energetic processing of complex carbonaceous compounds · energetic processing of complex...

27
1 July the 4th 2016 ISWA 2016 - Campinas, SP, Brazil Elisabetta Micelotta University of Helsinki Energetic processing of complex carbonaceous compounds

Upload: others

Post on 24-Oct-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

  • 1

    July the 4th 2016ISWA 2016 - Campinas, SP, Brazil

    Elisabetta MicelottaUniversity of Helsinki

    Energetic processing of complex carbonaceous compounds

  • 2

    Complex carbon compounds

    a-C:H nanoparticlesPAHs C60 C70

  • 3

    E = 10 eV - 3 keV

    E = 5 - 50 eV

    E = 10 eV - 10 keV

    E = 5 MeV/nuc - 10 GeV

    Ions & Electrons(H, He, CNO)

    Photons

    How?Processing occurs via

    interactions with these projectiles

    Energetic processing

    UV: E= 6 - 15 eV

    X-rays: E = 0.3 - 10 keV

  • 4

    NGC 6744

    Solar System

    Earth

    Young star LL Ori Red Spider Nebula - PN

    Bullet Cluster - merging

    SN 1006

    Cygnus A - radio lobes PhysOrg.com

    NASA/ESA, Hubble Heritage

    Where?

  • 5

    Adapted from Micelotta et al. 2010b, A&A, 510, A37

    vSHOCK ~ 600 km/s

    Temperature of gas:

    T ~ 5.8x106 K

    Thermal motion: E = 500 eV

    Nc = 50

    Electrons

    Ions

    PAHs in hot shocked gas: M82

    τ0 =10 yr

    Destroyed unless protected

  • 6

    PAHs in M82: add X-rays + CRs

    Micelotta et al. 2011, A&A, 526, A52 Cosmic Rays: E = 5 MeV - 10 GeV

    107

    108

    109

    100 1000

    TOTA

    L 0

    (yr)

    NC

    M82galactic wind

    T0 = 7.5 eVE0 = 4.6 eV

    X−rays timescale(lower limit)

    f = 0.5f = 1.0

    Circulation lifetimeStarburst − X−rays

  • 7

    Ions - C60 collisions

    Energy incident ion (eV)

    σ (Å

    2 at

    om-1

    )

    100

    101

    102

    100 101 102 103 104 105

    H −> CT0 = 15 eV

    S0nSn

    100

    101

    102

    100 101 102 103 104 105

    He −> CT0 = 15 eV

    S0nSn

    100

    101

    102

    100 101 102 103 104 105

    C −> CT0 = 15 eV

    S0nSn

    10−2

    10−1

    100

    100 101 102 103 104 105

    H −> CT0 = 15 eV

    10−2

    10−1

    100

    100 101 102 103 104 105

    He −> CT0 = 15 eV

    10−2

    10−1

    100

    100 101 102 103 104 105

    C −> CT0 = 15 eV

    Micelotta et al. 2013, Proc. IAU Symp. 297, 339

  • 8

    NANOPARTICLE

    + UV photons

    C104H80

    HOT

    giant cage

    SHRINKING

    down to C60

    STABLE

    C2

    C2

    C2

    ~C74 C60

    Micelotta et al. 2012, ApJ, 761, 35

    NEW MECHANISM!Conventional routes DO NOT WORK ⟹

    C60 formation in space

  • 9

    Photo-processing Aromatic Infrared Bands - Proposed carriers

    Flux

    den

    sity

    λ (µm)a-C nanoparticles

    “Astronomical” PAHs

    “Classical” PAHs

    Diffuse medium

  • 10

    Photo-processing

    Mathis, J. S., et al. 1983, A&A, 128, 212 Galliano, F., et al. 2005, A&A, 434, 867

    ISRF

    DISSOCIATION

    ABSORPTION

    properties

    EMISSION

    properties

    PARTICLE SIZE

    modification

  • 11

    Photo-absorption cross sectionOptical - UV

    Micelotta, Jones & Juvela 2016, in prep.Verstraete, L. & Léger, A. 1992, A&A, 266, 513 Li, A. & Draine, B. T. 2001, ApJ, 554, 778 Jones, A. P. 2012, A&A, 542, A98

  • 12

    Dissociation probability

    • STATISTICAL fragmentation instead of IR emission

    • All particles treated as PAHs

    • Use of FORMALISM developed for PAHs to treat dissociation induced by ELECTRON COLLISIONS in shocks/hot gas (Micelotta et al. 2010a,b)

    Micelotta, Jones & Juvela 2016, in prep.

  • 13

    Modified size distributionsThe effect of photo-dissociation &

    initial grain size distribution

    EACH KIND of particle with its

    “NATIVE” initial distribution

  • 14

    Infrared emissionFrom photo-processed species and size distributions

    DustEM implementation (Compiègne et al. 2011)

  • 15

    Infrared emissionFrom photo-processed species and size distributions

    Note the SUPPRESSION of the 3.3 - 3.4 µm complex in NANOPARTICLES emission

  • 16

    Conclusions & Perspectives

    •Energetic processing has multiple implications and needs detailed analysis.

    •Analytical models important for astrophysics.

    • Interconnection PAHs - fullerenes - nanoparticles.

    •Theory & Experiments & Observations.

    •New experimental facilities + telescopes (JWST).

  • 17

    Thank you!

    Collaborators

    • X. Tielens (STRW Leiden)

    • A. Jones (IAS Orsay)

    • M. Juvela (University of Helsinki)

    • E. Peeters, J. Cami, G. Fanchini (U. of Western Ontario)

    • J. Bernard-Salas (Open University)

    • H. Zettergren, H. Cederquist, H. Schmidt (Stockholm University)

  • 18

    Sn(E) =

    Z Tm

    T0

    d�(E, T ) · T

    = 4⇡ aU Z1Z2 e2 M1M1 +M2

    sUn (")

    "1�

    ✓E0nE

    ◆1�m#

    V (r) / r�1/m

    dE

    dR= N Sn(E)

    Cm E�m T�1�m dT 0 . T . Tm

    Stopping power Nuclear stopping

    cross section

    Atomic number density

    Transferred

    energy

    ZBL Universal

    screening length

    ZBL Universal reduced

    stopping cross section

    Cross section

    Threshold effectS0n(E) NO thresholdMicelotta et al.

    2010a, A&A,

    510, A36

  • 19

    �(E) =

    Z Tm

    T0

    d�(E, T )

    = 4⇡ aU Z1Z2 e2 M1M1 +M2

    sUn (")1�mm

    1

    � E

    "✓E0nE

    ◆�m� 1

    #

    hT (E)i = Sn(E)�(E)

    = hT (E)i = m1�m �

    E1�m � E1�m0nE�m0n � E�m

    S0n(E) NO threshold

    Total cross section

    Average

    transferred

    energy Micelotta et al. 2010a, A&A, 510, A36

  • 20

    E. R. Micelotta et al.: PAH processing in interstellar shocks

    100

    101

    102

    100 101 102 103 104

    Sn

    (eV

    Å2

    atom

    −1),

    (

    eV)

    Energy Incident Ion (eV)

    H −> CT0 = 7.5 eV

    S0nSn

    10−2

    10−1

    100

    100 101 102 103 104

    σ (

    Å2

    atom

    −1)

    Energy Incident Ion (eV)

    H −> CT0 = 7.5 eV

    σ

    100

    101

    102

    100 101 102 103 104

    Sn

    (eV

    Å2

    atom

    −1),

    (

    eV)

    Energy Incident Ion (eV)

    He −> CT0 = 7.5 eV

    S0nSn

    10−2

    10−1

    100

    100 101 102 103 104σ

    2 at

    om−1

    )

    Energy Incident Ion (eV)

    He −> CT0 = 7.5 eV

    σ

    100

    101

    102

    100 101 102 103 104

    Sn

    (eV

    Å2

    atom

    −1),

    (

    eV)

    Energy Incident Ion (eV)

    C −> CT0 = 7.5 eV

    S0nSn

    10−2

    10−1

    100

    100 101 102 103 104

    σ (

    Å2

    atom

    −1)

    Energy Incident Ion (eV)

    C −> CT0 = 7.5 eV

    σ

    Fig. 2. The nuclear stopping cross section S n(E), the total cross section σ(E) and the average energy transferred ⟨T (E)⟩ calculated for H, Heand C ions impacting on a carbon atom. The curves are calculated for the threshold energy T0 = 7.5 eV. The nuclear stopping cross section S 0ncorresponding to T0 = 0 (no threshold) is shown for comparison. The two vertical lines indicate the limiting energies for the incident ion. Theseare defined as the kinetic energies of the projectile when its velocity vp equals 34 (vS1,S2), where vS1 = 50 km s

    −1 and vS2 = 200 km s−1 are the lowestand highest shock velocities considered in this study.

    value of Td ∼ 15−20 eV seems appropriate for the perpendiculardirection. The in-plane value, however, could be much higher,presumably above 30 eV.

    Instead of graphite, fullerenes and carbon nanotubes may bea better analog for PAH molecules. For fullerene, Td has beenfound between 7.6 and 15.7 eV (Füller & Banhart 1996). Single

    Page 5 of 19

    E. R. Micelotta et al.: PAH processing in interstellar shocks

    100

    101

    102

    100 101 102 103 104

    Sn

    (eV

    Å2

    atom

    −1),

    (

    eV)

    Energy Incident Ion (eV)

    H −> CT0 = 7.5 eV

    S0nSn

    10−2

    10−1

    100

    100 101 102 103 104

    σ (

    Å2

    atom

    −1)

    Energy Incident Ion (eV)

    H −> CT0 = 7.5 eV

    σ

    100

    101

    102

    100 101 102 103 104

    Sn

    (eV

    Å2

    atom

    −1),

    (

    eV)

    Energy Incident Ion (eV)

    He −> CT0 = 7.5 eV

    S0nSn

    10−2

    10−1

    100

    100 101 102 103 104σ

    2 at

    om−1

    )

    Energy Incident Ion (eV)

    He −> CT0 = 7.5 eV

    σ

    100

    101

    102

    100 101 102 103 104

    Sn

    (eV

    Å2

    atom

    −1),

    (

    eV)

    Energy Incident Ion (eV)

    C −> CT0 = 7.5 eV

    S0nSn

    10−2

    10−1

    100

    100 101 102 103 104

    σ (

    Å2

    atom

    −1)

    Energy Incident Ion (eV)

    C −> CT0 = 7.5 eV

    σ

    Fig. 2. The nuclear stopping cross section S n(E), the total cross section σ(E) and the average energy transferred ⟨T (E)⟩ calculated for H, Heand C ions impacting on a carbon atom. The curves are calculated for the threshold energy T0 = 7.5 eV. The nuclear stopping cross section S 0ncorresponding to T0 = 0 (no threshold) is shown for comparison. The two vertical lines indicate the limiting energies for the incident ion. Theseare defined as the kinetic energies of the projectile when its velocity vp equals 34 (vS1,S2), where vS1 = 50 km s

    −1 and vS2 = 200 km s−1 are the lowestand highest shock velocities considered in this study.

    value of Td ∼ 15−20 eV seems appropriate for the perpendiculardirection. The in-plane value, however, could be much higher,presumably above 30 eV.

    Instead of graphite, fullerenes and carbon nanotubes may bea better analog for PAH molecules. For fullerene, Td has beenfound between 7.6 and 15.7 eV (Füller & Banhart 1996). Single

    Page 5 of 19

    E. R. Micelotta et al.: PAH processing in interstellar shocks

    100

    101

    102

    100 101 102 103 104

    Sn

    (eV

    Å2

    atom

    −1),

    (

    eV)

    Energy Incident Ion (eV)

    H −> CT0 = 7.5 eV

    S0nSn

    10−2

    10−1

    100

    100 101 102 103 104

    σ (

    Å2

    atom

    −1)

    Energy Incident Ion (eV)

    H −> CT0 = 7.5 eV

    σ

    100

    101

    102

    100 101 102 103 104

    Sn

    (eV

    Å2

    atom

    −1),

    (

    eV)

    Energy Incident Ion (eV)

    He −> CT0 = 7.5 eV

    S0nSn

    10−2

    10−1

    100

    100 101 102 103 104σ

    2 at

    om−1

    )

    Energy Incident Ion (eV)

    He −> CT0 = 7.5 eV

    σ

    100

    101

    102

    100 101 102 103 104

    Sn

    (eV

    Å2

    atom

    −1),

    (

    eV)

    Energy Incident Ion (eV)

    C −> CT0 = 7.5 eV

    S0nSn

    10−2

    10−1

    100

    100 101 102 103 104

    σ (

    Å2

    atom

    −1)

    Energy Incident Ion (eV)

    C −> CT0 = 7.5 eV

    σ

    Fig. 2. The nuclear stopping cross section S n(E), the total cross section σ(E) and the average energy transferred ⟨T (E)⟩ calculated for H, Heand C ions impacting on a carbon atom. The curves are calculated for the threshold energy T0 = 7.5 eV. The nuclear stopping cross section S 0ncorresponding to T0 = 0 (no threshold) is shown for comparison. The two vertical lines indicate the limiting energies for the incident ion. Theseare defined as the kinetic energies of the projectile when its velocity vp equals 34 (vS1,S2), where vS1 = 50 km s

    −1 and vS2 = 200 km s−1 are the lowestand highest shock velocities considered in this study.

    value of Td ∼ 15−20 eV seems appropriate for the perpendiculardirection. The in-plane value, however, could be much higher,presumably above 30 eV.

    Instead of graphite, fullerenes and carbon nanotubes may bea better analog for PAH molecules. For fullerene, Td has beenfound between 7.6 and 15.7 eV (Füller & Banhart 1996). Single

    Page 5 of 19

    E. R. Micelotta et al.: PAH processing in interstellar shocks

    100

    101

    102

    100 101 102 103 104

    Sn

    (eV

    Å2

    atom

    −1),

    (

    eV)

    Energy Incident Ion (eV)

    H −> CT0 = 7.5 eV

    S0nSn

    10−2

    10−1

    100

    100 101 102 103 104

    σ (

    Å2

    atom

    −1)

    Energy Incident Ion (eV)

    H −> CT0 = 7.5 eV

    σ

    100

    101

    102

    100 101 102 103 104

    Sn

    (eV

    Å2

    atom

    −1),

    (

    eV)

    Energy Incident Ion (eV)

    He −> CT0 = 7.5 eV

    S0nSn

    10−2

    10−1

    100

    100 101 102 103 104σ

    2 at

    om−1

    )

    Energy Incident Ion (eV)

    He −> CT0 = 7.5 eV

    σ

    100

    101

    102

    100 101 102 103 104

    Sn

    (eV

    Å2

    atom

    −1),

    (

    eV)

    Energy Incident Ion (eV)

    C −> CT0 = 7.5 eV

    S0nSn

    10−2

    10−1

    100

    100 101 102 103 104

    σ (

    Å2

    atom

    −1)

    Energy Incident Ion (eV)

    C −> CT0 = 7.5 eV

    σ

    Fig. 2. The nuclear stopping cross section S n(E), the total cross section σ(E) and the average energy transferred ⟨T (E)⟩ calculated for H, Heand C ions impacting on a carbon atom. The curves are calculated for the threshold energy T0 = 7.5 eV. The nuclear stopping cross section S 0ncorresponding to T0 = 0 (no threshold) is shown for comparison. The two vertical lines indicate the limiting energies for the incident ion. Theseare defined as the kinetic energies of the projectile when its velocity vp equals 34 (vS1,S2), where vS1 = 50 km s

    −1 and vS2 = 200 km s−1 are the lowestand highest shock velocities considered in this study.

    value of Td ∼ 15−20 eV seems appropriate for the perpendiculardirection. The in-plane value, however, could be much higher,presumably above 30 eV.

    Instead of graphite, fullerenes and carbon nanotubes may bea better analog for PAH molecules. For fullerene, Td has beenfound between 7.6 and 15.7 eV (Füller & Banhart 1996). Single

    Page 5 of 19

    Energy incident ion (eV) Energy incident ion (eV)

    σ (Å

    2 at

    om-1

    )

    S n (

    eV Å

    2 at

    om-1

    ) (e

    V)

    E2E1

    Micelotta et al. 2010a, A&A, 510, A36

  • 21

    Te� ' 2000✓Te(eV)

    NC

    ◆0.4 ✓1 � 0.2 E0(eV)

    Te(eV)

    P (nmax

    ) =

    k0

    exp [�E0

    /k Tav

    ]

    kIR

    /(nmax

    + 1)

    Te(⇥) = 27.2116

    Z R/ sin �

    �R/ sin �v �(rs) ds

    S(E) =h log(1 + aE)

    f Eg + bEd + cEe

    Transferred energy

    electronic interaction

    Fit to stopping power

    electrons interaction

    Effective temperature

    after energy

    transfer

    Dissociation probability

  • 22

    E = 5 MeV/nuc. - 10 GeV ➞ Electronic interaction only

    Stopping of high-energy ions

    S =⇤Z2�2

    Z21

    ( f(�) � C

    Z2� lnhIi � ⇥

    2

    +Z1 L1( Barkas ) + Z21 L2 ( Bloch )

    )Stopping

    power

    Shell

    correction

    Mean

    ionisation

    Density

    effect� ⌘ 4⇥ r20 mec2

    Ziegler et al. 1999

    Bethe - Bloch equation

  • 23

    Photo-dissociation rate

    vs.

    Following Vis-UV absorption

  • 24

    Photo-absorption cross section IIOptical - UV

    Li, A. & Draine, B. T. 2001, ApJ, 554, 778 Jones, A. P. 2012, A&A, 542, A98

  • 25

    Photon absorption rateOptical - UV

    vs.

  • 26

    Modified size distributions IThe effect of photo-dissociation

    Power-law for all:

    the “native” distribution of

    nanoparticles - J12

    Log-normal for all:

    the “native” distribution of astronomical PAHs - LD01

  • 27

    Photo-absorption cross section IIIInfrared

    Verstraete, L. & Léger, A. 1992, A&A, 266, 513 — Compiègne, M., et al. 2011, A&A, 525, A103 Li, A. & Draine, B. T. 2001, ApJ, 554, 778 — Draine, B. T. & Li, A. 2007, ApJ, 657, 810 Jones, A. P. 2012, A&A, 542, A98