en2912c: future directions in computing lecture 04...

12
S. Reda. Brown U. EN2912C Fall ‘08 EN2912C: Future Directions in Computing Lecture 04: Fundamental Physical limits to Computing Prof. Sherief Reda Division of Engineering Brown University Fall 2008 1

Upload: others

Post on 02-Jun-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: EN2912C: Future Directions in Computing Lecture 04 ...scale.engin.brown.edu/classes/EN2912C/lecture04.pdf · S. Reda. Brown U. EN2912C Fall ‘08 1. Contrast to CMOS switching energy

S. Reda. Brown U. EN2912C Fall ‘08

EN2912C: Future Directions in Computing Lecture 04: Fundamental Physical limits to Computing

Prof. Sherief Reda Division of Engineering

Brown University Fall 2008

1

Page 2: EN2912C: Future Directions in Computing Lecture 04 ...scale.engin.brown.edu/classes/EN2912C/lecture04.pdf · S. Reda. Brown U. EN2912C Fall ‘08 1. Contrast to CMOS switching energy

S. Reda. Brown U. EN2912C Fall ‘08

Limits to improving computing

2

Silicon-based

computing

Carbon-based

computing

Computing in the year

3000

Fundamental Physical Limits

A computer is an information processing engine that is ultimately constrained by the laws of physics

Page 3: EN2912C: Future Directions in Computing Lecture 04 ...scale.engin.brown.edu/classes/EN2912C/lecture04.pdf · S. Reda. Brown U. EN2912C Fall ‘08 1. Contrast to CMOS switching energy

S. Reda. Brown U. EN2912C Fall ‘08

Physical limitations

3

1.  Switching energy limitations (this lecture) 2.  Switching time limitations (this lecture) 3.  Size limitations (this lecture) 4.  Thermal limitations (part this lecture/next lecture) 5.  Noise limitations (next lectures)

•  Computers are physical systems. The laws of physics dictate their capabilities

•  The laws of physics determine the ultimate limits for these crucial metrics:

Page 4: EN2912C: Future Directions in Computing Lecture 04 ...scale.engin.brown.edu/classes/EN2912C/lecture04.pdf · S. Reda. Brown U. EN2912C Fall ‘08 1. Contrast to CMOS switching energy

S. Reda. Brown U. EN2912C Fall ‘08

Main two ingredients for digital computing

4

Switches interconnects

What is: 1. The minimum switching time? 2. The minimum switching energy? 3. The minimum device size? irrespective of technology

L

Minimum propagation delay

! ! L

c0

c0 is the velocity of light in free space

Page 5: EN2912C: Future Directions in Computing Lecture 04 ...scale.engin.brown.edu/classes/EN2912C/lecture04.pdf · S. Reda. Brown U. EN2912C Fall ‘08 1. Contrast to CMOS switching energy

S. Reda. Brown U. EN2912C Fall ‘08

1. Minimum energy required for a binary transition

5

If a force F moves through a small distance δx, the work done δW is:

If the pressure of the gas is p, and the cross section of the piston is A then

From classical physics

where N is the number of particles in the gas and k is Boltzmann’s constant

Page 6: EN2912C: Future Directions in Computing Lecture 04 ...scale.engin.brown.edu/classes/EN2912C/lecture04.pdf · S. Reda. Brown U. EN2912C Fall ‘08 1. Contrast to CMOS switching energy

S. Reda. Brown U. EN2912C Fall ‘08

1. Minimum energy for irreversible switch

6

0 1

•  Consider that we have one particle

•  If the particle is in the left half of the “box” then the switch is in state 0 and if the particle in the right half then the switch in state 1.

•  Therefore the minimum energy per irreversible transition between two states is equal to

Page 7: EN2912C: Future Directions in Computing Lecture 04 ...scale.engin.brown.edu/classes/EN2912C/lecture04.pdf · S. Reda. Brown U. EN2912C Fall ‘08 1. Contrast to CMOS switching energy

S. Reda. Brown U. EN2912C Fall ‘08

1. Contrast to CMOS switching energy

•  At 130 nm, CV2 = 0.17 fJ •  At 22 nm, CV2 = 0.005 fJ •  KTln2 = 3×10-21 J = 0.000003 fJ @ 300K

•  We are still orders of magnitude above the theoretical KTln2 limit!!

7

Page 8: EN2912C: Future Directions in Computing Lecture 04 ...scale.engin.brown.edu/classes/EN2912C/lecture04.pdf · S. Reda. Brown U. EN2912C Fall ‘08 1. Contrast to CMOS switching energy

S. Reda. Brown U. EN2912C Fall ‘08

Quantum-mechanical limits: Uncertainty principle

8

A state which only exists for a short time cannot have a definite energy.

[Jeff Welser, IBM]

Page 9: EN2912C: Future Directions in Computing Lecture 04 ...scale.engin.brown.edu/classes/EN2912C/lecture04.pdf · S. Reda. Brown U. EN2912C Fall ‘08 1. Contrast to CMOS switching energy

S. Reda. Brown U. EN2912C Fall ‘08

2. Fundamental limits on switching time

9

From Heisenberg uncertainty principle

Minimum transition time between two states

Maximum operation frequency

Fmax ! 25000GHz!

Page 10: EN2912C: Future Directions in Computing Lecture 04 ...scale.engin.brown.edu/classes/EN2912C/lecture04.pdf · S. Reda. Brown U. EN2912C Fall ‘08 1. Contrast to CMOS switching energy

S. Reda. Brown U. EN2912C Fall ‘08

3. Minimum distance requirements

10

Gate density

[Jeff Welser, IBM]

Page 11: EN2912C: Future Directions in Computing Lecture 04 ...scale.engin.brown.edu/classes/EN2912C/lecture04.pdf · S. Reda. Brown U. EN2912C Fall ‘08 1. Contrast to CMOS switching energy

S. Reda. Brown U. EN2912C Fall ‘08

Putting it together

11

P = nEminFmax

= 4.6 · 1013 · 3 · 10!21 · 2.5 · 1012

= 4.74! 106W/cm2

The circuit would immediately vaporize once it is turned on

Circuit heat generation is the main limiting factor for scaling of device speed and switch circuit density

Power consumption

Page 12: EN2912C: Future Directions in Computing Lecture 04 ...scale.engin.brown.edu/classes/EN2912C/lecture04.pdf · S. Reda. Brown U. EN2912C Fall ‘08 1. Contrast to CMOS switching energy

S. Reda. Brown U. EN2912C Fall ‘08

Paper discussions

•  Limits on Silicon Nanotechnologies for Terascale integration. Meindl, Science, 2044-2049, 2001.

12