1845. formu-lisao je dva zakona u vezi električnestruje. 1854. postaje profesor u Hajdelbergu.Bavio se takođe zračenjem crnog tela.1859 uočava da svaki element ima karakte-rističan spektar. Sa Bunzenom predstavljapionire spektralne analize. 1861.posmatrajući spektar sunca, identifikovaoprisutne elemente i objasnio poreklo tamnih linija u spektru.Takođe je otkrio dva nova elementa Cs i Rb.Od 1875 prelazi u Berlin i kao profesor matematičke fizike piše 4toma čuvenog dela Vorlesungen über mathematische Physik (1876-94).

Page 37: Energetske promene pri fizičkim i hemijskim procesima · Termohemija Poglavlje 2.2 Termohemija je deo termodinamike i bavi se proučavanjem toplotom raymenjenom pri hemijskim i fizičkim

ΔH1

T1 T2

A

A

ΔH2

B

B

T

(Cp) (T -T ) B 2 1

(Cp) (T -T ) A 2 1

I put: ΔH1 + (CP)B ΔT

II put: (CP)A ΔT + ΔH2

Ove energetske promene morajubiti međusobno jednake saglasnoprvom zakonu termodinamike:

ΔH1 + (CP)B ΔT = ΔH2 + (CP)A ΔT

( ) ( ) PAPBP CCCT

HHΔ

ΔΔΔ

=−=− 12

Kirhofova (Kirchhoff) jednačine u diferencijalnom obliku:

PP

CTH ΔΔ

=⎟⎠⎞

⎜⎝⎛

∂∂ )(

pri P=const. VV

CTU

Δ=⎟⎠⎞

⎜⎝⎛

∂Δ∂ )( pri V=const.

Page 38: Energetske promene pri fizičkim i hemijskim procesima · Termohemija Poglavlje 2.2 Termohemija je deo termodinamike i bavi se proučavanjem toplotom raymenjenom pri hemijskim i fizičkim

Razdvajanjem promenljivih, može se izvršiti integracijau razmatranom temperaturskom intervalu od T1 do T2 :

∫∫ =2

1

2

1

)(T

TP

T

T

dTCHd ΔΔ

∫+=2

1

01

02

T

TPdTCHH ΔΔΔ

ΔCP = a + bT+cT 2 +…

Δ ΔH H aT T b T T c T T2 1 2 1 22

12

23

13

2 3= + − + − + −( ) ( ) ( )

∑∫∫∫ ++++=3

12

2

1

1

00 )()()( tr

T

TP

T

TP

T

PT HdTgCdTtCdTcCHH ΔΔΔΔΔΔ