ella gale , ben de lacy costello and andrew adamatzky

50
Ella Gale , Ben de Lacy Costello and Andrew Adamatzky Observation and Characterization of Memristor Current Spikes and their Application to Neuromorphic Computation

Upload: boris

Post on 25-Feb-2016

33 views

Category:

Documents


0 download

DESCRIPTION

Observation and Characterization of Memristor Current Spikes and their Application to Neuromorphic Computation. Ella Gale , Ben de Lacy Costello and Andrew Adamatzky. Contents. How do Neurons Compute? Competing Models for the Memristor Making Spiking Neural Networks with Memristors - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Ella Gale , Ben de Lacy Costello and Andrew  Adamatzky

Ella Gale, Ben de Lacy Costello and Andrew

Adamatzky

Observation and Characterization of Memristor

Current Spikes and their Application to Neuromorphic

Computation

Page 2: Ella Gale , Ben de Lacy Costello and Andrew  Adamatzky

• How do Neurons Compute?• Competing Models for the

Memristor• Making Spiking Neural

Networks with Memristors• The Memristor Acting as a

Neuron• Characteristics and Properties• Where do the Spikes come

from?

Contents

Page 3: Ella Gale , Ben de Lacy Costello and Andrew  Adamatzky
Page 4: Ella Gale , Ben de Lacy Costello and Andrew  Adamatzky

• Slow• Parallel Processing• High degree of interconnectivity• Spiking Neural Nets• Ionic• Analogue

How Does the Brain Differ From a Modern-Day Computer?

Page 5: Ella Gale , Ben de Lacy Costello and Andrew  Adamatzky

Influx of Ionic I

Voltage Spike

Axon:Transmission along

neuron

Synapse:Transmission

between neurons

How does a Neuron Compute?

Page 6: Ella Gale , Ben de Lacy Costello and Andrew  Adamatzky

Memristive Systems to Describe Nerve Axon

Membranes

Page 7: Ella Gale , Ben de Lacy Costello and Andrew  Adamatzky

Synapse Long-Term Potentiation

Page 8: Ella Gale , Ben de Lacy Costello and Andrew  Adamatzky

The Memristor as a Synapse

Before learning Before learning

During learningAfter learning

After learning

Page 9: Ella Gale , Ben de Lacy Costello and Andrew  Adamatzky

• Process by which synapses are potentiated

• Related to Hebb’s Rule• Possibly a cause of memory and learning• Relative timing of spike inputs to a

synapse important

Spike-Time Dependent Plasticity, STDP

Bi and Poo, Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength and Postsynaptic Cell Type, J. Neurosci., 1998

Page 10: Ella Gale , Ben de Lacy Costello and Andrew  Adamatzky
Page 11: Ella Gale , Ben de Lacy Costello and Andrew  Adamatzky

Memristor Structure and Function

Page 12: Ella Gale , Ben de Lacy Costello and Andrew  Adamatzky

Phenomenological Model

𝑀 (𝑞 (𝑡 ) )=𝑅off−𝜇𝑣

𝐷2 𝑅off 𝑅on𝑞 (𝑡)

Strukov et al, The Missing Memristor Found, Nature, 2008

= ionic mobility of the O+ vacancies

Roff = resistance of TiO2

Ron = resistance of TiO(2-x)

Page 13: Ella Gale , Ben de Lacy Costello and Andrew  Adamatzky

Charge-Controlled Memristor

Flux-Controlled Memristor

Chua’s Definitions of Types of Memristors

L. Chua, Memristor – The Missing Circuit Element, IEEE Trans. Circuit Theory, 1971

Page 14: Ella Gale , Ben de Lacy Costello and Andrew  Adamatzky

What the Flux?

𝑑𝜑=𝑀 (𝑞 (𝑡 ) )𝑑𝑞𝑀 (𝑞 (𝑡 ) )=𝑅𝑜𝑓𝑓−𝜇𝑣

𝐷2 𝑅𝑜𝑓𝑓 𝑅𝑜𝑛𝑞(𝑡)

But, where is the magnetic flux?

𝑉=𝑀 (𝑡 ) 𝐼

Chua, 1971Strukov et al, 2008

Page 15: Ella Gale , Ben de Lacy Costello and Andrew  Adamatzky

• Memristance is a phenomenon associated with ionic current flow

• Therefore calculate the magnetic flux of the IONS

Vacancy Volume Current , L = eLectric field

Vacancy Magnetic Field

Vacancy Magnetic Flux

Starting From The Ions…

Page 16: Ella Gale , Ben de Lacy Costello and Andrew  Adamatzky

• Universal constants:

• X, Experimental constants: product of surface area and electric field

• , material variable, =

Memristance, as Derived from Ion Flow

Gale, The Missing Magnetic Flux in the HP Memristor Found, 2011

Page 17: Ella Gale , Ben de Lacy Costello and Andrew  Adamatzky

Mem-Con Theory

𝑞 ↔ 𝑀(𝑞) ↔ 𝜑 ↑ 𝑉 ↔ 𝑅𝑡𝑜𝑡(𝑡) ↔ 𝐼

Ionic Electronic

Gale, The Missing Magnetic Flux in the HP Memristor Found, Submitted, 2011

Page 18: Ella Gale , Ben de Lacy Costello and Andrew  Adamatzky

Memristor I-V Behaviour

Page 19: Ella Gale , Ben de Lacy Costello and Andrew  Adamatzky

To make a memristor brain

& thus a machine intelligence

Our Intent:

Page 20: Ella Gale , Ben de Lacy Costello and Andrew  Adamatzky
Page 21: Ella Gale , Ben de Lacy Costello and Andrew  Adamatzky

Connecting Memristors with Spiking Neurons to Implement STDP

1. Zamarreno-Ramos et al, On Spike Time Dependent Plasticity, Memristive Devices and Building a Self-Learning Visual Cortex, Frontiers in Neuroscience, 20110. Linares-Barranco and Serrano-Gotarredona, Memristance can explain Spike-Time-Dependent-Plasticity in Neural Synapses, Nature Preceedings, 2009

Simulation Results

Page 22: Ella Gale , Ben de Lacy Costello and Andrew  Adamatzky

Memristors Spike

Naturally!

But,

Page 23: Ella Gale , Ben de Lacy Costello and Andrew  Adamatzky

Our Memristors

• Crossed Aluminium electrodes

• Thin-film (40nm) TiO2 sol-gel layer

1. Gergel-Hackett et al, A Flexible Solution Processed Memristor, IEEE Elec. Dev. Lett., 20092. Gale et al, Aluminium Electrodes Effect the Operation of Titanium Dioxide Sol-Gel Memristors, Submitted 2012

Page 24: Ella Gale , Ben de Lacy Costello and Andrew  Adamatzky

Current Spikes Seen in I-t Plots

Page 25: Ella Gale , Ben de Lacy Costello and Andrew  Adamatzky

Voltage Square Wave Current Spike Response

Spikes are Reproducible

Page 26: Ella Gale , Ben de Lacy Costello and Andrew  Adamatzky

Voltage Ramp Current Response

Spikes are Repeatable

Page 27: Ella Gale , Ben de Lacy Costello and Andrew  Adamatzky

Neuron

Memristor

Memristor Behaviour Looks Similar to Neurons

Bal and McCormick, Synchronized Oscilliations in the Inferior Olive are controlled by the Hyperpolarisation-Activated Cation Current Ih, J. Neurophysiol, 77, 3145-3156, 1997

Page 28: Ella Gale , Ben de Lacy Costello and Andrew  Adamatzky

SPIKES SEEN IN THE LITERATURE

Page 29: Ella Gale , Ben de Lacy Costello and Andrew  Adamatzky

Pershin and Di Ventra, Spin Memristive Systems: Spin Memory Effects in Semi-conductor Spintronics, Phys. Rev. B, 2008

Spintronic Memristor Current Spikes

Page 30: Ella Gale , Ben de Lacy Costello and Andrew  Adamatzky
Page 31: Ella Gale , Ben de Lacy Costello and Andrew  Adamatzky

• Direction of Spikes is related to not V

• The switch to 0V has a associated current spike

• Spikes are repeatable• Spikes are reproducable• Spikes are seen in bipolar switching

memristors/ReRAM• Spikes are not seen in unipolar

switching, UPS ReRAM type memristors

Properties of Spikes

Page 32: Ella Gale , Ben de Lacy Costello and Andrew  Adamatzky

Pictures

Curved (BPS-like) Memristors

Triangular (UPS-like) Memristors

Two Different Types of Memristor Behaviour Seen in Our Lab

Page 33: Ella Gale , Ben de Lacy Costello and Andrew  Adamatzky

Curved (BPS-like) Memristors

Triangular (UPS-like) Memristors

Two Different Types of Memristor Behaviour Seen in Our Lab

Page 34: Ella Gale , Ben de Lacy Costello and Andrew  Adamatzky

Where do the Spikes Come From?

Does Current Theory Predict Their Existence?

Page 35: Ella Gale , Ben de Lacy Costello and Andrew  Adamatzky

q φI V

q φV I

Neurons Memristors

Mem-Con Model Applied to Memristor Spikes

Page 36: Ella Gale , Ben de Lacy Costello and Andrew  Adamatzky

• Dynamics related to min. response time, τ, related to speed of ion diffusion across membrane

• Memory property = ???• Neuron operated in a

current-controlled way

• Dynamics related to τ, which is related to

• Memory property = qv

• Memristor operated in voltage controlled way

Neuron Voltage Spikes Memristor Current Spikes

In Chua’s Model

Page 37: Ella Gale , Ben de Lacy Costello and Andrew  Adamatzky

• More complex system than a single memristor

• Short-term memory associated with membrane potential

• Long term memory associated with the number of synaptic buds

What is the Memory Property of Neurons?

Page 38: Ella Gale , Ben de Lacy Costello and Andrew  Adamatzky

Sol-Gel Memristor Negative V

Sol-Gel Memristor Positive V

Memristor Models Fit the Data

Page 39: Ella Gale , Ben de Lacy Costello and Andrew  Adamatzky

Memristor Model Fits the PEO-PANI Memristor

Page 40: Ella Gale , Ben de Lacy Costello and Andrew  Adamatzky

Al-TiO2-Al Sol-Gel Memristor

Page 41: Ella Gale , Ben de Lacy Costello and Andrew  Adamatzky

Time & Frequency Dependence of Hysteresis for Al-TiO2-Al

Page 42: Ella Gale , Ben de Lacy Costello and Andrew  Adamatzky

Au-TiO2-Au WORMS Memory

Page 43: Ella Gale , Ben de Lacy Costello and Andrew  Adamatzky

I-t Response to Stepped Voltage

Time Dependent I-V

Au-TiO2-Au WORMS Memory

Page 44: Ella Gale , Ben de Lacy Costello and Andrew  Adamatzky

Voltage Ramp Current Response

Al-TiO2-Al Current Response to Voltage Ramp

Page 45: Ella Gale , Ben de Lacy Costello and Andrew  Adamatzky
Page 46: Ella Gale , Ben de Lacy Costello and Andrew  Adamatzky

Neurology:• Modelling Neurons with the Mem-Con

Theory to prove that they are Memristive• Investigate the Memory Property for

neurons

Unconventional Computing:• Further Investigation of memristor and

ReRAM properties• Attempt to build a neuromorphic control

system for a navigation robot

Further Work

Page 47: Ella Gale , Ben de Lacy Costello and Andrew  Adamatzky
Page 48: Ella Gale , Ben de Lacy Costello and Andrew  Adamatzky

• Neurons May Be Biological Memristors• Neurons Operate via Voltage Spikes• Memristors can Operative via Current

Spikes• Thus, Memristors are Good Candidates for

Neuromorphic Computation• A Memristor-based Neuromorphic

Computer will be Voltage Controlled and transmit data via Current Spikes

Summary

Page 49: Ella Gale , Ben de Lacy Costello and Andrew  Adamatzky

• Ben de Lacy Costello

• Andrew Adamatzky• David Howard• Larry Bull

With Thanks to

• Victor Erokhin and his group (University of Parma)

• Steve Kitson (HP UK)• David Pearson (HP

UK)

• Bristol Robotics Laboratory

Page 50: Ella Gale , Ben de Lacy Costello and Andrew  Adamatzky