emcics and the femtoscopy of small systems

72
ma lisa - ALICE week 12-16 Feb 2007 - Muens ter EMCICs and the femtoscopy of small systems Mike Lisa & Zbigniew Chajecki Ohio State University

Upload: leverett-reynaud

Post on 02-Jan-2016

32 views

Category:

Documents


1 download

DESCRIPTION

EMCICs and the femtoscopy of small systems. Mike Lisa & Zbigniew Chajecki Ohio State University. Outline. LHC predictions H.I. see SPHIC06 talk (nucl-th/0701058) p+p: see talk of T. Humanic Introduction / Motivation intriguing pp versus AA [reminder] - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: EMCICs and the  femtoscopy of small systems

ma lisa - ALICE week 12-16 Feb 2007 - Muenster

EMCICs and the femtoscopy of small systems

Mike Lisa & Zbigniew Chajecki

Ohio State University

Page 2: EMCICs and the  femtoscopy of small systems

ma lisa - ALICE week 12-16 Feb 2007 - Muenster

Outline

• LHC predictions– H.I. see SPHIC06 talk (nucl-th/0701058)– p+p: see talk of T. Humanic

• Introduction / Motivation– intriguing pp versus AA [reminder]– data features not under control: Energy-momentum conservation?

• SHD as a diagnostic tool [reminder]

• Phase-space event generation: GenBod

• Analytic calculation of EMCIC

• Experimentalists’ recipe: Fitting correlation functions [in progress]

• Conclusion

Page 3: EMCICs and the  femtoscopy of small systems

ma lisa - ALICE week 12-16 Feb 2007 - Muenster

Microexplosions Femtoexplosions

1017 J/m3 5 GeV/fm3 = 1036 J/m3

s 0.1 J 1 J

T 106 K 200 MeV = 1012 K

rate 1018 K/sec 1035 K/s

• energy quickly deposited• enter plasma phase• expand hydrodynamically• cool back to original phase• do geometric “postmortem” & infer momentum

Page 4: EMCICs and the  femtoscopy of small systems

ma lisa - ALICE week 12-16 Feb 2007 - Muenster

Microexplosions Femtoexplosions

s 0.1 J 1 J

1017 J/m3 5 GeV/fm3 = 1036 J/m3

T 106 K 200 MeV = 1012 K

rate 1018 K/sec 1035 K/s

• energy quickly deposited• enter plasma phase• expand hydrodynamically• cool back to original phase• do geometric “postmortem” & infer momentum

Page 5: EMCICs and the  femtoscopy of small systems

ma lisa - ALICE week 12-16 Feb 2007 - Muenster

Beyond press releases

The detailed work now underway is what can probe & constrain sQGP properties

It is probably not press-release material......but, hey, you’ve already got your coffee mug

Nature of EoS under investigation ; agreement

with data may be accidental ; viscous hydro under

development ; assumption of thermalization in question sensitive to modeling of

initial state, under study

Page 6: EMCICs and the  femtoscopy of small systems

ma lisa - ALICE week 12-16 Feb 2007 - Muenster

Femtoscopic information

C r P

ab(r q ) = d3 ′

r r ⋅Sr

P

ab( ′ r r )∫ ⋅ φ(

r ′ q ,r ′ r )

2

xaxb

pa

pbxa

xb

pa

pb

Sr P

ab( ′ r r ) =

r x a -

r x b( ) distribution

φ(r ′ q ,r ′ r ) = (a,b) relative wavefctn

• femtoscopic correlation at low |q|• must vanish at high |q|. [indep “direction”]

Au+Au: central collisions

C(Qout)

C(Qside)

C(Qlong)

3 “radii” by using3-D vector q

Page 7: EMCICs and the  femtoscopy of small systems

ma lisa - ALICE week 12-16 Feb 2007 - Muenster

Femtoscopic information - Spherical harmonic representation

• femtoscopic correlation at low |q|• must vanish at high |q|. [indep “direction”]

Au+Au: central collisions

C(Qout)

C(Qside)

C(Qlong)

3 “radii” by using3-D vector q

QOUT

QSIDE

QLONG Q

∑→→ ΔΔ

=binsall

iiiiimlml QCYQA

.

,

cos

, ),cos|,(|),(|)(| φθφθπ

φθ

4nucl-ex/0505009

Page 8: EMCICs and the  femtoscopy of small systems

ma lisa - ALICE week 12-16 Feb 2007 - Muenster

Femtoscopic information - Spherical harmonic representation

• femtoscopic correlation at low |q|• must vanish at high |q|. [indep “direction”]

•ALM(Q) = L,0

Au+Au: central collisions

C(Qout)

C(Qside)

C(Qlong)

3 “radii” by using3-D vector q

∑→→ ΔΔ

=binsall

iiiiimlml QCYQA

.

,

cos

, ),cos|,(|),(|)(| φθφθπ

φθ

4

L=0

L=2M=0

L=2M=2

nucl-ex/0505009

Page 9: EMCICs and the  femtoscopy of small systems

ma lisa - ALICE week 12-16 Feb 2007 - Muenster

Kinematic dependence of femtoscopy:Geometrical/dynamical evidence of bulk behaviour

(3 "radii" corresponding to the three components of r q )

Amount of flow consistent with p-space nucl-th/0312024Huge, diverse systematics consistent with this substructure

nucl-ex/0505014

Page 10: EMCICs and the  femtoscopy of small systems

ma lisa - ALICE week 12-16 Feb 2007 - Muenster

p+p: A clear reference system?

Page 11: EMCICs and the  femtoscopy of small systems

ma lisa - ALICE week 12-16 Feb 2007 - Muenster

STAR preliminary

mT (GeV) mT (GeV)

Z. Chajecki QM05nucl-ex/0510014femtoscopy in p+p @ STAR

• Decades of femtoscopy in p+p and in A+A, but...

• for the first time: femtoscopy in p+p and A+A in same experiment, same analysis definitions...

• unique opportunity to compare physics

• ~ 1 fm makes sense, but...

• pT-dependence in p+p?

• (same cause as in A+A?)

Page 12: EMCICs and the  femtoscopy of small systems

ma lisa - ALICE week 12-16 Feb 2007 - Muenster

Surprising („puzzling”) scaling

HBT radii scale with pp

Scary coincidence or something deeper?

On the face: same geometric substructure

pp, dAu, CuCu - STAR preliminary

Ratio of (AuAu, CuCu, dAu) HBT radii by pp

A. Bialasz (ISMD05):I personally feel that its solution may provide new

insight into the hadronization process of QCD

Page 13: EMCICs and the  femtoscopy of small systems

ma lisa - ALICE week 12-16 Feb 2007 - Muenster

BUT... Clear BUT... Clear interpretationinterpretation clouded by clouded by datadata features features

STAR preliminary d+Au peripheral collisions

Gaussian fitNon-femtoscopic q-anisotropicbehaviour at large |q|

does this structure affect femtoscopic region as well?

Page 14: EMCICs and the  femtoscopy of small systems

ma lisa - ALICE week 12-16 Feb 2007 - Muenster

STAR preliminary d+Au peripheral collisions

Gaussian fit

∑→→ ΔΔ

=binsall

iiiiimlml QCYQA

.

,cos

, ),cos|,(|),(4

|)(| φθφθπ

φθ

Decomposition of CF onto Spherical Harmonics

Z.Ch., Gutierrez, MAL, Lopez-Noriega, nucl-ex/0505009

non-femtoscopic structure(not just “non-Gaussian”)

Page 15: EMCICs and the  femtoscopy of small systems

ma lisa - ALICE week 12-16 Feb 2007 - Muenster

Baseline problems with small systems: previous treatmentsBaseline problems with small systems: previous treatments

STAR preliminary d+Au peripheral collisions

Gaussian fit

ad hoc, but try it...

Page 16: EMCICs and the  femtoscopy of small systems

ma lisa - ALICE week 12-16 Feb 2007 - Muenster

STAR preliminary d+Au peripheral collisions

NA22 fit

Try NA22 empirical formTry NA22 empirical form

NA22 fit

data

Spherical harmonics

L =1M=0

L =2M=0

L =1M=1

L =2M=2

Page 17: EMCICs and the  femtoscopy of small systems

ma lisa - ALICE week 12-16 Feb 2007 - Muenster

Just push on....?

• ... no!– Irresponsible to ad-hoc fit (often the practice) or ignore (!!) & interpret

without understanding data– no particular reason to expect non-femtoscopic effect to be limited to

non-femtoscopic (large-q) region• not-understood or -controlled contaminating correlated effects

at low q ?

• A possibility: energy-momentum conservation?– must be there somewhere!– but how to calculate / model ?

(Upon consideration, non-trivial...)

Page 18: EMCICs and the  femtoscopy of small systems

ma lisa - ALICE week 12-16 Feb 2007 - Muenster

energy-momentum conservation in n-body states

f α( ) =d

dαM

2⋅Rn( )

where

M = matrix element describing interaction

(M =1 → all spectra given by phasespace)

spectrum of kinematic quantity (angle, momentum) given by

Rn = δ 4 P − p j

j=1

n

∑ ⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟ δ pi

2 − mi2

( )d4pi

i=1

n

∏4n

where

P = total 4 - momentum of n - particle system

pi = 4 - momentum of particle i

mi = mass of particle i

n-body Phasespace factor Rn

pi2 − mi

2( )d

4pi =r p i

2

E i

dr p i ⋅d cosθ i( ) ⋅dφi

statistics: “density of states”

larger particle momentum more available states

P conservation

4 P − p j

j=1

n

∑ ⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟

Induces “trivial” correlations(i.e. even for M=1)

Page 19: EMCICs and the  femtoscopy of small systems

ma lisa - ALICE week 12-16 Feb 2007 - Muenster

Genbod:phasespace sampling w/ P-conservation

• F. James, Monte Carlo Phase Space CERN REPORT 68-15 (1 May 1968)

• Sampling a parent phasespace, conserves energy & momentum explicitly

– no other correlations between particles

Events generated randomly, buteach has an Event Weight

WT =1

Mm

M i+1R2 M i+1;M i,mi+1( ){ }i=1

n−1

WT ~ probability of event to occur

ALL EVENTS ARE

EQUAL, BUT SOME EVENTS ARE

MORE EQUAL THAN OTHERS

Page 20: EMCICs and the  femtoscopy of small systems

ma lisa - ALICE week 12-16 Feb 2007 - Muenster

“Rounder” events: higher WT

ALL EVENTS ARE

EQUAL, BUT SOME EVENTS ARE

MORE EQUAL THAN OTHERS

larger particle momentum more available states

Rn = δ 4 P − p j

j=1

n

∑ ⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟ δ pi

2 − mi2

( )d4pi

i=1

n

∏4n

δ pi2 − mi

2( )d

4pi =r p i

2

E i

dr p i ⋅d cosθ i( ) ⋅dφi

30 particles

Page 21: EMCICs and the  femtoscopy of small systems

ma lisa - ALICE week 12-16 Feb 2007 - Muenster

Genbod:phasespace sampling w/ P-conservation

WT =1

Mm

M i+1R2 M i+1;M i,mi+1( ){ }i=1

n−1

• Treat identical to measured events

• use WT directly• MC sample WT

• Form CF and SHD

Page 22: EMCICs and the  femtoscopy of small systems

ma lisa - ALICE week 12-16 Feb 2007 - Muenster

CF from GenBodCF from GenBod

Varying frame and Varying frame and kinematic cutskinematic cuts

Page 23: EMCICs and the  femtoscopy of small systems

ma lisa - ALICE week 12-16 Feb 2007 - Muenster

N=18, <K>=0.9 GeV, LabCMS Frame - no N=18, <K>=0.9 GeV, LabCMS Frame - no cutscuts

Page 24: EMCICs and the  femtoscopy of small systems

ma lisa - ALICE week 12-16 Feb 2007 - Muenster

N=18, <K>=0.9 GeV, LabCMS Frame - |N=18, <K>=0.9 GeV, LabCMS Frame - |||<0.5<0.5

The shape of the CF is sensitive to

• kinematic cuts

Page 25: EMCICs and the  femtoscopy of small systems

ma lisa - ALICE week 12-16 Feb 2007 - Muenster

N=18, <K>=0.9 GeV, LCMS Frame - no cutsN=18, <K>=0.9 GeV, LCMS Frame - no cuts

The shape of the CF is sensitive to

• kinematic cuts

• frame

Page 26: EMCICs and the  femtoscopy of small systems

ma lisa - ALICE week 12-16 Feb 2007 - Muenster

N=18, <K>=0.9 GeV, LCMS Frame - |N=18, <K>=0.9 GeV, LCMS Frame - ||<0.5|<0.5

The shape of the CF is sensitive to

• kinematic cuts

• frame

Page 27: EMCICs and the  femtoscopy of small systems

ma lisa - ALICE week 12-16 Feb 2007 - Muenster

N=18, <K>=0.9 GeV, PR Frame - no cutsN=18, <K>=0.9 GeV, PR Frame - no cuts

The shape of the CF is sensitive to

• kinematic cuts

• frame

Page 28: EMCICs and the  femtoscopy of small systems

ma lisa - ALICE week 12-16 Feb 2007 - Muenster

N=18, <K>=0.9 GeV, PR Frame - |N=18, <K>=0.9 GeV, PR Frame - ||<0.5|<0.5

The shape of the CF is sensitive to

• kinematic cuts

• frame

Page 29: EMCICs and the  femtoscopy of small systems

ma lisa - ALICE week 12-16 Feb 2007 - Muenster

GenBodGenBod

Varying multiplicity Varying multiplicity and total energyand total energy

Page 30: EMCICs and the  femtoscopy of small systems

ma lisa - ALICE week 12-16 Feb 2007 - Muenster

N=6, <K>=0.5 GeV, LCMS Frame - no cutsN=6, <K>=0.5 GeV, LCMS Frame - no cuts

The shape of the CF is sensitive to

• kinematic cuts

• frame

Page 31: EMCICs and the  femtoscopy of small systems

ma lisa - ALICE week 12-16 Feb 2007 - Muenster

N=9, <K>=0.5 GeV, LCMS Frame - no cutsN=9, <K>=0.5 GeV, LCMS Frame - no cuts

The shape of the CF is sensitive to

• kinematic cuts

• frame

• particle multiplicity

Page 32: EMCICs and the  femtoscopy of small systems

ma lisa - ALICE week 12-16 Feb 2007 - Muenster

N=15, <K>=0.5 GeV, LCMS Frame - no cutsN=15, <K>=0.5 GeV, LCMS Frame - no cuts

The shape of the CF is sensitive to

• kinematic cuts

• frame

• particle multiplicity

Page 33: EMCICs and the  femtoscopy of small systems

ma lisa - ALICE week 12-16 Feb 2007 - Muenster

N=18, <K>=0.5 GeV, LCMS Frame - no cutsN=18, <K>=0.5 GeV, LCMS Frame - no cuts

The shape of the CF is sensitive to

• kinematic cuts

• frame

• particle multiplicity

Page 34: EMCICs and the  femtoscopy of small systems

ma lisa - ALICE week 12-16 Feb 2007 - Muenster

N=18, <K>=0.7 GeV, LCMS Frame - no cutsN=18, <K>=0.7 GeV, LCMS Frame - no cuts

The shape of the CF is sensitive to

• kinematic cuts

• frame

• particle multiplicity

• total energy : √s

Page 35: EMCICs and the  femtoscopy of small systems

ma lisa - ALICE week 12-16 Feb 2007 - Muenster

N=18, <K>=0.9 GeV, LCMS Frame - no cutsN=18, <K>=0.9 GeV, LCMS Frame - no cuts

The shape of the CF is sensitive to

• kinematic cuts

• frame

• particle multiplicity

• total energy : √s

The shape of the CF is sensitive to • kinematic cuts

• frame

• particle multiplicity

• total energy : √s

Page 36: EMCICs and the  femtoscopy of small systems

ma lisa - ALICE week 12-16 Feb 2007 - Muenster

So...• Energy & Momentum Conservation Induced Correlations (EMCICs)

“resemble” our data– ... on the right track...

• But what to do with that?– Sensitivity to s, Mult of particles of interest and other particles– will depend on p1 and p2 of particles forming pairs in |Q| bins risky to “correct” data with Genbod...

• Solution: calculate EMCICs using data!! pT conservation and v2

• Danielewicz et al, PRC38 120 (1988)• Borghini, Dinh, & Ollitraut PRC62 034902 (2000)

– D spatial dimensions and M-cumulants• Borghini, Euro. Phys. C30 381 (2003)

– 3+1 (p+E) conservation and femtoscopy• Chajecki & MAL, nucl-th/0612080 - [WPCF06]

pT conservation and 3-particle correlations• Borghini ,nucl-th/0612093

Page 37: EMCICs and the  femtoscopy of small systems

ma lisa - ALICE week 12-16 Feb 2007 - Muenster

Distributions w/ phasespace constraints

˜ f ( pi) = 2E i f ( pi) = 2E i

dN

d3 pi

single-particle distributionw/o P.S. restriction

Page 38: EMCICs and the  femtoscopy of small systems

ma lisa - ALICE week 12-16 Feb 2007 - Muenster

Distributions w/ phasespace constraints

˜ f ( pi) = 2E i f ( pi) = 2E i

dN

d3 pi

single-particle distributionw/o P.S. restriction

˜ f c(p1,...,pk ) ≡ ˜ f (pi)i=1

k

∏ ⎛ ⎝ ⎜ ⎞

⎠ ⎟⋅

d3pi

2E i

˜ f (pi)i= k +1

N

∏ ⎛

⎝ ⎜

⎠ ⎟∫ δ 4 pi

i=1

N

∑ − P ⎛

⎝ ⎜

⎠ ⎟

d3pi

2E i

˜ f (pi)i=1

N

∏ ⎛

⎝ ⎜

⎠ ⎟∫ δ 4 pi

i=1

N

∑ − P ⎛

⎝ ⎜

⎠ ⎟

= ˜ f (pi)i=1

k

∏ ⎛ ⎝ ⎜ ⎞

⎠ ⎟⋅

d4piδ(pi2 − mi

2)˜ f (pi)i= k +1

N

∏ ⎛ ⎝ ⎜ ⎞

⎠ ⎟∫ δ 4 pi

i=1

N

∑ − P ⎛

⎝ ⎜

⎠ ⎟

d4piδ(pi2 − mi

2)˜ f (pi)i=1

N

∏ ⎛ ⎝ ⎜ ⎞

⎠ ⎟∫ δ 4 pi

i=1

N

∑ − P ⎛

⎝ ⎜

⎠ ⎟

k-particle distribution (k<N) with P.S. restriction

Page 39: EMCICs and the  femtoscopy of small systems

ma lisa - ALICE week 12-16 Feb 2007 - Muenster

Distributions w/ phasespace constraints

˜ f ( pi) = 2E i f ( pi) = 2E i

dN

d3 pi

single-particle distributionw/o P.S. restriction

˜ f c(p1,...,pk ) ≡ ˜ f (pi)i=1

k

∏ ⎛ ⎝ ⎜ ⎞

⎠ ⎟⋅

d3pi

2E i

˜ f (pi)i= k +1

N

∏ ⎛

⎝ ⎜

⎠ ⎟∫ δ 4 pi

i=1

N

∑ − P ⎛

⎝ ⎜

⎠ ⎟

d3pi

2E i

˜ f (pi)i=1

N

∏ ⎛

⎝ ⎜

⎠ ⎟∫ δ 4 pi

i=1

N

∑ − P ⎛

⎝ ⎜

⎠ ⎟

= ˜ f (pi)i=1

k

∏ ⎛ ⎝ ⎜ ⎞

⎠ ⎟⋅

d4piδ(pi2 − mi

2)˜ f (pi)i= k +1

N

∏ ⎛ ⎝ ⎜ ⎞

⎠ ⎟∫ δ 4 pi

i=1

N

∑ − P ⎛

⎝ ⎜

⎠ ⎟

d4piδ(pi2 − mi

2)˜ f (pi)i=1

N

∏ ⎛ ⎝ ⎜ ⎞

⎠ ⎟∫ δ 4 pi

i=1

N

∑ − P ⎛

⎝ ⎜

⎠ ⎟

k-particle distribution (k<N) with P.S. restriction

FN−k P − pi

i=1

k

∑ ⎛

⎝ ⎜

⎠ ⎟≡ d4piδ(pi

2 − mi2)˜ f (pi)i= k +1

N

∏ ⎛ ⎝ ⎜ ⎞

⎠ ⎟∫ δ 4 pi

i=1

N

∑ − P ⎛

⎝ ⎜

⎠ ⎟

= d4piδ(pi2 − mi

2)˜ f (pi)

g(pi)1 2 4 4 3 4 4 i= k +1

N

∏ ⎛

⎜ ⎜ ⎜

⎟ ⎟ ⎟

∫ δ 4 pi

i= k +1

N

∑ − P − pi

i=1

k

∑ ⎛

⎝ ⎜

⎠ ⎟

⎝ ⎜ ⎜

⎠ ⎟ ⎟

FN−k is just the distribution of the sum of a large number N - k( )

of uncorrelated momenta pi

i= k +1

N

∑ = P − pi

i=1

k

∑ ⎛

⎝ ⎜

⎠ ⎟

Page 40: EMCICs and the  femtoscopy of small systems

ma lisa - ALICE week 12-16 Feb 2007 - Muenster

IF g(pi) = g0(p0,i) ⋅gx (px,i) ⋅gy (py,i) ⋅gz(pz,i) then

FN−k P − pi

i=1

k

∑ ⎛

⎝ ⎜

⎠ ⎟=

dp0,ii= k +1

N

∏ g0 p0,i( ) ⎛ ⎝ ⎜ ⎞

⎠ ⎟∫ δ p0,i

i= k +1

N

∑ − P0 − p0,i

i=1

k

∑ ⎛

⎝ ⎜

⎠ ⎟

⎝ ⎜ ⎜

⎠ ⎟ ⎟⋅⋅⋅ dpZ,ii= k +1

N

∏ gZ pZ,i( ) ⎛ ⎝ ⎜ ⎞

⎠ ⎟∫ δ pZ,i

i= k +1

N

∑ − PZ − pZ,i

i=1

k

∑ ⎛

⎝ ⎜

⎠ ⎟

⎝ ⎜ ⎜

⎠ ⎟ ⎟

(note 1- dimensional δ - functions, etc)

then, use CLT on each of 4 1D integrals

But... Energy conservation coupled to on-shell constraint huge correlations between Etot, PX,tot, PY,tot, PZ,tot ???

FN−k P − pi

i=1

k

∑ ⎛

⎝ ⎜

⎠ ⎟≡ d4piδ(pi

2 − mi2)˜ f (pi)i= k +1

N

∏ ⎛ ⎝ ⎜ ⎞

⎠ ⎟∫ δ 4 pi

i=1

N

∑ − P ⎛

⎝ ⎜

⎠ ⎟

= d4piδ(pi2 − mi

2)˜ f (pi)

g(pi)1 2 4 4 3 4 4 i= k +1

N

∏ ⎛

⎜ ⎜ ⎜

⎟ ⎟ ⎟

∫ δ 4 pi

i= k +1

N

∑ − P − pi

i=1

k

∑ ⎛

⎝ ⎜

⎠ ⎟

⎝ ⎜ ⎜

⎠ ⎟ ⎟

FN−k is just the distribution of the sum of a large number N - k( )

of uncorrelated momenta pi

i= k +1

N

∑ = P − pi

i=1

k

∑ ⎛

⎝ ⎜

⎠ ⎟

Page 41: EMCICs and the  femtoscopy of small systems

ma lisa - ALICE week 12-16 Feb 2007 - Muenster

CLT & ∑E - ∑p correlations

Page 42: EMCICs and the  femtoscopy of small systems

ma lisa - ALICE week 12-16 Feb 2007 - Muenster

Using central limit theorem (“large N-k”)

˜ f c(p1,...,pk ) = ˜ f (pi)i=1

k

∏ ⎛ ⎝ ⎜ ⎞

⎠ ⎟ N

N − k

⎝ ⎜

⎠ ⎟2

exp −

pi,μ − pμ( )i=1

k

∑ ⎛

⎝ ⎜

⎠ ⎟

2

2(N − k)σ μ2

μ = 0

3

⎜ ⎜ ⎜ ⎜ ⎜

⎟ ⎟ ⎟ ⎟ ⎟

where

σ μ2 = pμ

2 − pμ

2

pμ = 0 for μ =1,2,3

k-particle distribution in N-particle system

pμ2 ≡ d3p ⋅pμ

2 ⋅ ˜ f p( )unmeasuredparent distrib

{∫ ≠ d3p ⋅pμ2 ⋅ ˜ f c p( )

measured{∫N.B.

relevant later

Page 43: EMCICs and the  femtoscopy of small systems

ma lisa - ALICE week 12-16 Feb 2007 - Muenster

k-particle correlation function

C(p1,...,pk ) ≡˜ f c(p1,...,pk )

˜ f c(p1)....̃ f c(pk )

=

N

N − k

⎝ ⎜

⎠ ⎟2

N

N −1

⎝ ⎜

⎠ ⎟2k

exp −1

2(N − k)

px,ii=1

k

∑ ⎛ ⎝ ⎜ ⎞

⎠ ⎟2

px2

+py,ii=1

k

∑ ⎛ ⎝ ⎜ ⎞

⎠ ⎟2

py2

+pz,ii=1

k

∑ ⎛ ⎝ ⎜ ⎞

⎠ ⎟2

pz2

+E i − E( )

i=1

k

∑ ⎛ ⎝ ⎜ ⎞

⎠ ⎟2

E 2 − E2

⎜ ⎜ ⎜

⎟ ⎟ ⎟

⎜ ⎜ ⎜

⎟ ⎟ ⎟

exp −1

2(N −1)

px,i2

px2

+py,i

2

py2

+pz,i

2

pz2

+E i − E( )

2

E 2 − E2

⎜ ⎜

⎟ ⎟

i=1

k

∑ ⎛

⎜ ⎜

⎟ ⎟

Dependence on “parent” distrib f vanishes,except for energy/momentum means and RMS

2-particle correlation function (1st term in 1/N expansion)

C(p1,p2) ≅1−1

N2

r p T,1 ⋅

r p T,2

pT2

+pz,1 ⋅pz,2

pz2

+E1 − E( ) ⋅ E 2 − E( )

E 2 − E2

⎝ ⎜ ⎜

⎠ ⎟ ⎟

Page 44: EMCICs and the  femtoscopy of small systems

ma lisa - ALICE week 12-16 Feb 2007 - Muenster

C(p1,p2) ≅1−1

N2

r p T,1 ⋅

r p T,2

pT2

+pz,1 ⋅pz,2

pz2

+E1 − E( ) ⋅ E 2 − E( )

E 2 − E2

⎝ ⎜ ⎜

⎠ ⎟ ⎟

2-particle correlation function (1st term in 1/N expansion)

“The pT term” “The pZ term” “The E term”

Names used in the following plots

Page 45: EMCICs and the  femtoscopy of small systems

ma lisa - ALICE week 12-16 Feb 2007 - Muenster

EMCICsEMCICs

Effect of varying multiplicity & total Effect of varying multiplicity & total energy energy

Same plots as before, but now we look at:

• pT (), pz () and E () first-order terms

• full () versus first-order () calculation

• simulation () versus first-order () calculation

Page 46: EMCICs and the  femtoscopy of small systems

ma lisa - ALICE week 12-16 Feb 2007 - Muenster

N=6, <K>=0.5 GeV, LabCMS Frame - no N=6, <K>=0.5 GeV, LabCMS Frame - no cutscuts

Page 47: EMCICs and the  femtoscopy of small systems

ma lisa - ALICE week 12-16 Feb 2007 - Muenster

N=9, <K>=0.5 GeV, LabCMS Frame - no N=9, <K>=0.5 GeV, LabCMS Frame - no cutscuts

Page 48: EMCICs and the  femtoscopy of small systems

ma lisa - ALICE week 12-16 Feb 2007 - Muenster

N=15, <K>=0.5 GeV, LabCMS Frame - no N=15, <K>=0.5 GeV, LabCMS Frame - no cutscuts

Page 49: EMCICs and the  femtoscopy of small systems

ma lisa - ALICE week 12-16 Feb 2007 - Muenster

N=18, <K>=0.5 GeV, LabCMS Frame - no N=18, <K>=0.5 GeV, LabCMS Frame - no cutscuts

Page 50: EMCICs and the  femtoscopy of small systems

ma lisa - ALICE week 12-16 Feb 2007 - Muenster

N=18, <K>=0.7 GeV, LabCMS Frame - no N=18, <K>=0.7 GeV, LabCMS Frame - no cutscuts

Page 51: EMCICs and the  femtoscopy of small systems

ma lisa - ALICE week 12-16 Feb 2007 - Muenster

N=18, <K>=0.9 GeV, LabCMS Frame - no N=18, <K>=0.9 GeV, LabCMS Frame - no cutscuts

Page 52: EMCICs and the  femtoscopy of small systems

ma lisa - ALICE week 12-16 Feb 2007 - Muenster

Findings

• first-order and full calculations agree well for N>9– will be important for “experimentalist’s recipe”

• Non-trivial competition/cooperation between pT, pz, E terms

– all three important

• pT1•pT2 term does affect “out-versus-side” (A22)

• pz term has finite contribution to A22 (“out-versus-side”)

• calculations come close to reproducing simulation for reasonable (N-2) and energy, but don’t nail it. Why?– neither (N-k) nor s is infinite– however, probably more important... [next slide]...

Page 53: EMCICs and the  femtoscopy of small systems

ma lisa - ALICE week 12-16 Feb 2007 - Muenster

Remember...

C(p1,p2) ≅1−1

N2

r p T,1 ⋅

r p T,2

pT2

+pz,1 ⋅pz,2

pz2

+E1 − E( ) ⋅ E 2 − E( )

E 2 − E2

⎝ ⎜ ⎜

⎠ ⎟ ⎟

pμ2 ≡ d3p ⋅pμ

2 ⋅ ˜ f p( )unmeasuredparent distrib

{∫ ≠ pμ2

c≡ d3p ⋅pμ

2 ⋅ ˜ f c p( )measured{∫

relevant quantities are average over the (unmeasured) “parent” distribution,not the physical distribution

expect pμ2

c< pμ

2

of course, the experimentalist never measures all particles(including neutrinos) or <pT

2> anyway, so maybe not a big loss

Page 54: EMCICs and the  femtoscopy of small systems

ma lisa - ALICE week 12-16 Feb 2007 - Muenster

C(p1,p2) ≅ 1−2

N pT2

NEW PARAM 11 2 3

⋅r p 1,T ⋅

r p 2,T{ } −

1

N pZ2

NEW PARAM 21 2 3

⋅ p1,z ⋅p2,z{ }

−1

N E 2 − E2

( )

NEW PARAM 31 2 4 4 3 4 4

⋅ E1 ⋅E 2{ } +E

N E 2 − E2

( )

NEW PARAM 41 2 4 4 3 4 4

⋅ E1 + E 2{ } +E

2

N E 2 − E2

( )

Ratio of parameters 3,41 2 4 4 3 4 4

where

X{ } denotes the average of X over the (p1,p2) bin. (or r q - bin or whatever we are binning in)

I.e. it is just another histogram which the experimentalist makes, from the data

momenta and energy are measured in the lab frame.

The experimentalist’s recipeTreat the not-precisely-known factors as fit parameters (4 of them)• values determined mostly by large-|Q|; should not cause “fitting hell”• look, you will either ignore it or fit it ad-hoc anyway (both wrong)• this recipe provides physically meaningful, justified form

Page 55: EMCICs and the  femtoscopy of small systems

ma lisa - ALICE week 12-16 Feb 2007 - Muenster

18 pions, <K>=0.9 GeV

Page 56: EMCICs and the  femtoscopy of small systems

ma lisa - ALICE week 12-16 Feb 2007 - Muenster

Page 57: EMCICs and the  femtoscopy of small systems

ma lisa - ALICE week 12-16 Feb 2007 - Muenster

C(p1,p2) =

Norm 1− M1 ⋅r p 1,T ⋅

r p 2,T{ } − M2 ⋅ p1,z ⋅p2,z{ } − M3 ⋅ E1 ⋅E 2{ } + M4 ⋅ E1 + E 2{ } −

M42

M3

+"λ ⋅e− Rα

2 qα2

α =o,s ,l

∑"

⎣ ⎢ ⎢

⎦ ⎥ ⎥

The COMPLETE experimentalist’s recipe

C(q) + M1 ⋅r p 1,T ⋅

r p 2,T{ } + M2 ⋅ p1,z ⋅p2,z{ } + M3 ⋅ E1 ⋅E 2{ } − M4 ⋅ E1 + E 2{ } +

M42

M3

femtoscopicfunction ofchoicefit this...

...or image this...

Page 58: EMCICs and the  femtoscopy of small systems

ma lisa - ALICE week 12-16 Feb 2007 - Muenster

“Full” fit to min-bias d+Au - work in progress

dataEMCIC

Femto (gauss)full

Page 59: EMCICs and the  femtoscopy of small systems

ma lisa - ALICE week 12-16 Feb 2007 - Muenster

Summary• understanding the femtoscopy of small systems

– important physics-wise– should not be attempted until data fully under control

• SHD: “efficient” tool to study 3D structure

• Restricted P.S. due EMCIC– sampled by GenBod event generator– stronger effects for small mult and/or s

• Analytic calculation of EMCIC– k-th order CF given by ratio of correction factors– “parent” only relevant in momentum variances– first-order expansion works well for N>9– non-trivial interaction b/t pT, pz, E conservation effects

• Physically correct “recipe” to fit/remove MCIC– 4 parameters, determined @ large |Q|– parameters are “physical” - values may be guessed

Page 60: EMCICs and the  femtoscopy of small systems

ma lisa - ALICE week 12-16 Feb 2007 - Muenster

Famous picture from famous article by famous guy

Energy loss of energetic partons in quark-gluon plasma:Possible extinction of high pT jets in hadron-hadron collisions

J.D. Bjorken, 1982b

Page 61: EMCICs and the  femtoscopy of small systems

ma lisa - ALICE week 12-16 Feb 2007 - Muenster

Thanks to...

• Alexy Stavinsky & Konstantin Mikhaylov (Moscow) [original suggestion to use Genbod]

• Nicolas Borghini (Bielefeld) & Jean-Yves Ollitrault (Saclay) [helpful guidance and explanation of previous work]

• Adam Kisiel (Warsaw) [emphasize energy conservation; resonance effects in +- -]

• Ulrich Heinz (Columbus)[suggestions on validating CLT in 3+1 case]

Page 62: EMCICs and the  femtoscopy of small systems

ma lisa - ALICE week 12-16 Feb 2007 - Muenster

Extra Slides

Page 63: EMCICs and the  femtoscopy of small systems

ma lisa - ALICE week 12-16 Feb 2007 - Muenster

CLT?

distribution of N uncorrelated numbers(and then scaled by N, for convenience)

• Note we are not starting with a very Gaussian distribution!!

• “pretty Gaussian” for N=4 (but 2/dof~2.5)• “Gaussian” by N=10•

xΣ = xi =i=1

N

∑ N x (remember plots scaled by N)

σ Σ2 = Nσ 2 → σ Σ = Nσ (→

σ Σ

N=

σ

N remember plots scaled by N)

Page 64: EMCICs and the  femtoscopy of small systems

ma lisa - ALICE week 12-16 Feb 2007 - Muenster

What is an Alm ?

QOUT

QSIDE

QLONG Q

Al,m (|Q→

|) =Δcosθ Δφ

4π×

Yl,m (θ i,φi)C(|Q→

|,cosθ i,φi)i

all.bins

nucl-ex/0505009

C(|

Q|=

0.39

,cos

,)

Page 65: EMCICs and the  femtoscopy of small systems

ma lisa - ALICE week 12-16 Feb 2007 - Muenster

Multiplicity dependence of the baselineMultiplicity dependence of the baseline

Baseline problem is increasing

with decreasing multiplicity

STAR preliminary

Page 66: EMCICs and the  femtoscopy of small systems

ma lisa - ALICE week 12-16 Feb 2007 - Muenster

d+Au

Page 67: EMCICs and the  femtoscopy of small systems

ma lisa - ALICE week 12-16 Feb 2007 - Muenster

Schematic: How Genbod works 1/3

Page 68: EMCICs and the  femtoscopy of small systems

ma lisa - ALICE week 12-16 Feb 2007 - Muenster

flow chart,in text

F. James, CERN REPORT 68-15 (1968)

Page 69: EMCICs and the  femtoscopy of small systems

ma lisa - ALICE week 12-16 Feb 2007 - Muenster

F. James, CERN REPORT 68-15 (1968)

Page 70: EMCICs and the  femtoscopy of small systems

ma lisa - ALICE week 12-16 Feb 2007 - Muenster

Schematic: How Genbod works 2/3

Page 71: EMCICs and the  femtoscopy of small systems

ma lisa - ALICE week 12-16 Feb 2007 - Muenster

Schematic: How Genbod works 3/3

Page 72: EMCICs and the  femtoscopy of small systems

ma lisa - ALICE week 12-16 Feb 2007 - Muenster

Example of use of total phase space integral

• In absence of “physics” in M : (i.e. phase-space dominated)

Γ pp → πππ( )Γ pp → ππππ( )

=R3 1.876;π ,π ,π( )

R4 1.876;π ,π ,π ,π( )

In limit where "α "="event" = collection of momenta r p i

"spectrum of events" = f α( ) =d

dαRn

→ Probevent α ∝d3n

dpi3

i=1

n

∏Rn

• single-particle spectrum of :

f α( ) =d

dαRn

• “spectrum of events”:

F. James, CERN REPORT 68-15 (1968)